Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Infect Immun ; 92(2): e0052623, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38235972

RESUMO

Staphylococcus aureus is a gram-positive pathogen that poses a major health concern, in part due to its large array of virulence factors that allow infection and evasion of the immune system. One of these virulence factors is the bicomponent pore-forming leukocidin LukAB. The regulation of lukAB expression is not completely understood, especially in the presence of immune cells such as human polymorphonuclear neutrophils (hPMNs). Here, we screened for transcriptional regulators of lukAB during the infection of primary hPMNs. We uncovered that PerR, a peroxide sensor, is vital for hPMN-mediated induction of lukAB and that PerR upregulates cytotoxicity during the infection of hPMNs. Exposure of S. aureus to hydrogen peroxide (H2O2) alone also results in increased lukAB promoter activity, a phenotype dependent on PerR. Collectively, our data suggest that S. aureus uses PerR to sense the H2O2 produced by hPMNs to stimulate the expression of lukAB, allowing the bacteria to withstand these critical innate immune cells.IMPORTANCEStaphylococcus aureus utilizes a diverse set of virulence factors, such as leukocidins, to subvert human neutrophils, but how these toxins are regulated is incompletely defined. Here, we identified the peroxide-sensitive repressor, PerR, as a required protein involved in the induction of lukAB in the presence of primary human neutrophils, a phenotype directly linked to the ability of PerR to sense H2O2. Thus, we show that S. aureus coordinates sensing and resistance to oxidative stress with toxin production to promote pathogen survival.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Neutrófilos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Leucocidinas , Infecções Estafilocócicas/microbiologia
2.
J Allergy Clin Immunol ; 152(5): 1179-1195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315812

RESUMO

BACKGROUND: Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES: This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS: Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS: At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS: Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Humanos , Dermatite Atópica/genética , Staphylococcus aureus , Anticorpos Monoclonais Humanizados/uso terapêutico , Pele/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Índice de Gravidade de Doença , Resultado do Tratamento
3.
Infect Immun ; 91(4): e0053222, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36939325

RESUMO

Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Exotoxinas/genética , Exotoxinas/metabolismo , Leucocidinas/genética , Neutrófilos , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo
4.
Arch Microbiol ; 205(4): 103, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867264

RESUMO

It has been reported that cell-free culture broths and some proteins from pigmented and non-pigmented Serratia spp. are cytotoxic towards cancerous and non-cancerous human cell lines. Looking for new molecules toxic against human cancerous cells but harmless towards normal human cells, the aim of this work was (a) to determine whether cell-free broths from the entomopathogenic non-pigmented S. marcescens 81 (Sm81), S. marcescens 89 (Sm89) and S. entomophila (SeMor4.1) presented cytotoxic activity towards human carcinoma cell lines; (b) to identify and purify the associated cytotoxic factor(s) and (c) to evaluate whether the cytotoxic factor(s) was cytotoxic towards non-cancerous human cells. This research was focussed on the observed morphology changes and the proportion of remaining viable cells after incubation in the presence of cell-free culture broths from the Serratia spp isolates to evaluate cytotoxic activity. The results showed that broths from both S. marcescens isolates presented cytotoxic activity and induced cytopathic-like effects on the human neuroblastoma CHP-212 and the breast cancer MDA-MB-231 cells. Slight cytotoxicity was observed in the SeMor4.1 broth. A serralysin-like protein of 50 kDa was identified in Sm81 broth as responsible for cytotoxic activity after purification by ammonium sulphate precipitation and ion-exchange chromatography followed by tandem-mass spectrometry (LC-MS/MS). The serralysin-like protein was toxic against CHP-212 (neuroblastoma), SiHa (human cervical carcinoma) and D-54 (human glioblastoma) cell lines in a dose-dependent manner and showed no cytotoxic activity in primary cultures of normal non-cancerous human keratinocytes and fibroblasts. Therefore, this protein should be evaluated for a potential use as an anticancer agent.


Assuntos
Antineoplásicos , Carcinoma , Neuroblastoma , Humanos , Serratia marcescens , Cromatografia Líquida , Espectrometria de Massas em Tandem , Linhagem Celular , Serratia
5.
Bioorg Med Chem ; 82: 117217, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889150

RESUMO

Complex natural products that bind to tubulin/microtubules come under the broad category of microtubule binding agents. The design of simplified analogs of previously reported bicyclic, microtubule depolymerizer, pyrrolo[2,3-d]pyrimidine, provided valuable structure-activity relationship data and led to the identification of novel monocyclic pyrimidine analogs of which 12 was 47-fold more potent (EC50 123 nM) for cellular microtubule depolymerization activity and 7.5-fold more potent (IC50 24.4 nM) at inhibiting the growth of MDA-MB-435 cancer cells, suggesting significantly better binding of the target within the colchicine site of tubulin compared to lead compound 1. This compound and others of this series of monocyclic pyrimidine analogs were able to overcome multidrug resistance due to the expression of the ßIII-isotype of tubulin and P-glycoprotein. In vivo evaluation of the most potent analog 12 in an MDA-MB-435 xenograft mouse model indicated, along with paclitaxel, that both compounds showed a trend towards lower tumor volume however neither compound showed significant antitumor activity in the trial. To our knowledge these are the first examples of simple substituted monocyclic pyrimidines as colchicine site binding antitubulin compounds with potent antitumor activity.


Assuntos
Antineoplásicos , Colchicina , Humanos , Camundongos , Animais , Colchicina/farmacologia , Colchicina/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Microtúbulos/metabolismo , Relação Estrutura-Atividade , Pirimidinas/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sítios de Ligação , Proliferação de Células
6.
J Bacteriol ; 204(5): e0055521, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35435721

RESUMO

Alpha-pore-forming toxins (α-PFTs) are secreted by many species of bacteria, including Escherichia coli, Aeromonas hydrophila, and Bacillus thuringiensis, as part of their arsenal of virulence factors, and are often cytotoxic. In particular, for α-PFTs, the membrane-spanning channel they form is composed of hydrophobic α-helices. These toxins oligomerize at the surface of target cells and transition from a soluble to a protomer state in which they expose their hydrophobic regions and insert into the membrane to form a pore. The pores may be composed of homooligomers of one component or heterooligomers with two or three components, resulting in bi- or tripartite toxins. The multicomponent α-PFTs are often expressed from a single operon. Recently, motility-associated killing factor A (MakA), an α-PFT, was discovered in Vibrio cholerae. We report that makA is found on the V. cholerae GI-10 genomic island within an operon containing genes for two other potential α-PFTs, MakB and MakE. We determined the X-ray crystal structures for MakA, MakB, and MakE and demonstrated that all three are structurally related to the α-PFT family in the soluble state, and we modeled their protomer state based on the α-PFT AhlB from A. hydrophila. We found that MakA alone is cytotoxic at micromolar concentrations. However, combining MakA with MakB and MakE is cytotoxic at nanomolar concentrations, with specificity for J774 macrophage cells. Our data suggest that MakA, -B, and -E are α-PFTs that potentially act as a tripartite pore-forming toxin with specificity for phagocytic cells. IMPORTANCE The bacterium Vibrio cholerae causes gastrointestinal, wound, and skin infections. The motility-associated killing factor A (MakA) was recently shown to be cytotoxic against colon, prostate, and other cancer cells. However, at the outset of this study, the capacity of MakA to damage cells in combination with other Mak proteins encoded in the same operon had not been elucidated. We determined the structures of three Mak proteins and established that they are structurally related to the α-PFTs. Compared to MakA alone, the combination of all three toxins was more potent specifically in mouse macrophages. This study highlights the idea that the Mak toxins are selectively cytotoxic and thus may function as a tripartite toxin with cell type specificity.


Assuntos
Vibrio cholerae , Animais , Citotoxinas/genética , Citotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ilhas Genômicas , Camundongos , Proteínas Citotóxicas Formadoras de Poros , Subunidades Proteicas/metabolismo , Vibrio cholerae/metabolismo , Fatores de Virulência/metabolismo
7.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830033

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that synthesizes and secretes a wide range of virulence factors. P. aeruginosa poses a potential threat to human health worldwide due to its omnipresent nature, robust host accumulation, high virulence, and significant resistance to multiple antibiotics. The pathogenicity of P. aeruginosa, which is associated with acute and chronic infections, is linked with multiple virulence factors and associated secretion systems, such as the ability to form and utilize a biofilm, pili, flagella, alginate, pyocyanin, proteases, and toxins. Two-component systems (TCSs) of P. aeruginosa perform an essential role in controlling virulence factors in response to internal and external stimuli. Therefore, understanding the mechanism of TCSs to perceive and respond to signals from the environment and control the production of virulence factors during infection is essential to understanding the diseases caused by P. aeruginosa infection and further develop new antibiotics to treat this pathogen. This review discusses the important virulence factors of P. aeruginosa and the understanding of their regulation through TCSs by focusing on biofilm, motility, pyocyanin, and cytotoxins.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Infecção Persistente , Infecções por Pseudomonas , Pseudomonas aeruginosa , Piocianina , Fatores de Virulência , Infecção Persistente/genética , Infecção Persistente/metabolismo , Infecção Persistente/microbiologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Piocianina/biossíntese , Piocianina/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
8.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885719

RESUMO

A novel series of 1-[3-{3,5-bis(benzylidene)-4-oxo-1-piperidino}-3-oxopropyl]-4-piperidone oximes 3a-h and related quaternary ammonium salts 4a-h were prepared as candidate antineoplastic agents. Evaluation against neoplastic Ca9-22, HSC-2 and HSC-4 cells revealed the compounds in series 3 and 4 to be potent cytotoxins with submicromolar CC50 values in virtually all cases. In contrast, the compounds were less cytocidal towards HGF, HPLF and HPC non-malignant cells revealing their tumour-selective toxicity. Quantitative structure-activity relationships revealed that, in general, both cytotoxic potency and selectivity index figures increased as the magnitude of the Hammett sigma values rose. In addition, 3a-h are cytotoxic towards a number of leukemic and colon cancer cells. 4b,c lowered the mitochondrial membrane potential in CEM cells, and 4d induced transient G2/M accumulation in Ca9-22 cells. Five compounds, namely 3c,d and 4c-e, were identified as lead molecules that have drug-like properties.


Assuntos
Antineoplásicos/síntese química , Neoplasias do Colo/tratamento farmacológico , Oximas/síntese química , Compostos de Amônio Quaternário/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Oximas/química , Oximas/farmacologia , Relação Quantitativa Estrutura-Atividade , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia
9.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571989

RESUMO

Staphylococcus aureus is a major human pathogen, and the emergence of antibiotic-resistant strains is making all types of S. aureus infections more challenging to treat. With a pressing need to develop alternative control strategies to use alongside or in place of conventional antibiotics, one approach is the targeting of established virulence factors. However, attempts at this have had little success to date, suggesting that we need to better understand how this pathogen causes disease if effective targets are to be identified. To address this, using a functional genomics approach, we have identified a small membrane-bound protein that we have called MspA. Inactivation of this protein results in the loss of the ability of S. aureus to secrete cytolytic toxins, protect itself from several aspects of the human innate immune system, and control its iron homeostasis. These changes appear to be mediated through a change in the stability of the bacterial membrane as a consequence of iron toxicity. These pleiotropic effects on the ability of the pathogen to interact with its host result in significant impairment in the ability of S. aureus to cause infection in both a subcutaneous and sepsis model of infection. Given the scale of the effect the inactivation of MspA causes, it represents a unique and promising target for the development of a novel therapeutic approach.


Assuntos
Bacteriemia/microbiologia , Evasão da Resposta Imune , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Células A549 , Animais , Bacteriemia/imunologia , Bacteriemia/patologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Eritrócitos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Heme/imunologia , Heme/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Homeostase/imunologia , Humanos , Ferro/imunologia , Ferro/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Fagocitose , Proteômica/métodos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/patologia , Toxoide Estafilocócico/genética , Toxoide Estafilocócico/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Células THP-1 , Virulência , Fatores de Virulência/imunologia , Fatores de Virulência/toxicidade , alfa-Defensinas/genética , alfa-Defensinas/imunologia
10.
Emerg Infect Dis ; 26(9): 2287-2290, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32818425

RESUMO

The major toxins of Clostridioides difficile (TcdA, TcdB, CDT) are chromosomally encoded in nearly all known strains. Following up on previous findings, we identified 5 examples of a family of putative conjugative plasmids with tcdB and cdtAB in clinical C. difficile isolates from multilocus sequence typing clades C-I, 2, and 4.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides , Clostridioides difficile/genética , Enterotoxinas , Plasmídeos/genética
11.
Angew Chem Int Ed Engl ; 59(39): 17177-17181, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32543771

RESUMO

Tirapazamine (TPZ) has been tested in clinical trials on radio-chemotherapy due to its potential highly selective toxicity towards hypoxic tumor cells. It was suggested that either the hydroxyl radical or benzotriazinyl radical may form as bioactive radical after the initial reduction of TPZ in solution. In the present work, we studied low-energy electron attachment to TPZ in the gas phase and investigated the decomposition of the formed TPZ- anion by mass spectrometry. We observed the formation of the (TPZ-OH)- anion accompanied by the dissociation of the hydroxyl radical as by far the most abundant reaction pathway upon attachment of a low-energy electron. Quantum chemical calculations suggest that NH2 pyramidalization is the key reaction coordinate for the reaction dynamics upon electron attachment. We propose an OH roaming mechanism for other reaction channels observed, in competition with the OH dissociation.

12.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692180

RESUMO

Studies have implicated Gardnerella vaginalis as an important etiological agent in bacterial vaginosis (BV). It produces a cholesterol-dependent cytolysin, vaginolysin (VLY). In this study, we sought to characterize the interaction between vaginal epithelium, G. vaginalis, and VLY using EpiVaginal tissues from MatTek. These tissues are three-dimensional and have distinct apical and basolateral sides, enabling comparison of the effects of G. vaginalis and VLY following exposure to either side. We measured cytotoxicity, cytokine production, and bacterial growth, following apical versus basolateral exposure. G. vaginalis exhibited more-rapid growth in coculture with the tissue model when it was exposed to the apical side. VLY permeabilized cells on the basolateral side of the tissues but failed to permeabilize apical epithelial cells. Cytokine secretion in response to VLY and G. vaginalis also depended on the polarity of exposure. VLY did not cause significant changes in cytokine levels when exposed apically. Apical tissue challenge by G. vaginalis appeared to dampen the inflammatory response, as decreases in granulocyte-macrophage colony-stimulating factor (GM-CSF) (6.6-fold), RANTES (14.8-fold), and interferon gamma inducible protein 10 kDa (IP-10) (53-fold) and an increase in interleukin-1 receptor antagonist (IL-1ra) (5-fold) were observed. In vivo, G. vaginalis normally colonizes the apical face of the vaginal epithelium. Results from this study suggest that while G. vaginalis may grow on the apical face of the vaginal epithelium, its VLY toxin does not target these cells in this model. This phenomenon could have important implications regarding colonization of the vagina by G. vaginalis and may suggest an explanation for the lack of an overt immune response to this organism.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Epitélio/microbiologia , Gardnerella vaginalis/metabolismo , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Feminino , Gardnerella vaginalis/genética , Gardnerella vaginalis/crescimento & desenvolvimento , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Vagina/patologia , Vaginose Bacteriana/genética , Vaginose Bacteriana/metabolismo , Vaginose Bacteriana/patologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-31138568

RESUMO

ASN100 is a novel antibody combination of two fully human IgG1(κ) monoclonal antibodies (MAbs), ASN-1 and ASN-2, which neutralize six Staphylococcus aureus cytotoxins, alpha-hemolysin (Hla) and five bicomponent leukocidins. We assessed the safety, tolerability, and serum and lung pharmacokinetics of ASN100 in a randomized, double-blind, placebo-controlled single-dose-escalation first-in-human study. Fifty-two healthy volunteers were enrolled and randomized to receive either ASN-1, ASN-2, a combination of both MAbs (ASN100), or a corresponding placebo. Thirty-two subjects in the double-blind dose escalation portion of the study received ASN-1 or ASN-2 at a 200-, 600-, 1,800-, or 4,000-mg dose, or placebo. Eight subjects received both MAbs simultaneously in a 1:1 ratio (ASN100) at 3,600 or 8,000 mg, or they received placebos. Twelve additional subjects received open-label ASN100 at 3,600 or 8,000 mg to assess the pharmacokinetics of ASN-1 and ASN-2 in epithelial lining fluid (ELF) by bronchoalveolar lavage fluid sampling. Subjects were monitored for 98 days (double-blind cohorts) or 30 days (open-label cohorts) for safety assessment. No dose-limiting toxicities were observed, and all adverse events were mild and transient, with only two adverse events considered possibly related to the investigational product. ASN100 exhibited linear serum pharmacokinetics with a half-life of approximately 3 weeks and showed detectable penetration into the ELF. No treatment-emergent anti-drug antibody responses were detected. The toxin neutralizing potency of ASN100 in human serum was confirmed up to 58 days postdosing. The favorable safety profile, ELF penetration, and maintained functional activity in serum supported the further clinical development of ASN100.


Assuntos
Antibacterianos/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Toxinas Bacterianas/antagonistas & inibidores , Citotoxinas/imunologia , Adulto , Antibacterianos/farmacocinética , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Líquido da Lavagem Broncoalveolar , Citotoxinas/antagonistas & inibidores , Citotoxinas/metabolismo , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Proteínas Hemolisinas/antagonistas & inibidores , Proteínas Hemolisinas/imunologia , Humanos , Leucocidinas/antagonistas & inibidores , Leucocidinas/imunologia , Masculino , Placebos , Infecções Estafilocócicas , Staphylococcus aureus/imunologia
14.
Ter Arkh ; 91(2): 82-86, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31094176

RESUMO

AIM: To evaluate the prognostic value of cytokine profile, phagocytosis activity indices, endotoxin concentration and activity in blood in gram-negative sepsis. MATERIALS AND METHODS: 78 patients with abdominal sepsis were included in a one-center prospective cohort study, of them 45 died. All the patients were evaluated for the concentration of circulating cytokines (TNF-α, IFN-γ, IL-6, IL-8, IL-10), cellular molecules (CD3, CD45RO, CD95 and HLA-DR), bactericidal and phagocytic activity of neutrophils and endotoxin (lipopolysaccharide) level in peripheral blood. RESULTS: The concentrations of all cytokines were slightly lower in the survivors. Significant differences were noted for TNF-α (p=0.001), IL-6 (p=0.001), and IL-8 (p=0.007). The expression of HLA-DR molecules was slightly higher (p=0.055), and CD95 was lower (p=0.146) in survivors than in the dead. However, the differences have not reached the required level of statistical significance. The phagocytic (p<0.001) and bactericidal activity (р=0.002 for stimulated activity and p=0.001 for spontaneous activity) of neutrophils is significantly different. In survived patients, we noted large values of stimulated bactericidal activity and phagocytic index than the dead. Level of spontaneous activity in survivors was lower. In subsequently deceased patients, the level of endotoxin load was higher than in the surviving patients: level of lipopolysaccharide concentration (p=0.002), endotoxin activity (p=0.032) and neutrophils activity (p=0.028). CONCLUSION: Evaluation of cytokine levels is informative, but due to the high spread of indicators in different patients, should be carried out in the dynamics. The most informative prognostic parameters in sepsis are the concentration and activity of lipopolysaccharides (endotoxin), phagocytic and bactericidal activity of neutrophils. The EAA (endotoxin activity assay) assessment should be conducted in conjunction with the neutrophil "response" assessment.


Assuntos
Citocinas/sangue , Lipopolissacarídeos/sangue , Sepse/imunologia , Fator de Necrose Tumoral alfa/sangue , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Estudos Prospectivos , Sepse/microbiologia , Sepse/mortalidade
15.
Bioorg Med Chem Lett ; 27(7): 1611-1615, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28238612

RESUMO

Novel cytotoxins 3-5 containing the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore are disclosed. The compounds in series 3 and 5 have the potential to liberate niacin which may reduce some of the side effects of antineoplastic compounds. 3a-c emerged as the most potent cytotoxic compounds with IC50 values in the low micromolar range against human Molt4/C8 and CEM CD4+ T-lymphocytes as well as murine L1210 leukemia cells. QSAR studies revealed that cytotoxic potencies were negatively correlated with the magnitude of the Hammett sigma values of the aryl substituents. The compounds 3a-e displayed tumour-selective toxicity against human HL-60, HSC-2, HSC-3 and HSC-4 neoplasms as compared to human HGF, HPC and HPLF nonmalignant cells. A representative potent compound 3a caused PARP1 cleavage and G0/G1 cell cycle arrest in HSC-2 cells. These compounds are well tolerated in mice at doses up to and including 300mg/kg of the compounds and no mortalities were noted after 4h. The stability studies undertaken did not reveal that a representative compound 3a underwent hydrolysis to the related phenol 2a. Some guidelines for further analog development of the novel esters 3 were made.


Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Cicloexanonas/farmacologia , Niacina/análogos & derivados , Niacina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Compostos de Benzilideno/administração & dosagem , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/toxicidade , Linhagem Celular Tumoral , Cicloexanonas/administração & dosagem , Cicloexanonas/síntese química , Cicloexanonas/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Hidrólise , Melfalan/farmacologia , Camundongos , Niacina/administração & dosagem , Niacina/síntese química , Niacina/toxicidade , Poli(ADP-Ribose) Polimerase-1/química , Relação Quantitativa Estrutura-Atividade , Ratos
16.
J Avian Med Surg ; 31(4): 359-363, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29327957

RESUMO

Fatal clostridial infections and clostridial toxicoses are common in birds. Most fatalities are associated with toxin production and progress rapidly, often within 24 hours of infection. We describe an unusual and protracted course of disease in 6 captive brown pelicans ( Pelecanus occidentalis), which was believed to result from toxicosis by toxovar A produced by a mixed infection with Clostridium sordellii and Clostridium perfringens. Although the first death in the group occurred 3 days after signs of illness were documented, the remaining birds died over a 38-day period despite aggressive antibiotic and supportive therapy. Although the birds presented with classic signs of botulism, Clostridium botulinum was not identified in any tissues or environmental samples. Postmortem findings in all pelicans included extensive subacute myonecrosis, enteritis, and nonsuppurative hepatitis. Alpha-toxins and sordellilysin genes from C perfringens and C sordelli isolates, respectively, were detected via polymerase chain reaction. The source of the pathogenic bacteria was sediment within a water basin inside the affected birds' enclosure.


Assuntos
Aves , Infecções por Clostridium/veterinária , Clostridium/isolamento & purificação , Surtos de Doenças/veterinária , Animais , Infecções por Clostridium/microbiologia , Infecções por Clostridium/mortalidade , Clostridium perfringens/isolamento & purificação , Feminino , Masculino
17.
Emerg Infect Dis ; 22(4): 679-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26982255

RESUMO

Shiga toxins (Stx) are primarily associated with Shiga toxin-producing Escherichia coli and Shigella dysenteriae serotype 1. Stx production by other shigellae is uncommon, but in 2014, Stx1-producing S. sonnei infections were detected in California. Surveillance was enhanced to test S. sonnei isolates for the presence and expression of stx genes, perform DNA subtyping, describe clinical and epidemiologic characteristics of case-patients, and investigate for sources of infection. During June 2014-April 2015, we identified 56 cases of Stx1-producing S. sonnei, in 2 clusters. All isolates encoded stx1 and produced active Stx1. Multiple pulsed-field gel electrophoresis patterns were identified. Bloody diarrhea was reported by 71% of case-patients; none had hemolytic uremic syndrome. Some initial cases were epidemiologically linked to travel to Mexico, but subsequent infections were transmitted domestically. Continued surveillance of Stx1-producing S. sonnei in California is necessary to characterize its features and plan for reduction of its spread in the United States.


Assuntos
Diarreia/epidemiologia , Disenteria Bacilar/epidemiologia , Toxina Shiga I/biossíntese , Shigella sonnei/genética , Adolescente , Adulto , Antibacterianos/uso terapêutico , California/epidemiologia , Criança , Pré-Escolar , Diarreia/microbiologia , Diarreia/patologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/patologia , Eletroforese em Gel de Campo Pulsado , Monitoramento Epidemiológico , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Toxina Shiga I/isolamento & purificação , Shigella sonnei/classificação , Shigella sonnei/isolamento & purificação
18.
Chembiochem ; 16(10): 1435-9, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25965326

RESUMO

Okadaic acid (OA) is a marine polyether cytotoxin that was first isolated from the marine sponge Halichondria okadai. OA is a potent inhibitor of protein serine/threonine phosphatases (PP) 1 and 2A, and the structural basis of phosphatase inhibition has been well investigated. However, the role and mechanism of OA retention in the marine sponge have remained elusive. We have solved the crystal structure of okadaic acid binding protein 2.1 (OABP2.1) isolated from H. okadai; it has strong affinity for OA and limited sequence homology to other proteins. The structure revealed that OABP2.1 consists of two α-helical domains, with the OA molecule deeply buried inside the protein. In addition, the global fold of OABP2.1 was unexpectedly similar to that of aequorin, a jellyfish photoprotein. The presence of structural homologues suggested that, by using similar protein scaffolds, marine invertebrates have developed diverse survival systems adapted to their living environments.


Assuntos
Citotoxinas/metabolismo , Inibidores Enzimáticos/metabolismo , Ácido Okadáico/metabolismo , Poríferos/metabolismo , Proteínas/metabolismo , Equorina/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Poríferos/química , Ligação Proteica , Conformação Proteica , Proteínas/química , Alinhamento de Sequência
19.
J Urol ; 194(4): 1120-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26047983

RESUMO

PURPOSE: Systemic therapy for advanced bladder cancer has not changed substantially in more than 2 decades and mortality rates remain high. The recognition of HER2 over expression in bladder cancer has made HER2 a promising therapeutic target. T-DM1, a new drug consisting of the HER2 antibody trastuzumab conjugated with a cytotoxic agent, has been shown in breast cancer to be superior to trastuzumab. We tested T-DM1 in preclinical models of bladder cancer. MATERIALS AND METHODS: We evaluated the effect of T-DM1 compared to trastuzumab in different in vitro and in vivo models of HER2 over expressing bladder cancer. RESULTS: RT4V6 was the highest HER2 expressing bladder cancer cell line and it showed higher growth inhibition with T-DM1 compared to trastuzumab. T-DM1 but not trastuzumab induced apoptosis of RT4V6 cells after G2/M arrest on cell cycle analysis. HER2 expression was higher in cell lines with acquired cisplatin resistance compared to the corresponding parental cell lines. Resistant cells showed higher sensitivity to T-DM1 by the induction of apoptosis. In addition, cells cultured in anchorage independent conditions increased HER2 expression compared to cells cultured in adherent conditions and T-DM1 significantly inhibited colony formation in soft agar compared to trastuzumab. In an orthotopic bladder cancer xenograft model tumor growth of cisplatin resistant RT112 was significantly inhibited by T-DM1 via the induction of apoptosis compared to treatment with control IgG or trastuzumab. CONCLUSIONS: T-DM1 has promising antitumor effects in preclinical models of HER2 over expressing bladder cancer.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Maitansina/análogos & derivados , Receptor ErbB-2/biossíntese , Receptor ErbB-2/efeitos dos fármacos , Trastuzumab/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Ado-Trastuzumab Emtansina , Animais , Apoptose , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Maitansina/farmacologia , Camundongos , Células Tumorais Cultivadas
20.
Angew Chem Int Ed Engl ; 54(33): 9696-9, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26118368

RESUMO

The endoplasmic reticulum (ER) plays critical roles in the processing of secreted and transmembrane proteins. To deliver small molecules to this organelle, we synthesized fluorinated hydrophobic analogues of the fluorophore rhodol. These cell-permeable fluorophores are exceptionally bright, with quantum yields of around 0.8, and they were found to specifically accumulate in the ER of living HeLa cells, as imaged by confocal laser scanning microscopy. To target a biological pathway controlled by the ER, we linked a fluorinated hydrophobic rhodol to 5-nitrofuran-2-acrylaldehyde. In contrast to an untargeted nitrofuran warhead, delivery of this electrophilic nitrofuran to the ER by the rhodol resulted in cytotoxicity comparable to the ER-targeted cytotoxin eeyarestatin I, and specifically inhibited protein processing by the ubiquitin-proteasome system. Fluorinated hydrophobic rhodols are outstanding fluorophores that enable the delivery of small molecules for targeting ER-associated proteins and pathways.


Assuntos
Portadores de Fármacos/química , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/química , Nitrofuranos/administração & dosagem , Xantonas/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Halogenação , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Xantonas/síntese química , Xantonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa