Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199570

RESUMO

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Assuntos
Inflamassomos , Leucócitos Mononucleares , Animais , Humanos , Camundongos , Linhagem Celular , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transporte Proteico/fisiologia
2.
J Biol Chem ; 300(7): 107469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876305

RESUMO

Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.


Assuntos
Repetição de Anquirina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas rab de Ligação ao GTP , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Células HEK293 , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Fosforilação , Microscopia Crioeletrônica , Ligação Proteica
3.
J Biol Chem ; 299(6): 104743, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100283

RESUMO

Fc receptors are involved in a variety of physiologically and disease-relevant responses. Among them, FcγRIIA (CD32a) is known for its activating functions in pathogen recognition and platelet biology, and, as potential marker of T lymphocytes latently infected with HIV-1. The latter has not been without controversy due to technical challenges complicated by T-B cell conjugates and trogocytosis as well as a lack of antibodies distinguishing between the closely related isoforms of FcγRII. To generate high-affinity binders specific for FcγRIIA, libraries of designed ankyrin repeat proteins (DARPins) were screened for binding to its extracellular domains by ribosomal display. Counterselection against FcγRIIB eliminated binders cross-reacting with both isoforms. The identified DARPins bound FcγRIIA with no detectable binding for FcγRIIB. Their affinities for FcγRIIA were in the low nanomolar range and could be enhanced by cleavage of the His-tag and dimerization. Interestingly, complex formation between DARPin and FcγRIIA followed a two-state reaction model, and discrimination from FcγRIIB was based on a single amino acid residue. In flow cytometry, DARPin F11 detected FcγRIIA+ cells even when they made up less than 1% of the cell population. Image stream analysis of primary human blood cells confirmed that F11 caused dim but reliable cell surface staining of a small subpopulation of T lymphocytes. When incubated with platelets, F11 inhibited their aggregation equally efficient as antibodies unable to discriminate between both FcγRII isoforms. The selected DARPins are unique novel tools for platelet aggregation studies as well as the role of FcγRIIA for the latent HIV-1 reservoir.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Agregação Plaquetária , Receptores de IgG , Humanos , Anticorpos/metabolismo , Plaquetas/metabolismo , Proteínas de Repetição de Anquirina Projetadas/metabolismo , HIV-1 , Isoformas de Proteínas/metabolismo , Receptores de IgG/metabolismo , Latência Viral , Linfócitos T/virologia
4.
Cytotherapy ; 26(7): 729-738, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38466264

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor T (CAR-T) cells are a remarkably efficacious, highly promising and rapidly evolving strategy in the field of immuno-oncology. The precision of these targeted cellular therapies is driven by the specificity of the antigen recognition element (the "binder") encoded in the CAR. This binder redirects these immune effector cells precisely toward a defined antigen on the surface of cancer cells, leading to T-cell receptor-independent tumor lysis. Currently, for tumor targeting most CAR-T cells are designed using single-chain variable fragments (scFvs) derived from murine or human immunoglobulins. However, there are several emerging alternative binder modalities that are finding increasing utility for improved CAR function beyond scFvs. METHODS: Here we review the most recent developments in the use of non-canonical protein binding domains in CAR design, including nanobodies, DARPins, natural ligands, and de novo-designed protein elements. RESULTS: Overall, we describe how new protein binder formats, with their unique structural properties and mechanisms of action, may possess key advantages over traditional scFv CAR designs. CONCLUSIONS: These alternative binder designs may contribute to enhanced CAR-T therapeutic options and, ultimately, improved outcomes for cancer patients.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Animais , Neoplasias/terapia , Neoplasias/imunologia , Linfócitos T/imunologia , Anticorpos de Cadeia Única/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias/imunologia , Anticorpos de Domínio Único/imunologia
5.
Mol Pharm ; 21(4): 1919-1932, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557163

RESUMO

HER2 status determination is a necessary step for the proper choice of therapy and selection of patients for the targeted treatment of cancer. Targeted radiotracers such as radiolabeled DARPins provide a noninvasive and effective way for the molecular imaging of HER2 expression. This study aimed to evaluate tumor-targeting properties of three 99mTc-labeled DARPin G3 variants containing Gly-Gly-Gly-Cys (G3C), (Gly-Gly-Gly-Ser)3-Cys ((G3S)3C), or Glu-Glu-Glu-Cys (E3C) amino acid linkers at the C-terminus and conjugated to the HYNIC chelating agent, as well as to compare them with the clinically evaluated DARPin G3 labeled with 99mTc(CO)3 using the (HE)3-tag at the N-terminus. The labeling of DARPin G3-HYNIC variants provided radiochemical yields in the range of 50-80%. Labeled variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 0.5-3 nM. There was no substantial influence of the linker and HYNIC chelator on the binding of 99mTc-labeled DARPin G3 variants to HER2 in vitro; however, [99mTc]Tc-G3-(G3S)3C-HYNIC had the highest affinity. Comparative biodistribution of [99mTc]Tc-G3-G3C-HYNIC, [99mTc]Tc-G3-(G3S)3C-HYNIC, [99mTc]Tc-G3-E3C-HYNIC, and [99mTc]Tc-(HE)3-G3 in healthy CD1 mice showed that there was a strong influence of the linkers on uptake in normal tissues. [99mTc]Tc-G3-E3C-HYNIC had an increased retention of activity in the liver and the majority of other organs compared to the other conjugates. The tumor uptake of [99mTc]Tc-G3-(G3S)3C-HYNIC and [99mTc]Tc-(HE)3-G3 in Nu/j mice bearing SKOV-3 xenografts was similar. The specificity of tumor targeting in vivo was demonstrated for both tracers. [99mTc]Tc-G3-(G3S)3C-HYNIC provided comparable, although slightly lower tumor-to-lung, tumor-to spleen and tumor-to-liver ratios than [99mTc]Tc-(HE)3-G3. Radiolabeling of DARPin G3-HYNIC conjugates with 99mTc provided the advantage of a single-step radiolabeling procedure; however, the studied HYNIC conjugates did not improve imaging contrast compared to the 99mTc-tricarbonyl-labeled DARPin G3. At this stage, [99mTc]Tc-(HE)3-G3 remains the most promising candidate for the clinical imaging of HER2-overexpressing cancers.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Distribuição Tecidual , Receptor ErbB-2/genética
6.
Plant Cell Rep ; 43(9): 210, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126530

RESUMO

KEY MESSAGE: Redesigning the N- and C-capping repeats of the native DARPin G3 significantly improved its stability, and may facilitate its purification from the total soluble proteins of high-temperature dried leaf materials of transplastomic plants. Designed ankyrin repeat proteins (DARPins) constitute a promising class of binding molecules that can overcome the limitations of monoclonal antibodies and enable the development of novel therapeutic approaches. Despite their inherent stability, detailed studies have revealed that the original capping repeats derived from natural ankyrin repeat proteins impair the stability of the initial DARPin design. Consequently, the development of thermodynamically stabilized antibody mimetics may facilitate the development of innovative drugs in the future. In this study, we replaced the original N- and C-capping repeats with improved caps to enhance the thermostability of native DARPin G3. Computational analyses suggested that the redesigned thermostable DARPin G3 structure possessed optimal quality and stability. Molecular dynamics simulations verified the stability of the redesigned thermostable DARPin G3 at high temperatures. The redesigned thermostable DARPin G3 was expressed at high levels in tobacco transplastomic plants and subsequently purified from high-temperature dried leaf materials. Thermal denaturation results revealed that the redesigned thermostable DARPin G3 had a higher Tm value than the native DARPin G3, with a Tm of 35.51 °C greater than that of native DARPin G3. The results of the in vitro bioassays confirmed that the purified thermostable DARPin G3 from high-temperature dried leaf materials maintained its binding activity without any loss of affinity and specifically bound to the HER2 receptor on the cell surface. These findings demonstrate the successful improvement in the thermostability of DARPin G3 without compromising its biological activity.


Assuntos
Repetição de Anquirina , Nicotiana , Plantas Geneticamente Modificadas , Estabilidade Proteica , Nicotiana/genética , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Simulação de Dinâmica Molecular , Temperatura Alta , Engenharia de Proteínas/métodos
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074752

RESUMO

Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.


Assuntos
Nanoestruturas/química , Engenharia de Proteínas , Proteínas/química , Repetição de Anquirina , Nanoestruturas/ultraestrutura , Conformação Proteica em alfa-Hélice , Proteínas/genética , Proteínas/ultraestrutura
8.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673831

RESUMO

Designed ankyrin repeat protein (DARPin) G3 is an engineered scaffold protein. This small (14.5 kDa) targeting protein binds with high affinity to human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in several cancers. The use of the DARPin G3 for radionuclide therapy is complicated by its high renal reabsorption after clearance via the glomeruli. We tested the hypothesis that a fusion of the DARPin G3 with an albumin-binding domain (ABD) would prevent rapid renal excretion and high renal reabsorption resulting in better tumour targeting. Two fusion proteins were produced, one with the ABD at the C-terminus (G3-ABD) and another at the N-terminus (ABD-G3). Both variants were labelled with 177Lu. The binding properties of the novel constructs were evaluated in vitro and their biodistribution was compared in mice with implanted human HER2-expressing tumours. Fusion with the ABD increased the retention time of both constructs in blood compared with the non-ABD-fused control. The effect of fusion with the ABD depended strongly on the order of the domains in the constructs, resulting in appreciably better targeting properties of [177Lu]Lu-G3-ABD. Our data suggest that the order of domains is critical for the design of targeting constructs based on scaffold proteins.


Assuntos
Receptor ErbB-2 , Animais , Feminino , Humanos , Camundongos , Albuminas/metabolismo , Repetição de Anquirina , Linhagem Celular Tumoral , Lutécio , Ligação Proteica , Domínios Proteicos , Radioisótopos , Compostos Radiofarmacêuticos/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Distribuição Tecidual , Terapia de Alvo Molecular
9.
J Biol Chem ; 298(1): 101403, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793836

RESUMO

Designed ankyrin repeat proteins (DARPins) are antibody mimetics with high and mostly unexplored potential in drug development. By using in silico analysis and a rationally guided Ala scanning, we identified position 17 of the N-terminal capping repeat to play a key role in overall protein thermostability. The melting temperature of a DARPin domain with a single full-consensus internal repeat was increased by 8 °C to 10 °C when Asp17 was replaced by Leu, Val, Ile, Met, Ala, or Thr. We then transferred the Asp17Leu mutation to various backgrounds, including clinically validated DARPin domains, such as the vascular endothelial growth factor-binding domain of the DARPin abicipar pegol. In all cases, these proteins showed improvements in the thermostability on the order of 8 °C to 16 °C, suggesting the replacement of Asp17 could be generically applicable to this drug class. Molecular dynamics simulations showed that the Asp17Leu mutation reduces electrostatic repulsion and improves van-der-Waals packing, rendering the DARPin domain less flexible and more stable. Interestingly, this beneficial Asp17Leu mutation is present in the N-terminal caps of three of the five DARPin domains of ensovibep, a SARS-CoV-2 entry inhibitor currently in clinical development, indicating this mutation could be partly responsible for the very high melting temperature (>90 °C) of this promising anti-COVID-19 drug. Overall, such N-terminal capping repeats with increased thermostability seem to be beneficial for the development of innovative drugs based on DARPins.


Assuntos
Antivirais/farmacologia , Proteínas de Repetição de Anquirina Projetadas/química , Temperatura , Sequência de Aminoácidos , Antivirais/química , Antivirais/uso terapêutico , COVID-19/virologia , Desenvolvimento de Medicamentos , Estabilidade de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Alinhamento de Sequência , Tratamento Farmacológico da COVID-19
10.
Annu Rev Pharmacol Toxicol ; 60: 391-415, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31914898

RESUMO

The concept of engineering robust protein scaffolds for novel binding functions emerged 20 years ago, one decade after the advent of recombinant antibody technology. Early examples were the Affibody, Monobody (Adnectin), and Anticalin proteins, which were derived from fragments of streptococcal protein A, from the tenth type III domain of human fibronectin, and from natural lipocalin proteins, respectively. Since then, this concept has expanded considerably, including many other protein templates. In fact, engineered protein scaffolds with useful binding specificities, mostly directed against targets of biomedical relevance, constitute an area of active research today, which has yielded versatile reagents as laboratory tools. However, despite strong interest from basic science, only a handful of those protein scaffolds have undergone biopharmaceutical development up to the clinical stage. This includes the abovementioned pioneering examples as well as designed ankyrin repeat proteins (DARPins). Here we review the current state and clinical validation of these next-generation therapeutics.


Assuntos
Descoberta de Drogas/métodos , Engenharia de Proteínas/métodos , Proteínas/administração & dosagem , Animais , Repetição de Anquirina , Humanos , Ligação Proteica , Proteínas/metabolismo , Proteínas/farmacologia
11.
Br J Clin Pharmacol ; 89(7): 2295-2303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37057679

RESUMO

AIMS: This study aimed to assess safety, tolerability, pharmacokinetic (PK) and pharmacodynamic (PD) effects of ensovibep, a designed ankyrin repeat protein antiviral being evaluated as a COVID-19 treatment, in healthy volunteers in a first-in-human ascending single-dose study. METHODS: Subjects were dosed intravenously, in a randomized double-blinded manner, with either ensovibep at 3, 9 or 20 mg/kg or with placebo, and followed until Day 100. PK and safety were assessed throughout the study duration. Immunogenicity and PD via viral neutralization in serum were also assessed. RESULTS: All adverse events were of mild to moderate severity, and no serious adverse events were observed. One subject who received the 20-mg/kg dose presented with moderate hypersensitivity vasculitis 3 weeks after infusion, which fully resolved using standard procedures. In most subjects ensovibep showed expected mono-exponential decline with a half-life of around 2 weeks. Anti-drug antibodies were detected in 15 of 17 subjects, with the earliest onset detected on Day 29. Viral neutralization assays on subject serum showed effective viral neutralization over the first 3 weeks following dosing with titre values in a dose dependent manner. CONCLUSION: Ensovibep proved safe in this first-in-human safety study and exhibited PK and PD parameters consistent with the expected treatment period required for acute COVID-19 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/efeitos adversos , Repetição de Anquirina , Tratamento Farmacológico da COVID-19 , Voluntários Saudáveis , Método Duplo-Cego
12.
Nanomedicine ; 47: 102612, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243307

RESUMO

Nanomedicine has revolutionized the available treatment options during the last decade, but poor selectivity of targeted drug delivery and release is still poses a challenge. In this study, doxorubicin (DOX) and magnetite nanoparticles were encapsulated by freezing-induced loading, coated with polymeric shell bearing two bi-layers of polyarginine/dextran sulphate and finally modified with HER2-specific DARPin proteins. We demonstrated that the enhanced cellular uptake of these nanocarriers predominantly occurs by SKOV-3 (HER2+) cells, in comparison to CHO (HER2-) cells, together with the controlled DOX release using low intensity focused ultrasound (LIFU). In addition, a good ability of DARPin+ capsules to accumulate in the tumor and the possibility of combination therapy with LIFU were demonstrated. A relatively high sensitivity of the obtained nanocarriers to LIFU and their preferential interactions with mitochondria in cancer cells make these carriers promising candidates for cancer treatment, including novel approaches to overcome drug resistance.


Assuntos
Óxido Ferroso-Férrico , Polímeros , Nanomedicina , Doxorrubicina/farmacologia
13.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982337

RESUMO

Several anti-HIV scaffolds have been proposed as complementary treatments to highly active antiretroviral therapy. AnkGAG1D4, a designed ankyrin repeat protein, formerly demonstrated anti-HIV-1 replication by interfering with HIV-1 Gag polymerization. However, the improvement of the effectiveness was considered. Recently, the dimeric molecules of AnkGAG1D4 were accomplished in enhancing the binding activity against HIV-1 capsid (CAp24). In this study, the interaction of CAp24 against the dimer conformations was elucidated to elaborate the bifunctional property. The accessibility of the ankyrin binding domains was inspected by bio-layer interferometry. By inverting the second module of dimeric ankyrin (AnkGAG1D4NC-CN), the CAp24 interaction KD was significantly reduced. This reflects the capability of AnkGAG1D4NC-CN in simultaneously capturing CAp24. On the contrary, the binding activity of dimeric AnkGAG1D4NC-NC was indistinguishable from the monomeric AnkGAG1D4. The bifunctional property of AnkGAG1D4NC-CN was subsequently confirmed in the secondary reaction with additional p17p24. This data correlates with the MD simulation, which suggested the flexibility of the AnkGAG1D4NC-CN structure. The CAp24 capturing capacity was influenced by the distance of the AnkGAG1D4 binding domains to introduce the avidity mode of AnkGAG1D4NC-CN. Consequently, AnkGAG1D4NC-CN showed superior potency in interfering with HIV-1 NL4-3 WT and HIV-1 NL4-3 MIRCAI201V replication than AnkGAG1D4NC-NC and an affinity improved AnkGAG1D4-S45Y.


Assuntos
Anquirinas , Capsídeo , Proteínas do Capsídeo , Ligação Proteica
14.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769161

RESUMO

Pancreatic cancer (PC) is one of the most aggressive malignancies. A combination of targeted therapies could increase the therapeutic efficacy in tumors with heterogeneous target expression. Overexpression of the human epidermal growth factor receptor type 3 (HER3) and the epithelial cell adhesion molecule (EpCAM) in up to 40% and 30% of PCs, respectively, is associated with poor prognosis and highlights the relevance of these targets. Designed ankyrin repeat protein (DARPin) Ec1 fused with the low immunogenic bacterial toxin LoPE provides specific and potent cytotoxicity against EpCAM-expressing cancer cells. Here, we investigated whether the co-targeting of HER3 using the monoclonal antibody seribantumab (MM-121) and of EpCAM using Ec1-LoPE would improve the therapeutic efficacy in comparison to the individual agents. Radiolabeled 99mTc(CO)3-Ec1-LoPE showed specific binding with rapid internalization in EpCAM-expressing PC cells. MM-121 did not interfere with the binding of Ec1-LoPE to EpCAM. Evaluation of cytotoxicity indicated synergism between Ec1-LoPE and MM-121 in vitro. An experimental therapy study using Ec1-LoPE and MM-121 in mice bearing EpCAM- and HER3-expressing BxPC3 xenografts demonstrated the feasibility of the therapy. Further development of the co-targeting approach using HER3 and EpCAM could therefore be justified.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Molécula de Adesão da Célula Epitelial , Xenoenxertos , Estudos de Viabilidade , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
15.
Chemistry ; 28(57): e202201824, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35791808

RESUMO

We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4 s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.


Assuntos
Quadruplex G , Ácidos Nucleicos , Sítios de Ligação de Anticorpos , Proteínas de Repetição de Anquirina Projetadas , Epitopos , Guanina/química , Humanos , Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2
16.
Mol Pharm ; 19(10): 3576-3585, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35434995

RESUMO

Designed ankyrin repeat proteins (DARPins) are genetically engineered proteins that exhibit high specificity and affinity toward specific targets. Here, the G3-DARPin, which binds the HER2/neu receptor, was site-specifically modified with enzymatic methods and 89Zr-radiolabeled for applications in positron emission tomography (PET). Sortase A transpeptidation was used to install a desferrioxamine B (DFO) chelate bearing a reactive triglycine group to the C-terminal sortase tag of the G3-DARPin, and 89Zr-radiolabeling produced a novel 89ZrDFO-G3-DARPin radiotracer that can detect HER2/neu-positive tumors. The triglycine probe, DFO-Gly3 (1), was synthesized in 29% overall yield. After sortase A transpeptidation and purification from the nonfunctionalized protein component, the DFO-G3-DARPin product was radiolabeled to give 89ZrDFO-G3-DARPin. Binding specificity was assessed in HER2/neu-expressing BT-474 and SK-OV-3 cellular assays. The pharmacokinetics, tumor uptake, and specificity of 89ZrDFO-G3-DARPin were measured in vivo by PET imaging and confirmed by final time point (24 h) biodistribution experiments in female athymic nude mice bearing BT-474 xenografts. Sortase A transpeptidation afforded the site-specific and stoichiometrically precise functionalization of DFO-G3-DARPin with one chelate per protein. The modified DFO-G3-DARPin was purified from the nonfunctionalized DARPin by using Ni-NTA affinity chromatography. 89ZrDFO-G3-DARPin was obtained with a radiochemical purity of >95% measured by radio-size-exclusion chromatography. BT-474 tumor uptake at 24 h postadministration reached 4.41 ± 0.67 %ID/g (n = 3) with an approximate ∼70% reduction in tumor-associated activity in the blocking group (1.26 ± 0.29 %ID/g; 24 h postadministration, n = 5, P-value of <0.001). Overall, the site-specific, enzyme-mediated functionalization and characterization of 89ZrDFO-G3-DARPin in HER2/neu positive BT-474 xenografts demonstrate that DARPins are an attractive platform for generating a new class of protein-based radiotracers for PET. The specific uptake and retention of 89ZrDFO-G3-DARPin in tumors and clearance from most background tissues produced PET images with high tumor-to-background contrast.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Receptor ErbB-2 , Animais , Linhagem Celular Tumoral , Desferroxamina/química , Feminino , Humanos , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Zircônio/química
17.
Biol Res ; 55(1): 32, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274167

RESUMO

BACKGROUND: Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. RESULTS: The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. CONCLUSION: The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.


Assuntos
Produtos Biológicos , Proteínas de Repetição de Anquirina Projetadas , Animais , Humanos , Linhagem Celular Tumoral , Receptor ErbB-2 , Cloroplastos/química , Cloroplastos/metabolismo , Preparações Farmacêuticas/metabolismo , Mamíferos/metabolismo
18.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362226

RESUMO

Non-invasive radionuclide imaging of human epidermal growth factor receptor type 2 (HER2) expression in breast, gastroesophageal, and ovarian cancers may stratify patients for treatment using HER2-targeted therapeutics. Designed ankyrin repeat proteins (DARPins) are a promising type of targeting probe for radionuclide imaging. In clinical studies, the DARPin [99mTc]Tc-(HE)3-G3 labeled using a peptide-based chelator His-Glu-His-Glu-His-Glu ((HE)3), provided clear imaging of HER2 expressing breast cancer 2-4 h after injection. The goal of this study was to evaluate if the use of cysteine-containing peptide-based chelators Glu-Glu-Glu-Cys (E3C), Gly-Gly-Gly-Cys (G3C), and Gly-Gly-Gly-Ser-Cys connected via a (Gly-Gly-Gly-Ser)3-linker (designated as G3-(G3S)3C) would further improve the contrast of imaging using 99mTc-labeled derivatives of G3. The labeling of the new variants of G3 provided a radiochemical yield of over 95%. Labeled G3 variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 1.9-5 nM. Biodistribution of [99mTc]Tc-G3-G3C, [99mTc]Tc-G3-(G3S)3C, and [99mTc]Tc-G3-E3C in mice was compared with the biodistribution of [99mTc]Tc-(HE)3-G3. It was found that the novel variants provide specific accumulation in HER2-expressing human xenografts and enable discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-(HE)3-G3 provided better contrast between tumors and the most frequent metastatic sites of HER2-expressing cancers and is therefore more suitable for clinical applications.


Assuntos
Neoplasias da Mama , Proteínas de Repetição de Anquirina Projetadas , Feminino , Humanos , Animais , Camundongos , Quelantes , Distribuição Tecidual , Linhagem Celular Tumoral , Cintilografia , Peptídeos , Neoplasias da Mama/diagnóstico por imagem
19.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499504

RESUMO

Non-invasive radionuclide molecular visualization of human epidermal growth factor receptor type 2 (HER2) can provide stratification of patients for HER2-targeting therapy. This method can also enable monitoring of the response to such therapies, thereby making treatment personalized and more efficient. Clinical evaluation in a phase I study demonstrated that injections of two scaffold protein-based imaging probes, [99mTc]Tc-(HE)3-G3 and [99mTc]Tc-ADAPT6, are safe, well-tolerated and cause a low level of radioactivity in healthy tissue. The goal of this preclinical study was to select the best probe for stratification of patients and response monitoring. Biodistribution of both tracers was compared in mice bearing SKOV-3 xenografts with high HER2 expression or MDA-MB-468 xenografts with very low expression. Changes in accumulation of the probes in SKOV-3 tumors 24 h after injection of trastuzumab were evaluated. Both [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3 permitted high contrast imaging of HER2-expressing tumors and a clear discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-ADAPT6 has better preconditions for higher sensitivity and specificity of stratification. On the other hand, [99mTc]Tc-(HE)3-G3 is capable of detecting the decrease of HER2 expression on response to trastuzumab therapy only 24 h after injection of the loading dose. This indicates that the [99mTc]Tc-(HE)3-G3 tracer would be better for monitoring early response to such treatment. The results of this study should be considered in planning of further clinical development of HER2 imaging probes.


Assuntos
Neoplasias , Receptor ErbB-2 , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias/patologia , Proteínas/metabolismo , Radioisótopos , Compostos Radiofarmacêuticos , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Clínicos Fase I como Assunto
20.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269611

RESUMO

Epidermal growth factor receptor (EGFR) is a validated tumor marker overexpressed in various cancers such as squamous cell carcinoma (SSC) of the head and neck and gliomas. We constructed protein-drug conjugates based on the anti-EGFR Designed Ankyrin Repeat Protein (DARPin) E01, and compared the bivalent DARPin dimer (DD1) and a DARPin-Fc (DFc) to the monomeric DARPin (DM) and the antibody derived scFv425-Fc (scFvFc) in cell culture and a mouse model. The modular conjugation system, which was successfully applied for the preparation of protein-drug and -dye conjugates, uses bio-orthogonal protein-aldehyde generation by the formylglycine-generating enzyme (FGE). The generated carbonyl moiety is addressed by a bifunctional linker with a pyrazolone for a tandem Knoevenagel reaction and an azide for strain-promoted azide-alkyne cycloaddition (SPAAC). The latter reaction with a PEGylated linker containing a dibenzocyclooctyne (DBCO) for SPAAC and monomethyl auristatin E (MMAE) as the toxin provided the stable conjugates DD1-MMAE (drug-antibody ratio, DAR = 2.0) and DFc-MMAE (DAR = 4.0) with sub-nanomolar cytotoxicity against the human squamous carcinoma derived A431 cells. In vivo imaging of Alexa Fluor 647-dye conjugates in A431-xenografted mice bearing subcutaneous tumors as the SCC model revealed unspecific binding of bivalent DARPins to the ubiquitously expressed EGFR. Tumor-targeting was verified 6 h post-injection solely for DD1 and scFvFc. The total of four administrations of 6.5 mg/kg DD1-MMAE or DFc-MMAE twice weekly did not cause any sequela in mice. MMAE conjugates showed no significant anti-tumor efficacy in vivo, but a trend towards increased necrotic areas (p = 0.2213) was observed for the DD1-MMAE (n = 5).


Assuntos
Imunoconjugados , Animais , Anticorpos , Azidas , Linhagem Celular Tumoral , Proteínas de Repetição de Anquirina Projetadas , Receptores ErbB/metabolismo , Camundongos , Oligopeptídeos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa