Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Genes Dev ; 32(3-4): 244-257, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483153

RESUMO

The discoidin domain receptor 1 (DDR1) is overexpressed in breast carcinoma cells. Low DDR1 expression is associated with worse relapse-free survival, reflecting its controversial role in cancer progression. We detected DDR1 on luminal cells but not on myoepithelial cells of DDR1+/+ mice. We found that DDR1 loss compromises cell adhesion, consistent with data that older DDR1-/- mammary glands had more basal/myoepithelial cells. Basal cells isolated from older mice exerted higher traction forces than the luminal cells, in agreement with increased mammary branches observed in older DDR1-/- mice and higher branching by their isolated organoids. When we crossed DDR1-/- mice with MMTV-PyMT mice, the PyMT/DDR1-/- mammary tumors grew faster and had increased epithelial tension and matricellular fibrosis with a more basal phenotype and increased lung metastases. DDR1 deletion induced basal differentiation of CD90+CD24+ cancer cells, and the increase in basal cells correlated with tumor cell mitoses. K14+ basal cells, including K8+K14+ cells, were increased adjacent to necrotic fields. These data suggest that the absence of DDR1 provides a growth and adhesion advantage that favors the expansion of basal cells, potentiates fibrosis, and enhances necrosis/hypoxia and basal differentiation of transformed cells to increase their aggression and metastatic potential.


Assuntos
Receptor com Domínio Discoidina 1/genética , Neoplasias Mamárias Experimentais/patologia , Animais , Neoplasias da Mama/metabolismo , Hipóxia Celular , Receptor com Domínio Discoidina 1/metabolismo , Intervalo Livre de Doença , Células Epiteliais/metabolismo , Feminino , Fibrose , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Camundongos
2.
Circ Res ; 132(1): 87-105, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36475898

RESUMO

BACKGROUND: The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells. METHODS: We conduced 5/6 nephrectomy in vascular smooth muscle cells-specific Ddr1-knockout mice, accompanied by pharmacological inhibition of the Hippo pathway kinase LATS1 (large tumor suppressor 1), to investigate DDR1 in YAP activation. We utilized polyacrylamide gels of varying stiffness or the DDR1 ligand, type I collagen, to stimulate the cells. We employed multiple molecular biological techniques to explore the role of DDR1 in controlling the Hippo pathway and to determine the mechanistic basis by which DDR1 exerts this effect. RESULTS: We identified the requirement for DDR1 in stiffness/collagen-induced YAP activation. We uncovered that DDR1 underwent stiffness/collagen binding-stimulated liquid-liquid phase separation and co-condensed with LATS1 to inactivate LATS1. Mutagenesis experiments revealed that the transmembrane domain is responsible for DDR1 droplet formation. Purified DDR1 N-terminal and transmembrane domain was sufficient to drive its reversible condensation. Depletion of the DDR1 C-terminus led to failure in co-condensation with LATS1. Interaction between the DDR1 C-terminus and LATS1 competitively inhibited binding of MOB1 (Mps one binder 1) to LATS1 and thus the subsequent phosphorylation of LATS1. Introduction of the single-point mutants, histidine-745-proline and histidine-902-proline, to DDR1 on the C-terminus abolished the co-condensation. In mouse models, YAP activity was positively correlated with collagen I expression and arterial stiffness. LATS1 inhibition reactivated the YAP signaling in Ddr1-deficient vessels and abrogated the arterial softening effect of Ddr1 deficiency. CONCLUSIONS: These findings identify DDR1 as a mediator of YAP activation by mechanical and chemical stimuli and demonstrate that DDR1 regulates LATS1 phosphorylation in an liquid-liquid phase separation-dependent manner.


Assuntos
Via de Sinalização Hippo , Histidina , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Colágeno , Colágeno Tipo I
3.
Bioorg Chem ; 149: 107500, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823310

RESUMO

This study aimed to develop the first dual-target small molecule inhibitor concurrently targeting Discoidin domain receptor 1 (DDR1) and Epidermal growth factor receptor (EGFR), which play a crucial interdependent roles in non-small cell lung cancer (NSCLC), demonstrating a synergistic inhibitory effect. A series of innovative dual-target inhibitors for DDR1 and EGFR were discovered. These compounds were designed and synthesized using structural optimization strategies based on the lead compound BZF02, employing 4,6-pyrimidine diamine as the core scaffold, followed by an investigation of their biological activities. Among these compounds, D06 was selected and showed micromolar enzymatic potencies against DDR1 and EGFR. Subsequently, compound D06 was observed to inhibit NSCLC cell proliferation and invasion. Demonstrating acceptable pharmacokinetic performance, compound D06 exhibited its anti-tumor activity in NSCLC PC-9/GR xenograft models without apparent toxicity or significant weight loss. These collective results showcase the successful synthesis of a potent dual-targeted inhibitor, suggesting the potential therapeutic efficacy of co-targeting DDR1 and EGFR for DDR1/EGFR-positive NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Receptor com Domínio Discoidina 1 , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Receptor com Domínio Discoidina 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Animais , Estrutura Molecular , Camundongos , Descoberta de Drogas , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
4.
Mol Med ; 29(1): 103, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528369

RESUMO

BACKGROUND: Cancers aggressively reorganize collagen in their microenvironment, leading to the evasion of tumor cells from immune surveillance. However, the biological significance and molecular mechanism of collagen alignment in breast cancer (BC) have not been well established. METHODS: In this study, BC-related RNA-Seq data were obtained from the TCGA database to analyze the correlation between DDR1 and immune cells. Mouse BC cells EO771 were selected for in vitro validation, and dual-luciferase experiments were conducted to examine the effect of TFAP2A on DDR1 promoter transcription activity. ChIP experiments were performed to assess TFAP2A enrichment on the DDR1 promoter, while Me-RIP experiments were conducted to detect TFAP2A mRNA m6A modification levels, and PAR-CLIP experiments were conducted to determine VIRMA's binding to TFAP2A mRNA and RIP experiments to investigate HNRNPC's recognition of m6A modification on TFAP2A mRNA. Additionally, an in vivo mouse BC transplant model and the micro-physiological system was constructed for validation, and Masson staining was used to assess collagen fiber arrangement. Immunohistochemistry was conducted to identify the number of CD8-positive cells in mouse BC tumors and Collagen IV content in ECM, while CD8 + T cell migration experiments were performed to measure CD8 + T cell migration. RESULTS: Bioinformatics analysis showed that DDR1 was highly expressed in BC and negatively correlated with the proportion of anti-tumor immune cell infiltration. In vitro cell experiments indicated that VIRMA, HNRNPC, TFAP2A, and DDR1 were highly expressed in BC cells. In addition, HNRNPC promoted TFAP2A expression and, therefore, DDR1 transcription by recognizing the m6A modification of TFAP2A mRNA by VIRMA. In vivo animal experiments further confirmed that VIRMA and HNRNPC enhanced the TFAP2A/DDR1 axis, promoting collagen fiber alignment, reducing anti-tumor immune cell infiltration, and promoting immune escape in BC. CONCLUSION: This study demonstrated that HNRNPC promoted DDR1 transcription by recognizing VIRMA-unveiled m6A modification of TFAP2A mRNA, which enhanced collagen fiber alignment and ultimately resulted in the reduction of anti-tumor immune cell infiltration and promotion of immune escape in BC.


Assuntos
Evasão da Resposta Imune , Neoplasias , Animais , Camundongos , Colágeno/metabolismo , Movimento Celular , RNA Mensageiro/genética , Microambiente Tumoral
5.
Bioorg Chem ; 130: 106215, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384067

RESUMO

Discoidin domain receptors (DDRs) are one of the less explored targets for the treatment of cancer which belong to receptor tyrosine kinases family. Discoidin domain receptors (DDRs) are a collagen-activated receptor tyrosine kinase and essential for controlling cellular functions like proliferation, morphogenesis, adhesion, differentiation, invasion, matrix remodeling, and migration. Although there are many targets and their inhibitors are reported which treat cancer. But most of drugs were amalgamated with moderate to severe side effects. This results in untreated cancerous cells. One of the reasons that cancer is considered challenging to treat because the targets were mutating rapidly and the inhibitor become less potent. The target identification is a tedious task for the researchers from the early 1990 s till date. When it comes to cancer, there has not been any magical stick to treat it undisputedly. Therefore, need for discovery of new receptor may helpful to overcome these difficulties. The development of DDR inhibitors has received a lot of attention ever since the target was discovered. In this review we have reported the development of most promising DDR1 and DDR2 small molecule inhibitors from the perspective of medicinal chemistry. We have also discussed about the clinical trials, recent patents, selectivity biological activity, and structure-activity relationship (SAR) of DDR1 and DDR2 inhibitors.


Assuntos
Antineoplásicos , Receptores com Domínio Discoidina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores com Domínio Discoidina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/química , Relação Estrutura-Atividade
6.
World J Surg Oncol ; 21(1): 168, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37271822

RESUMO

BACKGROUND: Despite recent advances in therapy modalities of colorectal cancer (CRC), it is still the third cause of cancer-related deaths worldwide. Thus, the search for new target therapies became mandatory. DDR1 is a collagen receptor that has a suggested role in cellular proliferation, tumor invasion, and metastasis. MATERIAL AND METHODS: Forty-eight cases of CRC, 20 of CR adenoma, and 8 cases of non-tumoral colonic tissue were subjected to immunohistochemistry by DDR1 and ß-catenin antibodies. Results were compared among the different studied groups and correlated with clinicopathologic data and available survival data. Also, the expression of both proteins was compared versus each other. Results were compared among the 3 studied groups and correlated with clinicopathologic and survival data. RESULTS: It revealed a stepwise increase of DDR1 expression among studied groups toward carcinoma (P = 0.006). DDR1 expression showed a direct association with stage D in the modified Dukes' staging system (P = 0.013), higher-grade histologic types (P = 0.008), and lymph node invasion (P = 0.028) but inverse correlation with the presence of intratumoral inflammatory response (TIR) (P = 0.001). The shortest OS was associated with strong intensity of DDR1 (P = 0.012). The DDR1 and ß-catenin expressions were significantly correlated (P = 0.028), and the combined expression of both was correlated with TNM staging (P = 0.017). CONCLUSION: DDR1 overexpression is a frequent feature in CRC and CR adenoma. DDR1 is a poor prognostic factor and a suppressor of the TIR. DDR1 and ß-catenin seem to have a synergistic action.


Assuntos
Adenoma , Carcinoma , Neoplasias Colorretais , Humanos , beta Catenina , Neoplasias Colorretais/patologia , Relevância Clínica , Prognóstico , Receptor com Domínio Discoidina 1
7.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373466

RESUMO

Oligodendrocytes generate myelin sheaths vital for the formation, health, and function of the central nervous system. Mounting evidence suggests that receptor tyrosine kinases (RTKs) are crucial for oligodendrocyte differentiation and myelination in the CNS. It was recently reported that discoidin domain receptor 1 (Ddr1), a collagen-activated RTK, is expressed in oligodendrocyte lineage. However, its specific expression stage and functional role in oligodendrocyte development in the CNS remain to be determined. In this study, we report that Ddr1 is selectively upregulated in newly differentiated oligodendrocytes in the early postnatal CNS and regulates oligodendrocyte differentiation and myelination. Ddr1 knock-out mice of both sexes displayed compromised axonal myelination and apparent motor dysfunction. Ddr1 deficiency alerted the ERK pathway, but not the AKT pathway in the CNS. In addition, Ddr1 function is important for myelin repair after lysolecithin-induced demyelination. Taken together, the current study described, for the first time, the role of Ddr1 in myelin development and repair in the CNS, providing a novel molecule target for the treatment of demyelinating diseases.


Assuntos
Receptor com Domínio Discoidina 1 , Bainha de Mielina , Oligodendroglia , Animais , Feminino , Masculino , Camundongos , Diferenciação Celular , Sistema Nervoso Central , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Camundongos Knockout , Bainha de Mielina/metabolismo , Neurogênese , Oligodendroglia/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
8.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834343

RESUMO

The tyrosine kinase family receptor of discoidin domain receptors (DDR1 and DDR2) is known to be activated by extracellular matrix collagen catalytic binding protein receptors. They play a remarkable role in cell proliferation, differentiation, migration, and cell survival. DDR1 of the DDR family regulates matrix-metalloproteinase, which causes extracellular matrix (ECM) remodeling and reconstruction during unbalanced homeostasis. Collagenous-rich DDR1 triggers the ECM of cartilage to regenerate the cartilage tissue in osteoarthritis (OA) and temporomandibular disorder (TMD). Moreover, DDR2 is prominently present in the fibroblasts, smooth muscle cells, myofibroblasts, and chondrocytes. It is crucial in generating and breaking collagen vital cellular activities like proliferation, differentiation, and adhesion mechanisms. However, the deficiency of DDR1 rather than DDR2 was detrimental in cases of OA and TMDs. DDR1 stimulated the ECM cartilage and improved bone regeneration. Based on the above information, we made an effort to outline the advancement of the utmost promising DDR1 and DDR2 regulation in bone and cartilage, also summarizing their structural, biological activity, and selectivity.


Assuntos
Osteogênese , Receptores Mitogênicos , Receptores com Domínio Discoidina , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Colágeno/metabolismo , Receptor com Domínio Discoidina 1/metabolismo
9.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675255

RESUMO

Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs.


Assuntos
Receptor com Domínio Discoidina 1 , Receptores Proteína Tirosina Quinases , Ratos , Humanos , Animais , Receptor com Domínio Discoidina 1/metabolismo , Ligantes , Colágeno Tipo IV/metabolismo , Oligodendroglia/metabolismo
10.
J Biol Chem ; 297(5): 101335, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688654

RESUMO

Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-ß1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação , Neoplasias Pancreáticas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
11.
Cancer Sci ; 113(11): 3672-3685, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35969377

RESUMO

Immunotherapies represented by programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors have made great progress in the field of anticancer treatment, but most colorectal cancer patients do not benefit from immunotherapy. Discoidin domain receptor 1 (DDR1), a tyrosine kinase receptor, is activated by collagen binding and overexpressed in various malignancies. However, the role of DDR1 in colorectal cancer and immunoregulation remains unclear. In this study, we found DDR1 is highly expressed in colorectal cancer tissues and negatively associated with patient survival. We demonstrated that DDR1 promotes colorectal tumor growth only in vivo. Mechanistically, DDR1 is a negative immunomodulator in colorectal cancer and is involved in low infiltration of CD4+ and CD8+ T cells by inhibiting IL-18 synthesis. We also reported that DDR1 enhances the expression of PD-L1 through activating the c-Jun amino terminal kinase (JNK) signaling pathway. In conclusion, our findings elucidate the immunosuppressive role of DDR1 in colorectal cancer, which may represent a novel target to enhance the efficacy of immunotherapy in colorectal cancer.


Assuntos
Neoplasias Colorretais , Receptor com Domínio Discoidina 1 , Humanos , Receptor com Domínio Discoidina 1/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Interleucina-18 , Fatores Imunológicos
12.
J Gene Med ; 24(1): e3389, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559933

RESUMO

BACKGROUND: Although cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) is upregulated in glioma, its function and potential mechanism in glioma remain unclear. METHODS: CDKN2B-AS1 level in glioma tissues and cell lines LN229, U251, and U87 was measured by qRT-PCR. Loss-of-function assays using short hairpin RNA for CDKN2B-AS1 (sh-CDKN2B-AS1) were performed to evaluate the effect of CDKN2B-AS1 on cell invasion, migration, proliferation, and apoptosis. The relationship among CDKN2B-AS1, miR-199a-5p, and DDR1 was determined by bioinformatics analysis and luciferase reporter assay. Rescue experiments were conducted to explore the function of CDKN2B-AS1 and miR-199a-5p in glioma. An in vivo animal model of lentivirally transduced U87 glioma xenografts in mice was established to confirm the role of CDKN2B-AS1. RESULTS: CDKN2B-AS1 is significantly upregulated in glioma tissues and cell lines. CDKN2B-AS1 knockdown significantly inhibits cell proliferation, invasion, and migration, while promoting apoptosis of glioma cell lines U251 and U87. Further, a miR-199a-5p inhibitor attenuates the inhibitory effects of sh-CDKN2B-AS1 on these cell phenotypes. CDKN2B-AS1 positively regulates DDR1 expression by directly sponging miR-199a-5p. Moreover, CDKN2B-AS1 knockdown efficiently inhibits U87 tumor xenograft growth in mice. CONCLUSION: Our study reveals that CDKN2B-AS1 promotes glioma development by regulating the miR-199a-5p/DDR1 axis, suggesting that this lncRNA might be a potential therapeutic target.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , RNA Longo não Codificante , Animais , Apoptose/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais
13.
Pharmacol Res ; 183: 106368, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905891

RESUMO

BACKGROUND AND AIMS: Discoidin domain receptor 1 (DDR1) encodes a receptor tyrosine kinase involved in multiple physiological and pathological processes. DDR1 is expressed in the intestinal epithelium, but its role in Ulcerative Colitis (UC) is poorly understand. This study aimed to identify the function of DDR1 in maintaining the homeostasis of UC. METHODS: The DDR1 expression level in non-inflamed and inflamed colon samples from IBD patients were assessed. DDR1 knock-out (DDR1-/-) and wild-type (WT) mice were administered dextran sulfate sodium (DSS) to induce colitis and assessed based on colitis symptoms. In addition, intestinal epithelial barrier injury was induced by TNF-α and IFN-γ incubation to cell monolayers transfected with PCDH-DDR1 or pLKO.1-sh-DDR1-1 plasmids. The effect of DDR1 in regulating barrier integrity, tight junctions (TJ) protein status, and cell apoptosis was investigated in vivo and in vitro. Furthermore, the activation of the NF-κB p65-MLCK-p-MLC2 pathway was also investigated. RESULTS: Decreased DDR1 expression levels were observed at the inflamed sites compared with the non-inflamed. DDR1-/- mice had alleviated intestinal mucosal barrier injuries, upregulated TJ proteins, decreased epithelium apoptosis from DSS-induced colitis, and reduced proinflammatory cytokines production in the colon. These findings were further confirmed in vitro. DDR1 over-expression aggravated the TNF-α/IFN-γ-induced TJ disruption, while DDR1 shRNA prevented TJ damage even in the presence of JSH-23. DDR1 dependently destroyed the intestinal barrier via the NF-κB p65-MLCK-p-MLC2 pathway. CONCLUSION: Our findings revealed that DDR1 regulated the intestinal barrier in colitis by modulating TJ proteins expression and epithelium apoptosis, making it a potential target of UC.


Assuntos
Colite Ulcerativa , Colite , Receptor com Domínio Discoidina 1 , Animais , Apoptose , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/farmacologia , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Epitélio , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Mol Biol Rep ; 49(8): 7275-7286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35562515

RESUMO

BACKGROUND: Discoidin domain receptor 1 (DDR1), a member of receptor tyrosine kinase, has been implicated in tumor progression. However, the function and underlying mechanism of DDR1 in lung adenocarcinoma (LUAD) progression is unclear. Thus, we explored the molecular regulatory mechanism of DDR1 in the migration of LUAD. METHODS: Transwell assays, wound healing assays and xenograft tumor assays were performed to study the function of DDR1 in the progression of LUAD. Immunoblotting and quantitative real-time polymerase chain reaction (RT-qPCR) were used to detect the expression levels of genes. Co-immunoprecipitation (co-IP) assays were performed to detect the interaction between DDR1 and AKT. Immunofluorescence and immunohistochemistry assays were used to determine the expression level of proteins in cells and tissues, respectively. RESULTS: DDR1 expression was significantly higher in LUAD tissues than in normal lung tissues, and the level of DDR1 was inversely correlated with prognosis in patients. We found that DDR1 promoted the migration and invasion of LUAD cells in vitro. Furthermore, ectopic expression of DDR1 in LUAD cells altered EMT-related markers expression. Importantly, the DDR1 protein interacted with AKT and phosphorylated AKT. The AKT inhibitor MK2206 interrupted Snail upregulation in DDR1-overexpressing LUAD cells. Finally, our study revealed that depletion of DDR1 attenuated LUAD cell migration in a tumor xenograft mouse model. CONCLUSION: Our findings uncovered that a high abundance of DDR1 increased the migration and invasion capability of LUAD cells via the AKT/Snail signaling axis and indicated that DDR1 could be a potential target for treating LUAD.


Assuntos
Adenocarcinoma de Pulmão , Receptor com Domínio Discoidina 1 , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição da Família Snail , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Receptor com Domínio Discoidina 1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição da Família Snail/genética
15.
J Clin Pharm Ther ; 47(12): 2397-2407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35665520

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase involved in the pathological processes of several diseases, such as keloid formation, renal fibrosis, atherosclerosis, tumours, and inflammatory processes. The biological barrier is the first line of defence against pathogens, and its disruption is closely related to diseases. In this review, we attempt to elucidate the relationship between DDR1 and the biological barrier, explore the potential biological value of DDR1, and review the current research status and clinical potential of DDR1-selective inhibitors. METHODS: We conducted an extensive literature search on PubMed to collect studies on the relevance of DDR1 to biological barriers and DDR1-selective inhibitors. With these studies, we explored the relationship between DDR1 and biological barriers and briefly reviewed representative DDR1-selective inhibitors that have been reported in recent years. RESULTS AND DISCUSSION: First, the review of the potential mechanisms by which DDR1 regulates biological barriers, including the epithelial, vascular, glomerular filtration, blood-labyrinth, and blood-brain barriers. In the body, DDR1 dysfunction and aberrant expression may be involved in the homeostasis of the biological barrier. Secondly, the review of DDR1 inhibitors reported in recent years shows that DDR1-targeted inhibition is an attractive and promising pharmacological intervention. WHAT IS NEW AND CONCLUSIONS: This review shows that DDR1 is involved in various physiological and pathological processes and in the regulation of biological barrier homeostasis. However, studies on DDR1 and biological barriers are still scarce, and further studies are needed to elucidate their specific mechanisms. The development of targeted inhibitors provides a new direction and idea to study the mechanism of DDR1.


Assuntos
Receptor com Domínio Discoidina 1 , Neoplasias , Humanos , Receptor com Domínio Discoidina 1/metabolismo , Receptores Proteína Tirosina Quinases , Homeostase
16.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 615-624, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35593476

RESUMO

Cellular energy metabolism dysregulation is associated with colorectal cancer (CRC) development and progression. Discoidin domain receptor 1a (DDR1a), one of the five DDR1 isoforms, is closely related to cell proliferation, invasion, and apoptosis in various tumors. Whether it participates in cellular metabolic reprogramming and regulates CRC initiation and progression remains unclear. In this study, we compared the expression of DDR1 in CRC tissues and adjacent tissues from 126 postoperative CRC samples. Moreover, lentivirus-mediated DDR1a overexpression and knockdown were performed in LoVo cells, and cell viability and proliferation were determined by CCK-8 and BrdU assays, respectively. Oxygen consumption rate, extracellular acidification rate, and lactate production were used to determine the effect of DDR1a on metabolic reprogramming. Clinically, CRC patients with high DDR1 expression had poor differentiation and were at an advanced TNM stage. DDR1a promoted LoVo cell proliferation, mitochondrial function, and extracellular acidification. Moreover, DDR1a knockdown inhibited intracellular lactic acid production in LoVo cells, while a pyruvate kinase inhibitor (diamide, 200 µM) significantly reversed this progression. Taken together, our results reveal that DDR1 plays a crucial role in maintaining intracellular environment homeostasis through metabolic reprogramming.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Receptor com Domínio Discoidina 1 , Metabolismo Energético , Humanos , Bromodesoxiuridina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Diamida , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Receptores com Domínio Discoidina/metabolismo , Metabolismo Energético/genética , Ácido Láctico , Isoformas de Proteínas/metabolismo , Piruvato Quinase/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sincalida/metabolismo
17.
Cancer Cell Int ; 21(1): 507, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548097

RESUMO

BACKGROUND: The Discoidin Domain Receptor 1 (DDR1) is one of the two members of a unique family of receptor tyrosine kinase receptors that signal in response to collagen, which has been implicated in cancer progression. Here, we examined the expression of DDR1 in prostate cancer (PCa), and assessed its potential value as a prognostic marker, as a function of grade, stage and other clinicopathologic parameters. METHODS: We investigated the association between the expression level and subcellular localization of DDR1 protein and PCa aggressiveness by immunohistochemistry, using tissue microarrays (TMAs) encompassing 200 cases of PCa with various Gleason scores (GS) and pathologic stages with matched normal tissue, and a highly specific monoclonal antibody. RESULTS: DDR1 was found to be localized in the membrane, cytoplasm, and nuclear compartments of both normal and cancerous prostate epithelial cells. Analyses of DDR1 expression in low GS (≤ 7[3 + 4]) vs high GS (≥ 7[4 + 3]) tissues showed no differences in nuclear or cytoplasmic DDR1in either cancerous or adjacent normal tissue cores. However, relative to normal-matched tissue, the percentage of cases with higher membranous DDR1 expression was significantly lower in high vs. low GS cancers. Although nuclear localization of DDR1 was consistently detected in our tissue samples and also in cultured human PCa and normal prostate-derived cell lines, its presence in that site could not be associated with disease aggressiveness. No associations between DDR1 expression and overall survival or biochemical recurrence were found in this cohort of patients. CONCLUSION: The data obtained through multivariate logistic regression model analysis suggest that the level of membranous DDR1 expression status may represent a potential biomarker of utility for better determination of PCa aggressiveness.

18.
FASEB J ; 34(4): 5767-5781, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32128899

RESUMO

Chondrocytes in growth plates are responsible for longitudinal growth in long bones during endochondral ossification. Discoidin domain receptor 1 (Ddr1) is expressed in chondrocytes, but the molecular mechanisms by which DDR1 regulates chondrocyte behaviors during the endochondral ossification process remain undefined. To elucidate Ddr1-mediate chondrocyte functions, we generated chondrocyte-specific Ddr1 knockout (CKOΔDdr1) mice in this study. The CKOΔDdr1 mice showed delayed development of the secondary ossification center and increased growth plate length in the hind limbs. In the tibial growth plate in CKOΔDdr1 mice, chondrocyte proliferation was reduced in the proliferation zone, and remarkable downregulation of Ihh, MMP13, and Col-X expression in chondrocytes resulted in decreased terminal differentiation in the hypertrophic zone. Furthermore, apoptotic chondrocytes were reduced in the growth plates of CKOΔDdr1 mice. We concluded that chondrocytes with Ddr1 knockout exhibit decreased proliferation, terminal differentiation, and apoptosis in growth plates, which delays endochondral ossification and results in short stature. We also demonstrated that Ddr1 regulates the Ihh/Gli1/Gli2/Col-X pathway to regulate chondrocyte terminal differentiation. These results indicate that Ddr1 is required for chondrocytes to regulate endochondral ossification in skeletal development.


Assuntos
Osso e Ossos/citologia , Diferenciação Celular , Condrócitos/citologia , Condrogênese , Receptor com Domínio Discoidina 1/fisiologia , Osteogênese , Animais , Condrócitos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Neurochem Res ; 46(8): 2181-2191, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34032956

RESUMO

Application of chemotherapeutic oxaliplatin represses gene transcription through induction of DNA methylation, which may contribute to oxaliplatin-induced chronic pain. Here, Ddr1, which showed an increased methylation in the promoter, was screened from the SRA methylation database (PRJNA587622) after oxaliplatin treatment. qPCR and MeDIP assays verified that oxaliplatin treatment increased the methylation in Ddr1 promoter region and decreased the expression of DDR1 in the neurons of spinal dorsal horn. In addition, overexpression of DDR1 by intraspinal injection of AAV-hSyn-Ddr1 significantly alleviated the mechanical allodynia induced by oxaliplatin. Furthermore, we found that oxaliplatin treatment increased the expression of DNMT3b and ZEB1 in dorsal horn neurons, and promoted the interaction between DNMT3b and ZEB1. Intrathecal injection of ZEB1 siRNA inhibited the enhanced recruitment of DNMT3b and the hypermethylation in Ddr1 promoter induced by oxaliplatin. Finally, ZEB1 siRNA rescued the DDR1 downregulation and mechanical allodynia induced by oxaliplatin. In conclusion, these results suggested that the ZEB1 recruited DNMT3b to the Ddr1 promoter, which induced the DDR1 downregulation and contributed to the oxaliplatin-induced chronic pain.


Assuntos
Dor Crônica/metabolismo , Metilação de DNA/fisiologia , Receptor com Domínio Discoidina 1/genética , Oxaliplatina/efeitos adversos , Corno Dorsal da Medula Espinal/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Dor Crônica/induzido quimicamente , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Regiões Promotoras Genéticas/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , DNA Metiltransferase 3B
20.
Bioorg Med Chem ; 29: 115876, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246255

RESUMO

DDR1 is a receptor tyrosine kinase that is activated by triple-helical collagens and has become an attractive target for anticancer therapy given its involvement in tumor growth, metastasis development, and tumor dormancy. Several drugs on the market, such as dasatinib and nilotinib, were reported to potently suppress the function of DDR1 and show significant therapeutic benefits in a variety of preclinical tumor models. Whereas only a few selective DDR1 inhibitors were disclosed in recent years. A series of 4-amino-1H-pyrazolo[3,4-d]pyrimidin derivatives were designed and synthesized. All compounds were evaluated via DDR1 kinase inhibition assay and cell anti-proliferative assay. One of the representative compounds, 6c, suppressed DDR1 kinase activity with an IC50 value of 44 nM and potently inhibited cell proliferation in DDR1-overexpressing cell lines HCT-116 and MDA-MB-231 with IC50 value of 4.00 and 3.36 µM respectively. Further molecular docking study revealed that 6c fitted ideally into DDR1 binding pocket and maintained the crucial hydrogen bonds with DDR1 kinase domain. Overall, these results suggest that the compound 6c is a potential DDR1 inhibitor deserving further investigation for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor com Domínio Discoidina 1/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa