Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Curr Issues Mol Biol ; 46(8): 8526-8549, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39194719

RESUMO

Disrupted in Schizophrenia 1 (DISC1) is a scaffold protein implicated in major mental illnesses including schizophrenia, with a significant negative impact on social life. To investigate if DISC1 affects social interactions in Drosophila melanogaster, we created transgenic flies with second or third chromosome insertions of the human full-length DISC1 (hflDISC1) gene fused to a UAS promotor (UAS-hflDISC1). Initial characterization of the insertion lines showed unexpected endogenous expression of the DISC1 protein that led to various behavioral and neurochemical phenotypes. Social interaction network (SIN) analysis showed altered social dynamics and organizational structures. This was in agreement with the altered levels of the locomotor activity of individual flies monitored for 24 h. Together with a decreased ability to climb vertical surfaces, the observed phenotypes indicate altered motor functions that could be due to a change in the function of the motor neurons and/or central brain. The changes in social behavior and motor function suggest that the inserted hflDISC1 gene influences nervous system functioning that parallels symptoms of DISC1-related mental diseases in humans. Furthermore, neurochemical analyses of transgenic lines revealed increased levels of hydrogen peroxide and decreased levels of glutathione, indicating an impact of DISC1 on the dynamics of redox regulation, similar to that reported in transgenic mammals. Future studies are needed to address the localization of DISC1 expression and to address how the redox parameter changes correlate with the observed behavioral changes.

2.
BMC Neurosci ; 25(1): 12, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438989

RESUMO

BACKGROUND: Mutations in the gene DISC1 are associated with increased risk for schizophrenia, bipolar disorder and major depression. The study of mutated DISC1 represents a well-known and comprehensively characterized approach to understand neuropsychiatric disease mechanisms. However, previous studies have mainly used animal models or rather heterogeneous populations of iPSC-derived neurons, generated by undirected differentiation, to study the effects of DISC1 disruption. Since major hypotheses to explain neurodevelopmental, psychiatric disorders rely on altered neuronal connectivity observed in patients, an ideal iPSC-based model requires accurate representation of the structure and complexity of neuronal circuitries. In this study, we made use of an isogenic cell line with a mutation in DISC1 to study neuronal synaptic phenotypes in a culture system comprising a defined ratio of NGN2 and ASCL1/DLX2 (AD2)-transduced neurons, enriched for glutamatergic and GABAergic neurons, respectively, to mimic properties of the cortical microcircuitry. RESULTS: In heterozygous DISC1 mutant neurons, we replicated the expected phenotypes including altered neural progenitor proliferation as well as neurite outgrowth, deregulated DISC1-associated signaling pathways, and reduced synaptic densities in cultures composed of glutamatergic neurons. Cultures comprising a defined ratio of NGN2 and AD2 neurons then revealed considerably increased GABAergic synapse densities, which have not been observed in any iPSC-derived model so far. Increased inhibitory synapse densities could be associated with an increased efficiency of GABAergic differentiation, which we observed in AD2-transduced cultures of mutant neurons. Additionally, we found increased neuronal activity in GABAergic neurons through calcium imaging while the activity pattern of glutamatergic neurons remained unchanged. CONCLUSIONS: In conclusion, our results demonstrate phenotypic differences in a co-culture comprising a defined ratio of DISC1 mutant NGN2 and AD2 neurons, as compared to culture models comprising only one neuronal cell type. Altered synapse numbers and neuronal activity imply that DISC1 impacts the excitatory/inhibitory balance in NGN2/AD2 co-cultures, mainly through increased GABAergic input.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Animais , Humanos , Técnicas de Cocultura , Neurônios GABAérgicos , Mutação , Proteínas do Tecido Nervoso/genética
3.
Proc Natl Acad Sci U S A ; 117(12): 6741-6751, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152117

RESUMO

Neurodegenerative diseases feature specific misfolded or misassembled proteins associated with neurotoxicity. The precise mechanisms by which protein aggregates first arise in the majority of sporadic cases have remained unclear. Likely, a first critical mass of misfolded proteins starts a vicious cycle of a prion-like expansion. We hypothesize that viruses, having evolved to hijack the host cellular machinery for catalyzing their replication, lead to profound disturbances of cellular proteostasis, resulting in such a critical mass of protein aggregates. Here, we investigated the effect of influenza virus (H1N1) strains on proteostasis of proteins associated with neurodegenerative diseases in Lund human mesencephalic dopaminergic cells in vitro and infection of Rag knockout mice in vivo. We demonstrate that acute H1N1 infection leads to the formation of α-synuclein and Disrupted-in-Schizophrenia 1 (DISC1) aggregates, but not of tau or TDP-43 aggregates, indicating a selective effect on proteostasis. Oseltamivir phosphate, an antiinfluenza drug, prevented H1N1-induced α-synuclein aggregation. As a cell pathobiological mechanism, we identified H1N1-induced blocking of autophagosome formation and inhibition of autophagic flux. In addition, α-synuclein aggregates appeared in infected cell populations connected to the olfactory bulbs following intranasal instillation of H1N1 in Rag knockout mice. We propose that H1N1 virus replication in neuronal cells can induce seeds of aggregated α-synuclein or DISC1 that may be able to initiate further detrimental downstream events and should thus be considered a risk factor in the pathogenesis of synucleinopathies or a subset of mental disorders. More generally, aberrant proteostasis induced by viruses may be an underappreciated factor in initiating protein misfolding.


Assuntos
Proteínas de Homeodomínio/fisiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/complicações , Infecções por Orthomyxoviridae/complicações , Proteostase , Sinucleinopatias/etiologia , alfa-Sinucleína/química , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Influenza Humana/virologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Infecções por Orthomyxoviridae/virologia , Multimerização Proteica , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo
4.
J Cell Sci ; 133(13)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32482796

RESUMO

In this study, using Jurkat cells, we show that DISC1 (disrupted in schizophrenia 1) and Girdin (girders of actin filament) are essential for typical actin accumulation at the immunological synapse. Furthermore, DISC1, Girdin and dynein are bound in a complex. Although this complex initially forms as a central patch at the synapse, it relocates to a peripheral ring corresponding to the peripheral supramolecular activation cluster (pSMAC). In the absence of DISC1, the classic actin ring does not form, cell spreading is blocked, and the dynein complex fails to relocate to the pSMAC. A similar effect is seen when Girdin is deleted. When cells are treated with inhibitors of actin polymerization, the dynein-NDE1 complex is lost from the synapse and the microtubule-organizing center fails to translocate, suggesting that actin and dynein might be linked. Upon stimulation of T cell receptors, DISC1 becomes associated with talin, which likely explains why the dynein complex colocalizes with the pSMAC. These results show that the DISC1-Girdin complex regulates actin accumulation, cell spreading and distribution of the dynein complex at the synapse.This article has an associated First Person interview with the first author of the paper.


Assuntos
Citoesqueleto , Microtúbulos , Actinas/metabolismo , Citoesqueleto/metabolismo , Humanos , Sinapses Imunológicas/metabolismo , Proteínas Associadas aos Microtúbulos , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 587: 107-112, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34871997

RESUMO

It is very important to maintain normal levels of risk avoidance in daily life. We found that DISC1-NTM mice, which are a model for mental disorders, had a phenotype marked by a risk-avoidance impairment as measured in an open-field test (OFT). We used optogenetic methods to modulate glutamatergic neurons in the basolateral amygdala (BLA) in an attempt to rescue this risk-avoidance impairment. We found that photostimulation of BLA neurons at 20 Hz modified DISC1-NTM mouse behavior from low risk avoidance to high risk avoidance. We observed following photostimulation that, compared to controls, the number of entries to the center of the open field was lower and less time was spent in the central area. We also found that the time spent immobile was higher during photostimulation compared with WT mice. We also used a lower photostimulation frequency of 5 Hz, which activated BLA glutamatergic neurons and rescued the risk-avoidance impairment in DISC1-NTM mice. Our findings confirm that the BLA participates in diverse risk-avoidance behavior. Our results are also a reminder that differences in neuronal firing patterns within the same pathway may lead to different physiological functions.


Assuntos
Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Potenciais de Ação/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/patologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Neurônios/patologia , Optogenética/métodos , Técnicas de Patch-Clamp , Estimulação Luminosa/métodos , Assunção de Riscos
6.
Cereb Cortex ; 31(2): 1240-1258, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33037815

RESUMO

Disrupted-in-schizophrenia 1 (DISC1) gene represents an intracellular hub of developmental processes. When combined with early environmental stressors, such as maternal immune activation, but not in the absence of thereof, whole-brain DISC1 knock-down leads to memory and executive deficits as result of impaired prefrontal-hippocampal communication throughout development. While synaptic dysfunction in neonatal prefrontal cortex (PFC) has been recently identified as one source of abnormal long-range coupling, the contribution of hippocampus (HP) is still unknown. Here, we aim to fill this knowledge gap by combining in vivo electrophysiology and optogenetics with morphological and behavioral assessment of immune-challenged mice with DISC1 knock-down either in the whole brain (GE) or restricted to pyramidal neurons in hippocampal CA1 area (GHPE). We found abnormal network activity, sharp-waves, and neuronal firing in CA1 that complement the deficits in upper layer of PFC. Moreover, optogenetic activating CA1 pyramidal neurons fails to activate the prefrontal local circuits. These deficits that persist till prejuvenile age relate to dendrite sparsification and loss of spines of CA1 pyramidal neurons. As a long-term consequence, DISC1 knock-down in HP leads to poorer recognition memory at prejuvenile age. Thus, DISC1-controlled developmental processes in HP in immune-challenged mice are critical for circuit function and cognitive behavior.


Assuntos
Cognição/fisiologia , Comportamento Exploratório/fisiologia , Técnicas de Silenciamento de Genes/métodos , Hipocampo/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/deficiência , Córtex Pré-Frontal/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Feminino , Hipocampo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/imunologia , Córtex Pré-Frontal/imunologia , Gravidez , Células Piramidais/fisiologia
7.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563598

RESUMO

Schizophrenia is a serious psychiatric disorder that affects the social life of patients. Psychiatric disorders are caused by a complex combination of genetic (G) and environmental (E) factors. Polysialylation represents a unique posttranslational modification of a protein, and such changes in neural cell adhesion molecules (NCAMs) have been reported in postmortem brains from patients with psychiatric disorders. To understand the G × E effect on polysialylated NCAM expression, in this study, we performed precise measurements of polySia and NCAM using a disrupted-in-schizophrenia 1 (DISC1)-mutant mouse (G), a mouse model of schizophrenia, under acute stress conditions (E). This is the first study to reveal a lower number and smaller length of polySia in the suprachiasmatic nucleus of DISC1 mutants relative to those in wild-type (WT) mice. In addition, an analysis of polySia and NCAM responses to acute stress in five brain regions (olfactory bulb, prefrontal cortex, suprachiasmatic nucleus, amygdala, and hippocampus) revealed that the pattern of changes in these responses in WT mice and DISC1 mutants differed by region. These differences could indicate the vulnerability of DISC1 mutants to stress.


Assuntos
Proteínas do Tecido Nervoso , Esquizofrenia , Sialiltransferases , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Sialiltransferases/metabolismo
8.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430976

RESUMO

Mental disorders represent common brain diseases characterized by substantial impairments of social and cognitive functions. The neurobiological causes and mechanisms of psychopathologies still have not been definitively determined. Various forms of brain proteinopathies, which include a disruption of protein conformations and the formation of protein aggregates in brain tissues, may be a possible cause behind the development of psychiatric disorders. Proteinopathies are known to be the main cause of neurodegeneration, but much less attention is given to the role of protein impairments in psychiatric disorders' pathogenesis, such as depression and schizophrenia. For this reason, the aim of this review was to discuss the potential contribution of protein illnesses in the development of psychopathologies. The first part of the review describes the possible mechanisms of disruption to protein folding and aggregation in the cell: endoplasmic reticulum stress, dysfunction of chaperone proteins, altered mitochondrial function, and impaired autophagy processes. The second part of the review addresses the known proteins whose aggregation in brain tissue has been observed in psychiatric disorders (amyloid, tau protein, α-synuclein, DISC-1, disbindin-1, CRMP1, SNAP25, TRIOBP, NPAS3, GluA1, FABP, and ankyrin-G).


Assuntos
Encéfalo , Transtornos Mentais , Humanos , Encéfalo/metabolismo , Transtornos Mentais/metabolismo , Dobramento de Proteína , Conformação Proteica , Mitocôndrias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
9.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682647

RESUMO

Mental illness modeling is still a major challenge for scientists. Animal models of schizophrenia are essential to gain a better understanding of the disease etiopathology and mechanism of action of currently used antipsychotic drugs and help in the search for new and more effective therapies. We can distinguish among pharmacological, genetic, and neurodevelopmental models offering various neuroanatomical disorders and a different spectrum of symptoms of schizophrenia. Modeling schizophrenia is based on inducing damage or changes in the activity of relevant regions in the rodent brain (mainly the prefrontal cortex and hippocampus). Such artificially induced dysfunctions approximately correspond to the lesions found in patients with schizophrenia. However, notably, animal models of mental illness have numerous limitations and never fully reflect the disease state observed in humans.


Assuntos
Antipsicóticos , Esquizofrenia , Animais , Antipsicóticos/efeitos adversos , Comportamento Animal , Modelos Animais de Doenças , Hipocampo , Humanos , Córtex Pré-Frontal , Esquizofrenia/tratamento farmacológico
10.
Int J Neuropsychopharmacol ; 24(5): 367-382, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33315097

RESUMO

The mortality rate of patients with schizophrenia is high, and life expectancy is shorter by 10 to 20 years. Metabolic abnormalities including type 2 diabetes mellitus (T2DM) are among the main reasons. The prevalence of T2DM in patients with schizophrenia may be epidemiologically frequent because antipsychotics induce weight gain as a side effect and the cognitive dysfunction of patients with schizophrenia relates to a disordered lifestyle, poor diet, and low socioeconomic status. Apart from these common risk factors and risk factors unique to schizophrenia, accumulating evidence suggests the existence of common susceptibility genes between schizophrenia and T2DM. Functional proteins translated from common genetic susceptibility genes are known to regulate neuronal development in the brain and insulin in the pancreas through several common cascades. In this review, we discuss common susceptibility genes, functional cascades, and the relationship between schizophrenia and T2DM. Many genetic and epidemiological studies have reliably associated the comorbidity of schizophrenia and T2DM, and it is probably safe to think that common cascades and mechanisms suspected from common genes' functions are related to the onset of both schizophrenia and T2DM. On the other hand, even when genetic analyses are performed on a relatively large number of comorbid patients, the results are sometimes inconsistent, and susceptibility genes may carry only a low or moderate risk. We anticipate future directions in this field.


Assuntos
Comorbidade , Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Esquizofrenia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Esquizofrenia/imunologia , Esquizofrenia/metabolismo
11.
Neuropsychobiology ; 80(1): 36-44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32599581

RESUMO

BACKGROUND: Patients suffering from schizophrenic psychosis show reduced synaptic connectivity compared to healthy individuals. Furthermore, the use of cannabis often precedes the onset of schizophrenic psychosis. Therefore, we investigated whether consumption of cannabis has an impact on the methylation pattern of schizophrenia candidate genes concerned with the development and preservation of synapses and synaptic function. METHODS: Fifty blood samples of outpatients affected by treatment-resistant schizophrenic psychosis were collected in the outpatient department of Ch Ste Anne/INSERM (Paris, France). Extracted DNA was sent to the LMN/MHH (Hanover, Germany) where DNA samples were bisulfite converted. The methylation patterns of the promoter region of neuregulin 1 (NRG1), neurexin (NRXN1), disrupted in schizophrenia 1 (DISC1), and microtubule-associated-protein tau (MAPT) were then analysed by sequencing according to Sanger. RESULTS: In NRXN1 the group of non-consumer patients showed a methylation rate slightly lower than controls. In patients with preliminary use of tetrahydrocannabinol (THC) the NRXN1 promoter turned out to be methylated almost two times higher than in non-consumer patients. In MAPT, non-consumer patients showed a significant lower mean methylation rate in comparison to controls. In THC-consuming patients the difference compared with controls became less. NRG1 and DISC1 showed no significant differences between groups, whereas DISC1 appeared to be not methylated at all. CONCLUSION: In MAPT and NRXN1 mean methylation rates were lower in non-consumer patients compared with controls, which seems to be a compensatory mechanism. With consumption of THC, mean methylation rates were increased: in the case of MAPT compared with controls, and in NRXN1 even significantly beyond that. Methylation of NRG1 and DISC1 seems not to be affected by the psychiatric disorder or by consumption of THC.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Metilação de DNA/efeitos dos fármacos , Dronabinol/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Esquizofrenia/sangue , Adulto , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuregulina-1/metabolismo , Proteínas tau/metabolismo
12.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681799

RESUMO

Schizophrenia is a neurodevelopmental disorder whose etiopathogenesis includes changes in cellular as well as extracellular structures. Perineuronal nets (PNNs) associated with parvalbumin-positive interneurons (PVs) in the prefrontal cortex (PFC) are dysregulated in schizophrenia. However, the postnatal development of these structures along with their associated neurons in the PFC is unexplored, as is their effects on behavior and neural activity. Therefore, in this study, we employed a DISC1 (Disruption in Schizophrenia) mutation mouse model of schizophrenia to assess these developmental changes and tested whether enzymatic digestion of PNNs in the PFC affected schizophrenia-like behaviors and neural activity. Developmentally, we found that the normal formation of PNNs, PVs, and colocalization of these two in the PFC, peaked around PND 22 (postnatal day 22). However, in DISC1, mutation animals from PND 0 to PND 60, both PNNs and PVs were significantly reduced. After enzymatic digestion of PNNs with chondroitinase in adult animals, the behavioral pattern of control animals mimicked that of DISC1 mutation animals, exhibiting reduced sociability, novelty and increased ultrasonic vocalizations, while there was very little change in other behaviors, such as working memory (Y-maze task involving medial temporal lobe) or depression-like behavior (tail-suspension test involving processing via the hypothalamic pituitary adrenal (HPA) axis). Moreover, following chondroitinase treatment, electrophysiological recordings from the PFC exhibited a reduced proportion of spontaneous, high-frequency firing neurons, and an increased proportion of irregularly firing neurons, with increased spike count and reduced inter-spike intervals in control animals. These results support the proposition that the aberrant development of PNNs and PVs affects normal neural operations in the PFC and contributes to the emergence of some of the behavioral phenotypes observed in the DISC1 mutation model of schizophrenia.


Assuntos
Comportamento Animal/fisiologia , Rede Nervosa/patologia , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Interneurônios/patologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia
13.
Bull Exp Biol Med ; 171(3): 347-351, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34297294

RESUMO

Intact Disc1-L100P mice carrying a point mutation DISC1Rgsc1390 in the second exon of the DISC1 gene (genetic model of schizophrenia) differ from the parental C57BL/6NCrl strain by higher content of CD3+ T cells and reduced number of CD19+B cells in the peripheral blood and spleen. Analysis of T cell subpopulations revealed an increase in the number of CD3+CD4+ T helpers in the blood of mutant mice and a decrease in the level of CD3+CD8+ suppressor/cytotoxic T cells and CD3+CD4+CD25+ T-regulatory cells. The distribution pattern of inflammatory (IL-1ß, IL-2, IL-6, IL-17, IFNγ, and TNFα) and anti-inflammatory (IL-4, IL-10) cytokines specific for Disc1-L100P mice was revealed in the brain structures involved in the pathogenesis of schizophrenia. A possible implication of immune mechanisms in the development of schizophrenia-like endophenotype of Disc1-L100P mice is discussed.


Assuntos
Linfócitos B/imunologia , Encéfalo/imunologia , Proteínas do Tecido Nervoso/genética , Esquizofrenia/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos B/patologia , Encéfalo/patologia , Mapeamento Encefálico , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/imunologia , Mutação Puntual , Esquizofrenia/genética , Esquizofrenia/patologia , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/patologia , Linfócitos T Reguladores/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
14.
J Neurosci ; 39(7): 1222-1235, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30617212

RESUMO

Compromised brain development has been hypothesized to account for mental illness. This concept was underpinned by the function of the molecule disrupted-in-schizophrenia 1 (DISC1), which represents an intracellular hub of developmental processes and has been related to cognitive dysfunction in psychiatric disorders. Mice with whole-brain DISC1 knock-down show impaired prefrontal-hippocampal function and cognitive abilities throughout development and at adulthood, especially when combined with early environmental stressors, such as maternal immune activation (MIA). However, the contribution of abnormal DISC1-driven maturation of either prefrontal cortex (PFC) or hippocampus (HP) to these deficits is still unknown. Here, we use in utero electroporation to restrict the DISC1 knock-down to prefrontal layer II/III pyramidal neurons during perinatal development and expose these mice to MIA as an environmental stressor (dual-hit GPFCE mice, both sexes). Combining in vivo electrophysiology and neuroanatomy with behavioral testing, we show that GPFCE mice at neonatal age have abnormal patterns of oscillatory activity and firing in PFC, but not HP. Abnormal firing rates in PFC of GPFCE mice relate to sparser dendritic arborization and lower spine density. Moreover, the long-range coupling within prefrontal-hippocampal networks is decreased at this age. The transient prefrontal DISC1 knock-down was sufficient to permanently perturb the prefrontal-hippocampal communication and caused poorer recognition memory performance at pre-juvenile age. Thus, developmental dysfunction of prefrontal circuitry causes long-lasting disturbances related to mental illness.SIGNIFICANCE STATEMENT Hypofrontality is considered a main cause of cognitive deficits in mental disorders, yet the underlying mechanisms are still largely unknown. During development, long before the emergence of disease symptoms, the functional coupling within the prefrontal-hippocampal network, which is the core brain circuit involved in cognitive processing, is reduced. To assess to which extent impaired prefrontal development contributes to the early dysfunction, immune-challenged mice with transient DISC1 knock-down confined to PFC were investigated in their prefrontal-hippocampal communication throughout development by in vivo electrophysiology and behavioral testing. We show that perturbing developmental processes of prefrontal layer II/III pyramidal neurons is sufficient to diminish prefrontal-hippocampal coupling and decrease the cognitive performance throughout development.


Assuntos
Disfunção Cognitiva/genética , Proteínas do Tecido Nervoso/genética , Animais , Comportamento Animal/fisiologia , Disfunção Cognitiva/psicologia , Comportamento Exploratório/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/crescimento & desenvolvimento , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Células Piramidais/ultraestrutura , Reconhecimento Psicológico/fisiologia
15.
BMC Med Genet ; 21(1): 194, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008326

RESUMO

BACKGROUND: Schizophrenia is a severe, heritable, and refractory psychiatric disorder. Several studies have shown that the disrupted in schizophrenia 1 (DISC1) gene is closely associated with schizophrenia by its role in neuronal morphology, synaptic function, brain development, and dopamine homeostasis etc. This study intended to investigate the expression levels of DISC1 gene in schizophrenia patients compared with healthy controls, and the expression variation of DISC1 gene before and after antipsychotic treatment in schizophrenia patients. METHODS: In this study, we compared DISC1 expression levels in blood of 48 healthy controls, and 32 schizophrenia patients before and after 12 weeks of antipsychotic treatment using real-time quantitative PCR (RT-qPCR) analysis. RESULTS: The expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients before antipsychotic treatment were higher than those in healthy controls (P < 0.01); whereas after antipsychotic treatment, the expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients still remained increased (P < 0.01). CONCLUSIONS: Our study provided further support for the involvement of DISC1 in the development of schizophrenia.


Assuntos
Expressão Gênica , Leucócitos Mononucleares/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Adulto , Antipsicóticos/uso terapêutico , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/sangue , Esquizofrenia/sangue , Esquizofrenia/tratamento farmacológico , Adulto Jovem
16.
Hippocampus ; 29(9): 802-816, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30723982

RESUMO

Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention-related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed-modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location-independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty-induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms.


Assuntos
Sincronização Cortical , Hipocampo/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Animais , Comportamento Animal , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Comportamento Exploratório , Ritmo Gama/fisiologia , Hipocampo/metabolismo , Masculino , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Descanso/fisiologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Sono/fisiologia
17.
Development ; 143(15): 2732-40, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287808

RESUMO

Disrupted in schizophrenia 1 (DISC1) is known as a high susceptibility gene for schizophrenia. Recent studies have indicated that schizophrenia might be caused by glia defects and dysfunction. However, there is no direct evidence of a link between the schizophrenia gene DISC1 and gliogenesis defects. Thus, an investigation into the involvement of DISC1 (a ubiquitously expressed brain protein) in astrogenesis during the late stage of mouse embryonic brain development is warranted. Here, we show that suppression of DISC1 expression represses astrogenesis in vitro and in vivo, and that DISC1 overexpression substantially enhances the process. Furthermore, mouse and human DISC1 overexpression rescued the astrogenesis defects caused by DISC1 knockdown. Mechanistically, DISC1 activates the RAS/MEK/ERK signaling pathway via direct association with RASSF7. Also, the pERK complex undergoes nuclear translocation and influences the expression of genes related to astrogenesis. In summary, our results demonstrate that DISC1 regulates astrogenesis by modulating RAS/MEK/ERK signaling via RASSF7 and provide a framework for understanding how DISC1 dysfunction might lead to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Imunoprecipitação , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurogênese/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
18.
J Neurovirol ; 25(1): 101-113, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30397826

RESUMO

The activation and involvement of human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1) have been reported in several neuropsychiatric disorders, including schizophrenia, as well as in multiple sclerosis (MS). Dysregulation of intracellular calcium content is also involved in the pathogenesis of these diseases. Our previous studies showed that HERV-W env overexpression results in activation of small conductance Ca2+-activated K+ channel protein 3 (SK3), a potential risk factor for schizophrenia. In the present study, we aimed to elucidate the relationship between HERV-W env and calcium signaling in schizophrenia. Our results showed that HERV-W env could induce Ca2+ influx in two human neuroblastoma cell lines and upregulate the expression and activation of TRPC3 in cells. The abnormal increase in intracellular Ca2+ concentration was inhibited by addition of the TRPC3 channel blocker pyr3, demonstrating that the Ca2+ influx induced by HERV-W env was TRPC3-dependent. Further experiments showed that HERV-W env overexpression downregulated DISC1, while knockdown of DISC1 promoted activation of TRPC3 without affecting TRPC3 expression. In conclusion, HERV-W env induced Ca2+ influx in human neuroblastoma cells by activating the TRPC3 channel through directly regulating its expression or downregulating DISC1, which could also increase TRPC3 activation without affecting TRPC3 expression. These findings provide new insights into how HERV-W env affects neuronal activity and contributes to the pathogenesis of schizophrenia.


Assuntos
Cálcio/metabolismo , Retrovirus Endógenos/genética , Produtos do Gene env/genética , Proteínas do Tecido Nervoso/genética , Proteínas da Gravidez/genética , Canais de Cátion TRPC/genética , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio , Linhagem Celular Tumoral , Retrovirus Endógenos/metabolismo , Regulação da Expressão Gênica , Produtos do Gene env/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Proteínas da Gravidez/metabolismo , Pirazóis/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Esquizofrenia/virologia , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/metabolismo
19.
J Neurosci ; 37(15): 4158-4180, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28283561

RESUMO

Using a genetic mouse model that faithfully recapitulates a DISC1 genetic alteration strongly associated with schizophrenia and other psychiatric disorders, we examined the impact of this mutation within the prefrontal cortex. Although cortical layering, cytoarchitecture, and proteome were found to be largely unaffected, electrophysiological examination of the mPFC revealed both neuronal hyperexcitability and alterations in short-term synaptic plasticity consistent with enhanced neurotransmitter release. Increased excitability of layer II/III pyramidal neurons was accompanied by consistent reductions in voltage-activated potassium currents near the action potential threshold as well as by enhanced recruitment of inputs arising from superficial layers to layer V. We further observed reductions in both the paired-pulse ratios and the enhanced short-term depression of layer V synapses arising from superficial layers consistent with enhanced neurotransmitter release at these synapses. Recordings from layer II/III pyramidal neurons revealed action potential widening that could account for enhanced neurotransmitter release. Significantly, we found that reduced functional expression of the voltage-dependent potassium channel subunit Kv1.1 substantially contributes to both the excitability and short-term plasticity alterations that we observed. The underlying dysregulation of Kv1.1 expression was attributable to cAMP elevations in the PFC secondary to reduced phosphodiesterase 4 activity present in Disc1 deficiency and was rescued by pharmacological blockade of adenylate cyclase. Our results demonstrate a potentially devastating impact of Disc1 deficiency on neural circuit function, partly due to Kv1.1 dysregulation that leads to a dual dysfunction consisting of enhanced neuronal excitability and altered short-term synaptic plasticity.SIGNIFICANCE STATEMENT Schizophrenia is a profoundly disabling psychiatric illness with a devastating impact not only upon the afflicted but also upon their families and the broader society. Although the underlying causes of schizophrenia remain poorly understood, a growing body of studies has identified and strongly implicated various specific risk genes in schizophrenia pathogenesis. Here, using a genetic mouse model, we explored the impact of one of the most highly penetrant schizophrenia risk genes, DISC1, upon the medial prefrontal cortex, the region believed to be most prominently dysfunctional in schizophrenia. We found substantial derangements in both neuronal excitability and short-term synaptic plasticity-parameters that critically govern neural circuit information processing-suggesting that similar changes may critically, and more broadly, underlie the neural computational dysfunction prototypical of schizophrenia.


Assuntos
Potenciais de Ação/fisiologia , Modelos Animais de Doenças , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/fisiopatologia , Gravidez , Esquizofrenia/genética , Esquizofrenia/fisiopatologia
20.
J Biol Chem ; 292(16): 6468-6477, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28249940

RESUMO

Disrupted in Schizophrenia 1 (DISC1) is a scaffolding protein of significant importance for neurodevelopment and a prominent candidate protein in the pathology of major mental illness. DISC1 modulates a number of critical neuronal signaling pathways through protein-protein interactions; however, the mechanism by which this occurs and how DISC1 causes mental illness is unclear, partly because knowledge of the structure of DISC1 is lacking. A lack of homology with known proteins has hindered attempts to define its domain composition. Here, we employed the high-throughput Expression of Soluble Proteins by Random Incremental Truncation (ESPRIT) technique to identify discretely folded regions of human DISC1 via solubility assessment of tens of thousands of fragments of recombinant DISC1. We identified four novel structured regions, named D, I, S, and C, at amino acids 257-383, 539-655, 635-738, and 691-836, respectively. One region (D) is located in a DISC1 section previously predicted to be unstructured. All regions encompass coiled-coil or α-helical structures, and three are involved in DISC1 oligomerization. Crucially, three of these domains would be lost or disrupted by a chromosomal translocation event after amino acid 597, which has been strongly linked to major mental illness. Furthermore, we observed that a known illness-related frameshift mutation after amino acid 807 causes the C region to form aberrantly multimeric and aggregated complexes with an unstable secondary structure. This newly revealed domain architecture of DISC1, therefore, provides a powerful framework for understanding the critical role of this protein in a variety of devastating mental illnesses.


Assuntos
Mutação , Proteínas do Tecido Nervoso/química , Transtornos Psicóticos/genética , Esquizofrenia/genética , Mutação da Fase de Leitura , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Desnaturação Proteica , Domínios Proteicos , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa