Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
EMBO J ; 42(21): e114220, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37691541

RESUMO

DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.


Assuntos
Giberelinas , Oryza , Giberelinas/metabolismo , Giberelinas/farmacologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Expressão Gênica , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Proc Natl Acad Sci U S A ; 121(19): e2319163121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696472

RESUMO

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Marchantia , Complexo Mediador , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Marchantia/genética , Marchantia/metabolismo , Giberelinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37435751

RESUMO

Human and animal nutrition is mainly based on seeds. Seed size is a key factor affecting seed yield and has thus been one of the primary objectives of plant breeders since the domestication of crop plants. Seed size is coordinately regulated by signals of maternal and zygotic tissues that control the growth of the seed coat, endosperm and embryo. Here, we provide previously unreported evidence for the role of DELLA proteins, key repressors of gibberellin responses, in the maternal control of seed size. The gain-of-function della mutant gai-1 produces larger seeds as a result of an increase in the cell number in ovule integuments. This leads to an increase in ovule size and, in turn, to an increase in seed size. Moreover, DELLA activity promotes increased seed size by inducing the transcriptional activation of AINTEGUMENTA, a genetic factor that controls cell proliferation and organ growth, in the ovule integuments of gai-1. Overall, our results indicate that DELLA proteins are involved in the control of seed size and suggest that modulation of the DELLA-dependent pathway could be used to improve crop yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
4.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823342

RESUMO

Many developmental processes associated with fruit development occur at the floral meristem (FM). Age-regulated microRNA156 (miR156) and gibberellins (GAs) interact to control flowering time, but their interplay in subsequent stages of reproductive development is poorly understood. Here, in tomato (Solanum lycopersicum), we show that GA and miR156-targeted SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL or SBP) genes interact in the tomato FM and ovary patterning. High GA responses or overexpression of miR156 (156OE), which leads to low expression levels of miR156-silenced SBP genes, resulted in enlarged FMs, ovary indeterminacy and fruits with increased locule number. Conversely, low GA responses reduced indeterminacy and locule number, and overexpression of a S. lycopersicum (Sl)SBP15 allele that is miR156 resistant (rSBP15) reduced FM size and locule number. GA responses were partially required for the defects observed in 156OE and rSBP15 fruits. Transcriptome analysis and genetic interactions revealed shared and divergent functions of miR156-targeted SlSBP genes, PROCERA/DELLA and the classical WUSCHEL/CLAVATA pathway, which has been previously associated with meristem size and determinacy. Our findings reveal that the miR156/SlSBP/GA regulatory module is deployed differently depending on developmental stage and create novel opportunities to fine-tune aspects of fruit development that have been important for tomato domestication.


Assuntos
MicroRNAs , Solanum lycopersicum , Giberelinas/metabolismo , Solanum lycopersicum/genética , Flores , Meristema/metabolismo , Ovário/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(19): e2300203120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126674

RESUMO

Plant height is an important agronomic trait with a significant impact on grain yield, as demonstrated by the positive effect of the REDUCED HEIGHT (RHT) dwarfing alleles (Rht1b) on lodging and harvest index in the "Green Revolution" wheat varieties. However, these gibberellic acid (GA)-insensitive alleles also reduce coleoptile length, biomass production, and yield potential in some environments, triggering the search for alternative GA-sensitive dwarfing genes. Here we report the identification, validation, and characterization of the gene underlying the GA-sensitive dwarfing locus RHT25 in wheat. This gene, designated as PLATZ-A1 (TraesCS6A02G156600), is expressed mainly in the elongating stem and developing spike and encodes a plant-specific AT-rich sequence- and zinc-binding protein (PLATZ). Natural and induced loss-of-function mutations in PLATZ-A1 reduce plant height and its overexpression increases plant height, demonstrating that PLATZ-A1 is the causative gene of RHT25. PLATZ-A1 and RHT1 show a significant genetic interaction on plant height, and their encoded proteins interact with each other in yeast and wheat protoplasts. These results suggest that PLATZ1 can modulate the effect of DELLA on wheat plant height. We identified four natural truncation mutations and one promoter insertion in PLATZ-A1 that are more frequent in modern varieties than in landraces, suggesting positive selection during wheat breeding. These mutations can be used to fine-tune wheat plant height and, in combination with other GA-sensitive dwarfing genes, to replace the GA-insensitive Rht1b alleles and search for grain yield improvements beyond those of the Green Revolution varieties.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Fatores de Transcrição/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética
6.
Plant J ; 117(3): 909-923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953711

RESUMO

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinação/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dormência de Plantas/genética , Filogenia , Esporos Fúngicos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plant J ; 117(4): 1018-1051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012838

RESUMO

Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Divisão Celular , Ciclo Celular/genética , Folhas de Planta/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/genética
8.
Plant J ; 115(3): 788-802, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37114596

RESUMO

The Arabidopsis ERECTA family (ERf) of leucine-rich repeat receptor-like kinases (LRR-RLKs) comprising ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERECTA-LIKE 2 (ERL2) controls epidermal patterning, inflorescence architecture, and stomata development and patterning. These proteins are reported to be plasma membrane associated. Here we show that the er/erl1/erl2 mutant exhibits impaired gibberellin (GA) biosynthesis and perception alongside broad transcriptional changes. The ERf kinase domains were found to localize to the nucleus where they interact with the SWI3B subunit of the SWI/SNF chromatin remodeling complex (CRCs). The er/erl1/erl2 mutant exhibits reduced SWI3B protein level and affected nucleosomal chromatin structure. Similar to swi3c and brm plants with inactivated subunits of SWI/SNF CRCs, it also does not accumulate DELLA RGA and GAI proteins. The ER kinase phosphorylates SWI3B in vitro, and the inactivation of all ERf proteins leads to the decreased phosphorylation of SWI3B protein in vivo. The identified correlation between DELLA overaccumulation and SWI3B proteasomal degradation, and the physical interaction of SWI3B with DELLA proteins indicate an important role of SWI3B-containing SWI/SNF CRCs in gibberellin signaling. Co-localization of ER and SWI3B on GID1 (GIBBERELLIN INSENSITIVE DWARF 1) DELLA target gene promoter regions and abolished SWI3B binding to GID1 promoters in er/erl1/erl2 plants supports the conclusion that ERf-SWI/SNF CRC interaction is important for transcriptional control of GA receptors. Thus, the involvement of ERf proteins in the transcriptional control of gene expression, and observed similar features for human HER2 (epidermal growth family receptor member), indicate an exciting target for further studies of evolutionarily conserved non-canonical functions of eukaryotic membrane receptors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Giberelinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética
9.
Plant J ; 115(5): 1394-1407, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243898

RESUMO

Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais/fisiologia , Plantas/metabolismo , Fitocromo/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
10.
BMC Genomics ; 25(1): 815, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210263

RESUMO

BACKGROUND: The DELLA proteins, a class of GA signaling repressors, belong to the GRAS family of plant-specific nuclear proteins. Members of DELLA gene family encode transcriptional regulators with diverse functions in plant development and abiotic stress responses. To date, DELLAs have been identified in various plant species, such as Arabidopsis thaliana, Malus domestica, Populus trichocarpa, and other land plants. Most information of DELLA family genes was obtained from A. thaliana, whereas little is known about the DELLA gene family in blueberry. RESULTS: In this study, we identified three DELLA genes in blueberry (Vaccinium darrowii, VdDELLA) and provided a complete overview of VdDELLA gene family, describing chromosome localization, protein properties, conserved domain, motif organization, and phylogenetic analysis. Three VdDELLA members, containing two highly conserved DELLA domain and GRAS domain, were distributed across three chromosomes. Additionally, cis-acting elements analysis indicated that VdDELLA genes might play a critical role in blueberry developmental processes, hormone, and stress responses. Expression analysis using quantitative real-time PCR (qRT-PCR) revealed that all of three VdDELLA genes were differentially expressed across various tissues. VdDELLA2 was the most highly expressed VdDELLA in all denoted tissues, with a highest expression in mature fruits. In addition, all of the three VdDELLA genes actively responded to diverse abiotic stresses. Based on qRT-PCR analysis, VdDELLA2 might act as a key regulator in V. darrowii in response to salt stress, whereas VdDELLA1 and VdDELLA2 might play an essential role in cold stress response. Under drought stress, all of three VdDELLA genes were involved in mediating drought response. Furthermore, their transiently co-localization with nuclear markers in A. thaliana protoplasts demonstrated their transcriptional regulator roles. CONCLUSIONS: In this study, three VdDELLA genes were identified in V. darrowii genome. Three VdDELLA genes were closely related to the C. moschata DELLA genes, S. lycopersicum DELLA genes, and M. domestica DELLA genes, respectively, indicating their similar biological functions. Expression analysis indicated that VdDELLA genes were highly efficient in blueberry fruit development. Expression patterns under different stress conditions revealed the differentially expressed VdDELLA genes responding to salt, drought, and cold stress. Overall, these results enrich our understanding of evolutionary relationship and potential functions of VdDELLA genes, which provide valuable information for further studies on genetic improvement of the plant yield and plant resistance.


Assuntos
Mirtilos Azuis (Planta) , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Mirtilos Azuis (Planta)/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
11.
Plant Mol Biol ; 114(3): 66, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816626

RESUMO

Floral scent emission of petunia flowers is regulated by light conditions, circadian rhythms, ambient temperature and the phytohormones GA and ethylene, but the mechanisms underlying sensitivity to these factors remain obscure. PHYTOCHROME INTERACTING FACTORs (PIFs) have been well studied as components of the regulatory machinery for numerous physiological processes. Acting redundantly, they serve as transmitters of light, circadian, metabolic, thermal and hormonal signals. Here we identified and characterized the phylogenetics of petunia PIF family members (PhPIFs). PhPIF4/5 was revealed as a positive regulator of floral scent: TRV-based transient suppression of PhPIF4/5 in petunia petals reduced emission of volatiles, whereas transient overexpression increased scent emission. The mechanism of PhPIF4/5-mediated regulation of volatile production includes activation of the expression of genes encoding biosynthetic enzymes and a key positive regulator of the pathway, EMISSION OF BENZENOIDS II (EOBII). The PIF-binding motif on the EOBII promoter (G-box) was shown to be needed for this activation. As PhPIF4/5 homologues are sensors of dawn and expression of EOBII also peaks at dawn, the prior is proposed to be part of the diurnal control of the volatile biosynthetic machinery. PhPIF4/5 was also found to transcriptionally activate PhDELLAs; a similar positive effect of PIFs on DELLA expression was further confirmed in Arabidopsis seedlings. The PhPIF4/5-PhDELLAs feedback is proposed to fine-tune GA signaling for regulation of floral scent production.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Petunia , Proteínas de Plantas , Petunia/genética , Petunia/metabolismo , Petunia/fisiologia , Flores/genética , Flores/metabolismo , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Odorantes , Regiões Promotoras Genéticas , Fitocromo/metabolismo , Fitocromo/genética , Plantas Geneticamente Modificadas
12.
BMC Plant Biol ; 24(1): 46, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216860

RESUMO

BACKGROUND: The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS: In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS: We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.


Assuntos
Proteínas de Plantas , Secale , Secale/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Genoma de Planta/genética , Regulação da Expressão Gênica de Plantas
13.
Plant Biotechnol J ; 22(4): 848-862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38127946

RESUMO

Faster vegetative growth and early maturity/harvest reduce plant life cycle time and are important agricultural traits facilitating early crop rotation. GA is a key hormone governing developmental transitions that determine growth speed in plants. An EAR-motif repressor, SlERF36 that regulates various growth transitions, partly through regulation of the GA pathway and GA levels, was identified in tomato. Suppression of SlERF36 delayed germination, slowed down organ growth and delayed the onset of flowering time, fruit harvest and whole-plant senescence by 10-15 days. Its over-expression promoted faster growth by accelerating all these transitions besides increasing organ expansion and plant height substantially. The plant life cycle and fruit harvest were completed 20-30 days earlier than control without affecting yield, in glasshouse as well as net-house conditions, across seasons and generations. These changes in life cycle were associated with reciprocal changes in expression of GA pathway genes and basal GA levels between suppression and over-expression lines. SlERF36 interacted with the promoters of two GA2 oxidase genes, SlGA2ox3 and SlGA2ox4, and the DELLA gene, SlDELLA, reducing their transcription and causing a 3-5-fold increase in basal GA3/GA4 levels. Its suppression increased SlGA2ox3/4 transcript levels and reduced GA3/GA4 levels by 30%-50%. SlERF36 is conserved across families making it an important candidate in agricultural and horticultural crops for manipulation of plant growth and developmental transitions to reduce life cycles for faster harvest.


Assuntos
Giberelinas , Solanum lycopersicum , Humanos , Animais , Giberelinas/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estágios do Ciclo de Vida , Regulação da Expressão Gênica de Plantas/genética
14.
New Phytol ; 243(3): 997-1016, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849319

RESUMO

Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Giberelinas , Malus , Oxilipinas , Proteínas de Plantas , Transdução de Sinais , Ubiquitinação , Oxilipinas/metabolismo , Malus/genética , Malus/metabolismo , Ciclopentanos/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Proteólise/efeitos dos fármacos , Antocianinas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Modelos Biológicos
15.
New Phytol ; 242(5): 2026-2042, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494681

RESUMO

Seed dormancy governs germination timing, with both evolutionary and applied consequences. Despite extensive studies on the hormonal and genetic control of these processes, molecular mechanisms directly linking dormancy and germination remain poorly understood. By screening a collection of lines overexpressing Arabidopsis transcription factors, we identified ERF50 as a key gene to control dormancy and germination. To study its regulation, we measured seed-related physiological parameters in loss-of-function mutants and carried out transactivation, protein interaction and ChIP-PCR analyses. We found direct ERF50-mediated repression of DOG1 and activation of EXPA2 transcription, which results in enhanced seed germination. Although ERF50 expression is increased by DOG1 in dormant seeds, ERF50 germination-promoting activity is blocked by RGL2. The physiological, genetic and molecular evidence gathered here supports that ERF50 controls germination timing by regulating DOG1 levels to leverage its role as enhancer of seed germination, via RGL2 antagonism on EXPA2 expression. Our results highlight the central role of ERF50 as a feedback regulator to couple and fine-tune seed dormancy and germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Germinação , Dormência de Plantas , Sementes , Fatores de Transcrição , Germinação/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Sementes/genética , Dormência de Plantas/genética , Fatores de Tempo , Ligação Proteica
16.
New Phytol ; 242(6): 2555-2569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594216

RESUMO

Gibberellic acid (GA) plays a central role in many plant developmental processes and is crucial for crop improvement. DELLA proteins, the core suppressors in the GA signaling pathway, are degraded by GA via the 26S proteasomal pathway to release the GA response. However, little is known about the phosphorylation-mediated regulation of DELLA proteins. In this study, we combined GA response assays with protein-protein interaction analysis to infer the connection between Arabidopsis thaliana DELLAs and the C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (CPL3), a phosphatase involved in the dephosphorylation of RNA polymerase II. We show that CPL3 directly interacts with DELLA proteins and promotes DELLA protein stability by inhibiting its degradation by the 26S proteasome. Consequently, CPL3 negatively modulates multiple GA-mediated processes of plant development, including hypocotyl elongation, flowering time, and anthocyanin accumulation. Taken together, our findings demonstrate that CPL3 serves as a novel regulator that could improve DELLA stability and thereby participate in GA signaling transduction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Giberelinas , Ligação Proteica , Antocianinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
17.
Plant Cell Environ ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051467

RESUMO

Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold-tolerant strawberry resources 'Fragaria mandschurica' and 'Fragaria nipponica'. In conclusion, our study reveals the molecular mechanism of FveDREB1B-FveSCL23-FveDELLA module and FveDREB1B-FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources.

18.
J Exp Bot ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39269757

RESUMO

Gibberellins (GA) are diterpenoids that are categorized as one of main hormones that promote major developmental responses such as germination and stem elongation in plants. DELLA proteins act as the key repressors of GA responses. They interact with hundreds of different proteins. While the functioning of DELLA as transcriptional coactivators has also been reported earlier, the actual mechanism still remains elusive. One recent report describes interaction of DELLA with Mediator subunit MED15 as one of the mechanisms contributing to its transcription activation capability (Hernández-García et al. 2024). Interestingly, this mechanism of DELLA-MED15 module-mediated transcription regulation seems to be very ancient conserved from bryophyte Marchantia polymorpha to dicot Arabidopsis thaliana.

19.
Genes Dev ; 30(2): 164-76, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773002

RESUMO

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , N-Acetilglucosaminiltransferases/metabolismo , Transdução de Sinais/fisiologia , Acilação , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Mutação , N-Acetilglucosaminiltransferases/genética , Ligação Proteica
20.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062752

RESUMO

Apple (Malus domestica Borkh.) stands out as a globally significant fruit tree with considerable economic importance. Nonetheless, the orchard production of 'Fuji' apples faces significant challenges, including delayed flowering in young trees and inconsistent annual yields in mature trees, ultimately resulting in suboptimal fruit yield due to insufficient flower bud formation. Flower development represents a pivotal process influencing plant adaptation to environmental conditions and is a crucial determinant of successful plant reproduction. The three gene or transcription factor (TF) families, C2H2, DELLA, and FKF1, have emerged as key regulators in plant flowering regulation; however, understanding their roles during apple flowering remains limited. Consequently, this study identified 24 MdC2H2, 6 MdDELLA, and 6 MdFKF1 genes in the apple genome with high confidence. Through phylogenetic analyses, the genes within each family were categorized into three distinct subgroups, with all facets of protein physicochemical properties and conserved motifs contingent upon subgroup classification. Repetitive events between these three gene families within the apple genome were elucidated via collinearity analysis. qRT-PCR analysis was conducted and revealed significant expression differences among MdC2H2-18, MdDELLA1, and MdFKF1-4 during apple bud development. Furthermore, yeast two-hybrid analysis unveiled an interaction between MdC2H2-18 and MdDELLA1. The genome-wide identification of the C2H2, DELLA, and FKF1 gene families in apples has shed light on the molecular mechanisms underlying apple flower bud development.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Malus , Filogenia , Proteínas de Plantas , Malus/genética , Malus/crescimento & desenvolvimento , Malus/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa