Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(6): 2351-2361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33635357

RESUMO

Aeromonas veronii can cause a variety of diseases such as sepsis in humans and animals. However, there has been no effective way to eradicate A. veronii. In this study, the intracellular antibacterial activities of the C-terminal aminated marine peptide N6 (N6NH2) and its D-enantiomer (DN6NH2) against A. veronii were investigated in macrophages and in mice, respectively. The result showed that DN6NH2 with the minimum inhibitory concentration (MIC) of 1.62 µM is more resistant to cathepsin B than N6NH2 (3.23 µM). The penetration percentages of the cells treated with 4-200 µg/mL fluorescein isothiocyanate (FITC)-DN6NH2 were 52.5-99.6%, higher than those of FITC-N6NH2 (27.0-99.1%). Both N6NH2 and DN6NH2 entered macrophages by macropinocytosis and an energy-dependent manner. DN6NH2 reduced intracellular A. veronii by 34.57%, superior to N6NH2 (19.52%). After treatment with 100 µg/mL DN6NH2, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß were reduced by 53.45%, 58.54%, and 44.62%, respectively, lower than those of N6NH2 (15.65%, 12.88%, and 14.10%, respectively); DN6NH2 increased the IL-10 level (42.94%), higher than N6NH2 (7.67%). In the mice peritonitis model, 5 µmol/kg DN6NH2 reduced intracellular A. veronii colonization by 73.22%, which was superior to N6NH2 (32.45%) or ciprofloxacin (45.67%). This suggests that DN6NH2 may be used as the candidate for treating intracellular multidrug-resistant (MDR) A. veronii. KEY POINTS: • DN6NH2 improved intracellular antibacterial activity against MDR A. veronii. • DN6NH2 entered macrophages by micropinocytosis and enhanced the internalization rates. • DN6NH2 effectively protected the mice from infection with A. veronii.


Assuntos
Aeromonas , Infecções por Bactérias Gram-Negativas , Peritonite , Aeromonas veronii , Animais , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Peritonite/tratamento farmacológico
2.
Biofouling ; 36(9): 1117-1128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33297738

RESUMO

Chronic rhinosinusitis (CRS) is a chronic infection of the nasal cavity and paranasal sinuses associated with the presence of a microbial biofilm. Extracellular DNA (eDNA) is an important component of the biofilm matrix. Antimicrobial peptides (AMPs) are natural peptides with the ability to kill microorganisms. D-LL-31 is a synthetic variant of the AMP cathelicidin with increased resistance to proteolytic breakdown. In this study it is shown for 3 clinical CRS isolates that treatment of 24 h biofilms with DNase I enhanced the antimicrobial activity of D-LL-31. Conversely, co-incubation of D-LL-31 at the IC50 value with exogenous DNA resulted in reduced antimicrobial activity. DNase I alone did not show antimicrobial activity against the isolates tested but caused dispersal of an established biofilm. Hence, the presence of eDNA in the biofilm matrix reduced AMP-mediated killing. These results suggest that combination therapy with proteolysis resistant AMP D-LL-31 and DNase could be considered for effective treatment of CRS.


Assuntos
Biofilmes , Antibacterianos , Bactérias/genética , Desoxirribonuclease I , Desoxirribonucleases
3.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781586

RESUMO

Novel antibiotic drugs are urgently needed because of the increase in drug-resistant bacteria. The use of antimicrobial peptides has been suggested to replace antibiotics as they have strong antimicrobial activity and can be extracted from living organisms such as insects, marine organisms, and mammals. HPA3NT3-A2 ([Ala1,8] HPA3NT3) is an antimicrobial peptide that is an analogue of the HP (2-20) peptide derived from Helicobacter pylori ribosomal protein L1. Although this peptide was shown to have strong antimicrobial activity against drug-resistant bacteria, it also showed lower toxicity against sheep red blood cells (RBCs) and HaCaT cells compared to HPA3NT3. The l-Lys residues of HPA3NT3-A2 was substituted with d-Lys residues (HPA3NT3-A2D; [d-Lys2,5,6,9,10,15] HPA3NT3-A2) to prevent the cleavage of peptide bonds by proteolytic enzymes under physiological conditions. This peptide showed an increased half-life and maintained its antimicrobial activity in the serum against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (pathogen). Furthermore, the antimicrobial activity of HPA3NT3-A2D was not significantly affected in the presence of mono- or divalent ions (Na+, Mg2+, Ca2+). Finally, l- or d-HPA3NT3-A2 peptides exhibited the strongest antimicrobial activity against antibiotic-resistant bacteria and failed to induce resistance in Staphylococcus aureus after 12 passages.


Assuntos
Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana , Lisina/análogos & derivados , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Morte Celular/efeitos dos fármacos , Dicroísmo Circular , Farmacorresistência Bacteriana/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Escherichia coli/efeitos dos fármacos , Células HaCaT , Humanos , Testes de Sensibilidade Microbiana , Ovinos , Staphylococcus aureus/efeitos dos fármacos , Estereoisomerismo
4.
J Pept Sci ; 25(1): e3137, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30488526

RESUMO

The development of novel solutions to fight microbial food contaminants rests upon two pillars, which are the development of resistant strains and consumers' desire for a reduced consumption of synthetic drugs. Natural antimicrobial peptides possess the qualities to overcome these issues. De novo synthesis of novel antifungal compounds is a major progress that has been facilitated by the identification of parameters involved in the antimicrobial activity. A 14-residue peptide named KK14, with the sequence KKFFRAWWAPRFLK-NH2 , was designed and inhibited conidial germination and fungal growth of food contaminants within the range 6.25 to 50 µg/ml and 6.25 to 100 µg/ml, respectively. The study of three analogues of the peptide highlighted the role of some residues in the structural conformation of the peptide and its antifungal activity. The substitution of a Pro residue with Arg increased the helical content of the peptide not only its antifungal activity but also its cytotoxicity. The insertion of an unnatural bulky residue ß-diphenylalanine or a full d-enantiomerization overall increased the antifungal potency. The four peptides showed similar behaviour towards salt increase, heat treatment, and pH decrease. Interestingly, the denantiomer remained the most active at high pH and after proteolytic digestion. The four peptides did not present haemolytic activity up to 200 µg/ml but had different behaviours of cytotoxicity. These differences could be crucial for potential application as pharmaceutical or food preservatives.


Assuntos
Antifúngicos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Aspergillus niger/efeitos dos fármacos , Contaminação de Alimentos/prevenção & controle , Fusarium/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aspergillus niger/crescimento & desenvolvimento , Células CACO-2 , Dipeptídeos , Eritrócitos/efeitos dos fármacos , Sucos de Frutas e Vegetais/microbiologia , Fusarium/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Malus/efeitos dos fármacos , Malus/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Penicillium/crescimento & desenvolvimento , Fenilalanina/análogos & derivados , Fenilalanina/química , Estrutura Secundária de Proteína , Células RAW 264.7 , Ovinos , Cloreto de Sódio/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Estereoisomerismo , Relação Estrutura-Atividade
5.
Biofouling ; 35(5): 573-584, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31282211

RESUMO

Melioidosis is a severe disease caused by Burkholderia pseudomallei. The biofilm of B. pseudomallei acquires resistance to several antibiotics and may be related to relapse in melioidosis patients. Here, the killing activity of antimicrobial peptides (LL-37, LL-31) and the D-enantiomers (D-LL-37, D-LL-31) in combination with ceftazidime (CAZ) against B. pseudomallei 1026b, H777 and a biofilm mutant M10, derived from H777 grown under biofilm-stimulating conditions was observed. Using static conditions, D-LL-31 exhibited the strongest killing activity against the three isolates in a dose-dependent manner. IC50 values for D-LL-31 ranged from 1 to 6 µM, for isolates M10, H777, and 1026b, respectively. Moreover, D-LL-31 combined with CAZ synergistically decreased the IC50 values of the peptide and antibiotic and caused also disruption of biofilms of B. pseudomallei 1026b under flow conditions. Thus a combination of D-LL-31 and CAZ may enhance the efficacy of the currently used antibiotic treatments against B. pseudomallei.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Burkholderia pseudomallei/efeitos dos fármacos , Catelicidinas/farmacologia , Ceftazidima/farmacologia , Peptídeos/farmacologia , Burkholderia pseudomallei/fisiologia , Testes de Sensibilidade Microbiana
6.
Pharm Res ; 33(2): 328-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26381279

RESUMO

PURPOSE: It has been shown that amyloid ß (Aß) oligomers play an important role in the pathology of Alzheimer's disease (AD). D3, a peptide consisting solely of D-enantiomeric amino acid residues, was developed to specifically eliminate Aß oligomers and is therapeutically active in transgenic AD mice. D-peptides have several advantages over L-peptides, but little is known about their pharmacokinetic potential in vivo. Here, we analysed the pharmacokinetic properties of RD2, a rationally designed and potent D3 derivative. METHODS: The pharmacokinetic analysis was performed using (3)H-RD2 after administration via several routes in mice. The time dependent amount of radiolabelled RD2 was measured in plasma and several organ homogenates by liquid scintillation counting. Furthermore, binding to plasma proteins was estimated. RESULTS: RD2 penetrates into the brain, where it is thought to implement its therapeutic function. All administration routes result in a maximal brain concentration per dose (Cmax/D) of 0.06 (µg/g)/(mg/kg) with brain/plasma ratios ranging between 0.7 and 1.0. RD2 shows a small elimination constant and a long terminal half-life in plasma of more than 2 days. It also exhibits high bioavailability after i.p., s.c. or p.o. administration. CONCLUSIONS: These excellent pharmacokinetic properties confirm that RD2 is a very promising drug candidate for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Encéfalo/metabolismo , Peptídeos/farmacocinética , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/sangue , Peptídeos/farmacologia
7.
Curr Protoc ; 4(2): e957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372457

RESUMO

In neurodegenerative diseases like Alzheimer's disease (AD), endogenous proteins or peptides aggregate with themselves. These proteins may lose their function or aggregates and/or oligomers can obtain toxicity, causing injury or death to cells. Aggregation of two major proteins characterizes AD. Amyloid-ß peptide (Aß) is deposited in amyloid plaques within the extracellular space of the brain and Tau in so-called neurofibrillary tangles in neurons. Finding peptide ligands to halt protein aggregation is a promising therapeutical approach. Using mirror-image phage display with a commercially available, randomized 12-mer peptide library, we have selected D-amino acid peptides, which bind to the Tau protein and modulate its aggregation in vitro. Peptides can bind specifically and selectively to a target molecule, but natural L-amino acid peptides may have crucial disadvantages for in vivo applications, as they are sensitive to protease degradation and may elicit immune responses. One strategy to circumvent these disadvantages is the use of non-naturally occurring D-amino acid peptides as they exhibit increased protease resistance and generally do not activate the immune system. To perform mirror-image phage display, the target protein needs to be synthesized as D-amino acid version. If the target protein sequence is too long to be synthesized properly, smaller peptides derived from the full length protein can be used for the selection process. This also offers the possibility to influence the binding region of the selected D-peptides in the full-length target protein. Here we provide the protocols for mirror-image phage display selection on the PHF6* peptide of Tau, based on the commercially available Ph.D.™-12 Phage Display Peptide Library Kit, leading to D-peptides that also bind the full length Tau protein (Tau441), next to PHF6*. In addition, we provide protocols and data for the first characterization of those D-peptides that inhibit Tau aggregation in vitro. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Mirror image phage display selection against D-PHF6* fibrils Support Protocol 1: Single phage ELISA Basic Protocol 2: Sequencing and D-peptide generation Basic Protocol 3: Thioflavin-T (ThT) test to control inhibition of Tau aggregation Support Protocol 2: Purification of full-length Tau protein Basic Protocol 4: ELISA to demonstrate the binding of the generated D-peptides to PHF6* and full-length Tau fibrils.


Assuntos
Doença de Alzheimer , Bacteriófagos , Humanos , Proteínas tau/genética , Proteínas tau/química , Proteínas tau/metabolismo , Aminoácidos , Biblioteca de Peptídeos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeo Hidrolases/metabolismo , Bacteriófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa