Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 41(13): 1252-1260, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045021

RESUMO

The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.

2.
Carbohydr Res ; 538: 109079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493705

RESUMO

Due to the all-axial orientation of the OH-groups in the 1C4 chair conformation considered standard for L-hexapyranosides, including l-iduronopyranoside - a component of many biologically and medically significant sulfated glycans, these monosaccharides can be anticipated to display unusual conformations upon the introduction of bulky and charged substituents. Herein we describe the synthesis of a series of iduronopyranoside derivatives with varying sulfation patterns, which were studied computationally using the DLPNO-MP2 approach and by means of analyzing their chemical shifts to ascertain the effects sulfation has on the conformation of the iduronopyranoside ring.


Assuntos
Polissacarídeos , Sulfatos , Sulfatos/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Polissacarídeos/química , Monossacarídeos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa