Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
EMBO Rep ; 25(1): 286-303, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177911

RESUMO

Upon T-cell activation, the levels of the secondary messenger diacylglycerol (DAG) at the plasma membrane need to be controlled to ensure appropriate T-cell receptor signaling and T-cell functions. Extended-Synaptotagmins (E-Syts) are a family of inter-organelle lipid transport proteins that bridge the endoplasmic reticulum and the plasma membrane. In this study, we identify a novel regulatory mechanism of DAG-mediated signaling for T-cell effector functions based on E-Syt proteins. We demonstrate that E-Syts downmodulate T-cell receptor signaling, T-cell-mediated cytotoxicity, degranulation, and cytokine production by reducing plasma membrane levels of DAG. Mechanistically, E-Syt2 predominantly modulates DAG levels at the plasma membrane in resting-state T cells, while E-Syt1 and E-Syt2 negatively control T-cell receptor signaling upon stimulation. These results reveal a previously underappreciated role of E-Syts in regulating DAG dynamics in T-cell signaling.


Assuntos
Transdução de Sinais , Linfócitos T , Sinaptotagminas/metabolismo , Membrana Celular/metabolismo , Transporte Biológico , Receptores de Antígenos de Linfócitos T/metabolismo , Cálcio/metabolismo
2.
J Infect Dis ; 230(1): 198-208, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052710

RESUMO

Staphylococcus aureus is a prevalent pathogen in pneumonia and harbors glycolipids, which may serve as molecular patterns in Mincle (macrophage-inducible C-type lectin)-dependent pathogen recognition. We examined the role of Mincle in lung defense against S aureus in wild-type (WT), Mincle knockout (KO), and Mincle transgenic (tg) mice. Two glycolipids, glucosyl-diacylglycerol (Glc-DAG) and diglucosyl-diacylglycerol (Glc2-DAG), were purified, of which only Glc-DAG triggered Mincle reporter cell activation and professional phagocyte responses. Proteomic profiling revealed that Glc2-DAG blocked Glc-DAG-induced cytokine responses, thereby acting as inhibitor of Glc-DAG/Mincle signaling. WT mice responded to S aureus with a similar lung pathology as Mincle KO mice, most likely due to Glc2-DAG-dependent inhibition of Glc-DAG/Mincle signaling. In contrast, ectopic Mincle expression caused severe lung pathology in S aureus-infected mice, characterized by bacterial outgrowth and fatal pneumonia. Collectively, Glc2-DAG inhibits Glc-DAG/Mincle-dependent responses in WT mice, whereas sustained Mincle expression overrides Glc2-DAG-mediated inhibitory effects, conferring increased host susceptibility to S aureus.


Assuntos
Lectinas Tipo C , Proteínas de Membrana , Camundongos Knockout , Pneumonia Estafilocócica , Staphylococcus aureus , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/imunologia , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Suscetibilidade a Doenças , Citocinas/metabolismo
3.
J Lipid Res ; 65(9): 100615, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098584

RESUMO

Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.


Assuntos
Ácido Araquidônico , Ácidos Araquidônicos , Ciclo-Oxigenase 2 , Glicerídeos , Macrófagos , Animais , Camundongos , Glicerídeos/metabolismo , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Macrófagos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Células RAW 264.7 , Endocanabinoides/metabolismo , Fatores de Tempo , Lipopolissacarídeos
4.
Plant J ; 114(2): 338-354, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789486

RESUMO

Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Glicogênio Sintase/metabolismo , Cistina Difosfato/metabolismo , Diglicerídeos/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Mitocôndrias/metabolismo , Fosfatidilgliceróis/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L3-L18, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742284

RESUMO

Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.


Assuntos
Asma , Diacilglicerol Quinase , Transdução de Sinais , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Asma/enzimologia , Humanos , Diacilglicerol Quinase/metabolismo , Animais , Diglicerídeos/metabolismo , Proteína Quinase C/metabolismo
6.
Chembiochem ; : e202400543, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140470

RESUMO

Bacterial infections present a major global health threat, often displaying resistance to various antibiotics. Lipoteichoic acid (LTA) is a vital component of bacterial cell envelopes of Gram-positive bacteria, crucial for cell integrity, cell division, and host inflammation. Due to its essential role for bacteria, LTA and its biosynthesis are also attractive drug targets, however, there is only scant molecular knowledge on LTA and its precursor molecules in membranes. Here, we report the isolation and molecular characterization of diglucosyldiacylglycerol (Glc2-DAG), the glycolipid precursor molecule that anchors LTA in the bacterial plasma-membrane. Using a tailored growth medium and purification protocols, we isolated 13C-isotope labelled Glc2-DAG from bacteria, which can then be used for high-resolution NMR studies. Using solution-state and solid-state NMR, we show an in-depth molecular characterization of Glc2-DAG, including in native-like membranes. Our approach may help to identify antibiotics that directly target LTA precursor molecules, and it offers a tool for future investigations into the role of Glc2-DAG in bacterial physiology.

7.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35868454

RESUMO

Artificial intelligence (AI)-based computational techniques allow rapid exploration of the chemical space. However, representation of the compounds into computational-compatible and detailed features is one of the crucial steps for quantitative structure-activity relationship (QSAR) analysis. Recently, graph-based methods are emerging as a powerful alternative to chemistry-restricted fingerprints or descriptors for modeling. Although graph-based modeling offers multiple advantages, its implementation demands in-depth domain knowledge and programming skills. Here we introduce deepGraphh, an end-to-end web service featuring a conglomerate of established graph-based methods for model generation for classification or regression tasks. The graphical user interface of deepGraphh supports highly configurable parameter support for model parameter tuning, model generation, cross-validation and testing of the user-supplied query molecules. deepGraphh supports four widely adopted methods for QSAR analysis, namely, graph convolution network, graph attention network, directed acyclic graph and Attentive FP. Comparative analysis revealed that deepGraphh supported methods are comparable to the descriptors-based machine learning techniques. Finally, we used deepGraphh models to predict the blood-brain barrier permeability of human and microbiome-generated metabolites. In summary, deepGraphh offers a one-stop web service for graph-based methods for chemoinformatics.


Assuntos
Inteligência Artificial , Relação Quantitativa Estrutura-Atividade , Humanos , Aprendizado de Máquina
8.
Metab Eng ; 81: 197-209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072356

RESUMO

Ricinoleic acid (C18:1-OH, RA) is a valuable hydroxy fatty acid with versatile applications. The current industrial source of RA relies on the hydrolysis of castor bean oil. However, the coexistence of the toxic compound ricin and the unstable supply of this plant have led to an exploration of promising alternatives: generating RA in heterologous plants or microorganisms. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce RA in the form of free fatty acids (FFA). First, we overexpressed fungal Δ12 oleate hydroxylase gene (CpFAH12) from Claviceps purpurea while deleting genes related to fatty acid degradation (MEF1 and PEX10) and oleic acid desaturation (FAD2). Since Δ12 oleate hydroxylase converts oleic acid (C18:1) located at the sn-2 position of phosphatidylcholine (PC), we next focused on increasing the PC pool containing oleic acid. This objective was achieved thorough implementing metabolic engineering strategies designed to enhance the biosynthesis of PC and C18 fatty acids. To increase the PC pool, we redirected the flux towards phospholipid biosynthesis by deleting phosphatidic acid phosphatase genes (PAH1 and APP1) and diacylglycerol acyltransferase gene (DGA1), involved in the production of diacylglycerol and triacylglycerol, respectively. Furthermore, the PC biosynthesis via the CDP-DAG pathway was enhanced through the overexpression of CDS1, PSD1, CHO2, and OPI3 genes. Subsequently, to increase the oleic acid content within PC, we overexpressed the heterologous fatty acid elongase gene (MaC16E) involved in the conversion of C16 to C18 fatty acids. As RA production titer escalated, the produced RA was mainly found in the FFA form, leading to cell growth inhibition. The growth inhibition was mitigated by inducing RA secretion via Triton X-100 treatment, a process that simultaneously amplified RA production by redirecting flux towards RA synthesis. The final engineered strain JHYL-R146 produced 2.061 g/L of free RA in a medium treated with 5% Triton X-100, constituting 74% of the total FFAs produced. Generating free RA offers the added benefit of bypassing the hydrolysis stage required when employing castor bean oil as an RA source. This achievement represents the highest level of RA synthesis from glucose reported thus far, underscoring the potential of Y. lipolytica as a host for sustainable RA production.


Assuntos
Ácidos Graxos não Esterificados , Yarrowia , Ácidos Graxos não Esterificados/genética , Ácidos Graxos não Esterificados/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácido Oleico/genética , Ácido Oleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Octoxinol/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Engenharia Metabólica
9.
Biometrics ; 80(1)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38470257

RESUMO

Estimating phenotype networks is a growing field in computational biology. It deepens the understanding of disease etiology and is useful in many applications. In this study, we present a method that constructs a phenotype network by assuming a Gaussian linear structure model embedding a directed acyclic graph (DAG). We utilize genetic variants as instrumental variables and show how our method only requires access to summary statistics from a genome-wide association study (GWAS) and a reference panel of genotype data. Besides estimation, a distinct feature of the method is its summary statistics-based likelihood ratio test on directed edges. We applied our method to estimate a causal network of 29 cardiovascular-related proteins and linked the estimated network to Alzheimer's disease (AD). A simulation study was conducted to demonstrate the effectiveness of this method. An R package sumdag implementing the proposed method, all relevant code, and a Shiny application are available.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Genótipo , Doença de Alzheimer/genética , Biologia Computacional
10.
Adv Exp Med Biol ; 1460: 131-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287851

RESUMO

The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in ß cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.


Assuntos
Obesidade , Humanos , Obesidade/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Lipólise/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia
11.
Adv Exp Med Biol ; 1460: 539-574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287864

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.


Assuntos
Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Resistência à Insulina , Fígado/patologia , Fígado/metabolismo , Progressão da Doença , Estresse Oxidativo , Índice de Gravidade de Doença , Animais
12.
Biom J ; 66(3): e2200326, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38637322

RESUMO

In the context of missing data, the identifiability or "recoverability" of the average causal effect (ACE) depends not only on the usual causal assumptions but also on missingness assumptions that can be depicted by adding variable-specific missingness indicators to causal diagrams, creating missingness directed acyclic graphs (m-DAGs). Previous research described canonical m-DAGs, representing typical multivariable missingness mechanisms in epidemiological studies, and examined mathematically the recoverability of the ACE in each case. However, this work assumed no effect modification and did not investigate methods for estimation across such scenarios. Here, we extend this research by determining the recoverability of the ACE in settings with effect modification and conducting a simulation study to evaluate the performance of widely used missing data methods when estimating the ACE using correctly specified g-computation. Methods assessed were complete case analysis (CCA) and various implementations of multiple imputation (MI) with varying degrees of compatibility with the outcome model used in g-computation. Simulations were based on an example from the Victorian Adolescent Health Cohort Study (VAHCS), where interest was in estimating the ACE of adolescent cannabis use on mental health in young adulthood. We found that the ACE is recoverable when no incomplete variable (exposure, outcome, or confounder) causes its own missingness, and nonrecoverable otherwise, in simplified versions of 10 canonical m-DAGs that excluded unmeasured common causes of missingness indicators. Despite this nonrecoverability, simulations showed that MI approaches that are compatible with the outcome model in g-computation may enable approximately unbiased estimation across all canonical m-DAGs considered, except when the outcome causes its own missingness or causes the missingness of a variable that causes its own missingness. In the latter settings, researchers may need to consider sensitivity analysis methods incorporating external information (e.g., delta-adjustment methods). The VAHCS case study illustrates the practical implications of these findings.


Assuntos
Estudos de Coortes , Humanos , Adulto Jovem , Adulto , Adolescente , Interpretação Estatística de Dados , Causalidade , Simulação por Computador
13.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39337293

RESUMO

Skeletal muscle development is spotlighted in mammals since it closely relates to animal health and economic benefits to the breeding industry. Researchers have successfully unveiled many regulatory factors and mechanisms involving myogenesis. However, the effect of N6-methyladenosine (m6A) modification, especially demethylase and its regulated genes, on muscle development remains to be further explored. Here, we found that the typical demethylase FTO (fat mass- and obesity-associated protein) was highly enriched in goats' longissimus dorsi (LD) muscles. In addition, the level of m6A modification on transcripts was negatively regulated by FTO during the proliferation of goat skeletal muscle satellite cells (MuSCs). Moreover, a deficiency of FTO in MuSCs significantly retarded their proliferation and promoted the expression of dystrophin-associated protein 1 (DAG1). m6A modifications of DAG1 mRNA were efficiently altered by FTO. Intriguingly, the results of DAG1 levels and its m6A enrichment from FB23-2 (FTO demethylase inhibitor)-treated cells were consistent with those of the FTO knockdown, indicating that the regulation of FTO on DAG1 depended on m6A modification. Further experiments showed that interfering FTO improved m6A modification at site DAG1-122, recognized by Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and consequently stabilized DAG1 transcripts. Our study suggests that FTO promotes the proliferation of MuSCs by regulating the expression of DAG1 through m6A modification. This will extend our knowledge of the m6A-related mechanism of skeletal muscle development in animals.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Cabras , RNA Mensageiro , Células Satélites de Músculo Esquelético , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Proliferação de Células , Células Cultivadas , Desenvolvimento Muscular , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia
14.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542220

RESUMO

The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells.


Assuntos
Diabetes Mellitus Tipo 2 , Esfingomielina Fosfodiesterase , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Obesidade/metabolismo , Ácido Oleico/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Linfócitos T/metabolismo , Triglicerídeos/metabolismo
15.
Pflugers Arch ; 475(8): 1009-1024, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37369785

RESUMO

The current concept of taste transduction implicates the TASR/PLCß2/IP3R3/TRPM5 axis in mediating chemo-electrical coupling in taste cells of the type II. While generation of IP3 has been verified as an obligatory step, DAG appears to be a byproduct of PIP2 cleavage by PLCß2. Here, we provide evidence that DAG-signaling could play a significant and not yet recognized role in taste transduction. In particular, we found that DAG-gated channels are functional in type II cells but not in type I and type III cells. The DAG-gated current presumably constitutes a fraction of the generator current triggered by taste stimulation in type II cells. Bitter stimuli and DAG analogs produced Ca2+ transients in type II cells, which were greatly decreased at low bath Ca2+, indicating their dependence on Ca2+ influx. Among DAG-gated channels, transcripts solely for TRPC3 were detected in the taste tissue, thus implicating this channel in mediating DAG-regulated Ca2+ entry. Release of the afferent neurotransmitter ATP from CV papillae was monitored online by using the luciferin/luciferase method and Ussing-like chamber. It was shown that ATP secretion initiated by bitter stimuli and DAG analogs strongly depended on mucosal Ca2+. Based on the overall findings, we speculate that in taste transduction, IP3-driven Ca2+ release is transient and mainly responsible for rapid activation of Ca2+-gated TRPM5 channels, thus forming the initial phase of receptor potential. DAG-regulated Ca2+ entry through apically situated TRPC3 channels extends the primary Ca2+ signal and preserves TRPM5 activity, providing a needful prolongation of the receptor potential.


Assuntos
Papilas Gustativas , Paladar , Paladar/fisiologia , Transdução de Sinais/fisiologia , Papilas Gustativas/fisiologia , Trifosfato de Adenosina , Cálcio
16.
J Gen Virol ; 104(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37053090

RESUMO

Biotechnologies that use plant viruses as plant enhancement tools have shown great potential to flexibly engineer crop traits, but field applications of these technologies are still limited by efficient dissemination methods. Potyviruses can be rapidly inoculated into plants by aphid vectors due to the presence of the potyviral helper component proteinase (HC-Pro), which binds to the DAG motif of the coat protein (CP) of the virion. Previously it was determined that a naturally occurring DAG motif in the non-aphid-transmissible potexvirus, potato aucuba mosaic virus (PAMV), is functional when a potyviral HC-Pro is provided to aphids in plants. The DAG motif of PAMV was successfully transferred to the CP of another non-aphid-transmissible potexvirus, potato virus X, to convey aphid transmission capabilities in the presence of HC-Pro. Here, we demonstrate that DAG-containing segments of the CP from two different potyviruses (sugarcane mosaic virus and turnip mosaic virus), and from the previously used potexvirus, PAMV, can make the potexvirus, foxtail mosaic virus (FoMV), aphid-transmissible when fused with the FoMV CP. We show that DAG-containing FoMVs are transmissible by aphids that have prior access to HC-Pro through potyvirus-infected plants or ectopic expression of HC-Pro. The transmission efficiency of the DAG-containing FoMVs varied from less than 10 % to over 70 % depending on the length and composition of the surrounding amino acid sequences of the DAG-containing segment, as well as due to the recipient plant species. Finally, we show that the engineered aphid-transmissible FoMV is still functional as a plant enhancement resource, as endogenous host target genes were silenced in FoMV-infected plants after aphid transmission. These results suggest that aphid transmission could be engineered into non-aphid-transmissible plant enhancement viral resources to facilitate their field applications.


Assuntos
Afídeos , Vírus de Plantas , Potexvirus , Potyvirus , Animais , Potexvirus/metabolismo , Potyvirus/genética , Cisteína Endopeptidases/química , Plantas , Doenças das Plantas
17.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34323927

RESUMO

With the development of genome-wide association studies, how to gain information from a large scale of data has become an issue of common concern, since traditional methods are not fully developed to solve problems such as identifying loci-to-loci interactions (also known as epistasis). Previous epistatic studies mainly focused on local information with a single outcome (phenotype), while in this paper, we developed a two-stage global search algorithm, Greedy Equivalence Search with Local Modification (GESLM), to implement a global search of directed acyclic graph in order to identify genome-wide epistatic interactions with multiple outcome variables (phenotypes) in a case-control design. GESLM integrates the advantages of score-based methods and constraint-based methods to learn the phenotype-related Bayesian network and is powerful and robust to find the interaction structures that display both genetic associations with phenotypes and gene interactions. We compared GESLM with some common phenotype-related loci detecting methods in simulation studies. The results showed that our method improved the accuracy and efficiency compared with others, especially in an unbalanced case-control study. Besides, its application on the UK Biobank dataset suggested that our algorithm has great performance when handling genome-wide association data with more than one phenotype.


Assuntos
Algoritmos , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Conjuntos de Dados como Assunto , Humanos
18.
BMC Med Res Methodol ; 23(1): 187, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598141

RESUMO

BACKGROUND: Machine learning models promise to support diagnostic predictions, but may not perform well in new settings. Selecting the best model for a new setting without available data is challenging. We aimed to investigate the transportability by calibration and discrimination of prediction models for cognitive impairment in simulated external settings with different distributions of demographic and clinical characteristics. METHODS: We mapped and quantified relationships between variables associated with cognitive impairment using causal graphs, structural equation models, and data from the ADNI study. These estimates were then used to generate datasets and evaluate prediction models with different sets of predictors. We measured transportability to external settings under guided interventions on age, APOE ε4, and tau-protein, using performance differences between internal and external settings measured by calibration metrics and area under the receiver operating curve (AUC). RESULTS: Calibration differences indicated that models predicting with causes of the outcome were more transportable than those predicting with consequences. AUC differences indicated inconsistent trends of transportability between the different external settings. Models predicting with consequences tended to show higher AUC in the external settings compared to internal settings, while models predicting with parents or all variables showed similar AUC. CONCLUSIONS: We demonstrated with a practical prediction task example that predicting with causes of the outcome results in better transportability compared to anti-causal predictions when considering calibration differences. We conclude that calibration performance is crucial when assessing model transportability to external settings.


Assuntos
Disfunção Cognitiva , Modelos Estatísticos , Humanos , Prognóstico , Disfunção Cognitiva/diagnóstico , Benchmarking , Calibragem
19.
BMC Med Res Methodol ; 23(1): 76, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991342

RESUMO

BACKGROUND: COVID-19 is a new multi-organ disease causing considerable worldwide morbidity and mortality. While many recognized pathophysiological mechanisms are involved, their exact causal relationships remain opaque. Better understanding is needed for predicting their progression, targeting therapeutic approaches, and improving patient outcomes. While many mathematical causal models describe COVID-19 epidemiology, none have described its pathophysiology. METHODS: In early 2020, we began developing such causal models. The SARS-CoV-2 virus's rapid and extensive spread made this particularly difficult: no large patient datasets were publicly available; the medical literature was flooded with sometimes conflicting pre-review reports; and clinicians in many countries had little time for academic consultations. We used Bayesian network (BN) models, which provide powerful calculation tools and directed acyclic graphs (DAGs) as comprehensible causal maps. Hence, they can incorporate both expert opinion and numerical data, and produce explainable, updatable results. To obtain the DAGs, we used extensive expert elicitation (exploiting Australia's exceptionally low COVID-19 burden) in structured online sessions. Groups of clinical and other specialists were enlisted to filter, interpret and discuss the literature and develop a current consensus. We encouraged inclusion of theoretically salient latent (unobservable) variables, likely mechanisms by extrapolation from other diseases, and documented supporting literature while noting controversies. Our method was iterative and incremental: systematically refining and validating the group output using one-on-one follow-up meetings with original and new experts. 35 experts contributed 126 hours face-to-face, and could review our products. RESULTS: We present two key models, for the initial infection of the respiratory tract and the possible progression to complications, as causal DAGs and BNs with corresponding verbal descriptions, dictionaries and sources. These are the first published causal models of COVID-19 pathophysiology. CONCLUSIONS: Our method demonstrates an improved procedure for developing BNs via expert elicitation, which other teams can implement to model emergent complex phenomena. Our results have three anticipated applications: (i) freely disseminating updatable expert knowledge; (ii) guiding design and analysis of observational and clinical studies; (iii) developing and validating automated tools for causal reasoning and decision support. We are developing such tools for the initial diagnosis, resource management, and prognosis of COVID-19, parameterized using the ISARIC and LEOSS databases.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiologia , SARS-CoV-2 , Modelos Teóricos , Bases de Dados Factuais
20.
Health Qual Life Outcomes ; 21(1): 47, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198633

RESUMO

BACKGROUND: Dental caries and child oral impact on daily performance (C-OIDP) have been linked in several studies. However, the studies used caries indices, which limit the ability to examine how C-OIDP prevalence varies across various stages of the dental caries process. Furthermore, cross-cultural differences between Zambia and other African countries where the C-OIDP instrument has been widely used necessitate testing its pychometric properties. This study's primary aim was to evaluate the association between dental caries and C-OIDP. Secondarily, the study reports the psychometric properties of the C-OIDP index among Zambian adolescents. METHODS: A cross-sectional study was conducted between February and June 2021 among grade 8-9 adolescents in Copperbelt province, Zambia. A multistage cluster sampling method was used to select participants. Using a pretested self-administered questionnaire, socio-demographics, oral health behaviors, self-reported oral health, and C-OIDP were evaluated. The test-retest and internal consistency reliability of the C-OIDP were evaluated. The Caries Assessment and Treatment Spectrum (CAST) was used to evaluate dental caries. Adjusted odd ratios and 95% confidence intervals were used to evaluate the association between dental caries and C-OIDP after adjusting for confounders identified by a directed acyclic graph. RESULTS: Among 1,794 participants, 54.0% were females, while 56.0% were aged 11-14 years. About a quarter (24.6%) had one or more teeth at the pre-morbidity stage, 15.2% at the morbidity, 6.4% at the severe morbidity and 2.7 at the mortality stage. The internal consistency reliability of the C-OIDP Cohen's Kappa was 0.940, while the Kappa coefficients of the C-OIDP items ranged from 0.960 to 1.00. Participants with severe caries had a high prevalence of C-OIDP, with rates for morbidity, severe morbidity, and mortality stages being 49.3%, 65.3%, and 49.3%, respectively. Oral impacts were 2.6 times (AOR 2.6, 95% CI 2.1-3.4) more likely to be reported by participants with dental caries than those without caries. CONCLUSIONS: Dental caries was associated with high reporting of C-OIDP, and C-OIDP prevalence was high among participants in the severe stages of the caries process. The English version of the C-OIDP demonstrated adequate psychometric characteristics for assessing OHRQoL among Zambian adolescents.


Assuntos
Cárie Dentária , Feminino , Humanos , Criança , Adolescente , Masculino , Estudos Transversais , Zâmbia/epidemiologia , Reprodutibilidade dos Testes , Cárie Dentária/epidemiologia , Qualidade de Vida , Atividades Cotidianas , Saúde Bucal , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa