Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
1.
J Fluoresc ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183590

RESUMO

The interaction between silver nanoparticles (AgNPs) and molecules producing coronas plays a key role in cytotoxicity mechanisms. Once adsorbed coronas determine the destiny of nanomaterials in vivo, their effective deployment in the biomedical field requires a comprehensive understanding of the dynamic interactions of biomolecules with nanoparticles. In this work, we characterized 40 nm AgNPs in three different nutritional cell media at different molar concentrations and incubation times to study the binding mechanism of molecules on surface nanoparticles. In addition, their cytotoxic effects have been studied in three cell lineages used as tissue regeneration models: FN1, HUV-EC-C, RAW 264.7. According to the data, when biomolecules from DMEM medium were in contact with AgNPs, agglomeration and precipitation occurred. However, FBS medium proteins indicated the formation of coronas over the nanoparticles. Nonetheless, little adsorption of molecules around the nanoparticles was observed when compared to DMEM supplemented with 10% FBS. These findings indicate that when nanoparticles and bioproteins from supplemented media interact, inorganic salts from DMEM contribute to produce large bio-coronas, the size of which varies with the concentration and time. The static quenching mechanism was shown to be responsible for the fluorescence quenching of the bioprotein aggregates on the AgNPs surface. The calculated bioprotein-nanoparticle surface binding constants were on the order of 105 M-1 at 37 °C, with hydrophobic interactions driven by enthalpy and entropy playing a role, as confirmed by thermodynamic analysis. Cytotoxicity data showed a systematic degrowth in the viable cell population as the number of nanoparticles increased and the diameter of coronas decreased. Cytotoxic intervals associated with half decrease of cell population were established for AgNPs molar concentration of 75 µM for 24 h and 50 µM for 48 h. In summary, through the cytotoxicity mechanism of bio-coronas we are able to manipulate cells' expansion rates to promote specific processes, such inflammatory mechanisms, at different time instants.

2.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38806242

RESUMO

Recently, an increasing number of studies have investigated the mechanism of action of lactobacilli in the treatment of non-alcoholic fatty liver disease. Using four computational tools (NormFinder, geNorm, Delta Ct, and BestKeeper), six potential reference genes (RGs) were analyzed in the human liver cell line HepG2 cultivated 24 h in the presence of two strains of heat-killed lactobacilli, Limosilactobacillus reuteri E and Lactiplantibacillus plantarum KG4, respectively, in different cultivation media [Dulbecco´s Modified Eagle´s Medium (DMEM) high glucose or Roswell Park Memorial Institute (RPMI)]. The analysis revealed that the suitability of RG was similar between the two lactobacilli but quite different between the two media. The commonly used RGs, 18S rRNA and glyceraldehyde-3-phosphate dehydrogenase were the most unstable in DMEM high glucose. Normalization of the mRNA expression of the target gene encoding sterol regulatory element-binding protein 1c (SREBP-1c) to different RGs resulted in different expression profiles. This demonstrates that validation of candidate RGs under specific experimental conditions is crucial for the correct interpretation of quantitative polymerase chain reaction data. In addition, the choice of media has a profound impact on the effect of lactobacilli on lipogenesis at the gene expression level, as shown by the transcription factor SREBP-1c.


Assuntos
Meios de Cultura , Humanos , Meios de Cultura/química , Células Hep G2 , Lactobacillus/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Padrões de Referência , Perfilação da Expressão Gênica
3.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682966

RESUMO

The osteogenic differentiation of mesenchymal stem cells is now a standard procedure in modern bone tissue engineering. As this is a promising field for future clinical applications, many cell culture media exist to promote osteogenic differentiation. Prior to differentiation, cells must be expanded to obtain sufficient numbers for experiments. Little evidence is available regarding the optimal media combination for expansion and differentiation to maximize the osteogenic response. Therefore, human BM-MSCs (n = 6) were expanded in parallel in DMEM (Dulbecco's Modified Eagle Medium) LG (Low Glucose) and α-MEM (Minimum Essential Media alpha-modification), followed by simultaneous monolayer differentiation toward the osteogenic lineage in: 1. DMEM LG (Low Glucose), 2. DMEM HG (High Glucose), 3. α-MEM, 4. "Bernese medium", and 5. "Verfaillie medium", with a corresponding negative control (total 20 groups). As a marker for osteogenic differentiation, hydroxyapatite was accessed using radioactive 99mTc-HDP labeling and quantitative alizarin red staining. The results indicate that all media except "Bernese medium" are suitable for osteogenic differentiation, while there was evidence that DMEM LG is partly superior when used for expansion and differentiation of BM-hMSCs. Using "Verfaillie medium" after DMEM LG expansion led to the highest grade of osteogenic differentiation. Nevertheless, the difference was not significant. Therefore, we recommend using DMEM LG for robust osteogenic differentiation, as it is highly suitable for that purpose, economical compared to other media, and requires little preparation time.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células/fisiologia , Células Cultivadas , Meios de Cultura/farmacologia , Glucose/farmacologia , Humanos
4.
Saudi Pharm J ; 30(6): 793-814, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812152

RESUMO

Multitude of diseases and side effects from conventional drugs have surged the use of herbal remedies. Thus, the current study aimed to appraise various pharmacological attributes of Artemisia brevifolia Wall. ex DC. Extracts prepared by successive solvent extraction were subjected to phytochemical and multimode antioxidant assays. Various polyphenolics and artemisinin derivatives were detected and quantified using RP-HPLC analysis. Compounds present in methanol (M) and distilled water (DW) extracts were identified using high resolution mass spectrometry (HRMS). Extracts were pharmacologically evaluated for their antibacterial, antifungal, antimalarial, antileishmanial and antidiabetic potentials. Moreover, cytotoxicity against Artemiasalina, human cancer cell lines and isolated lymphocytes was assessed. Genotoxicity was evaluated using comet, micronucleus and chromosomal aberration assays. Lastly, anti-inflammatory potential was determined through a series of in vitro and in vivo assays using BALB/c mice. Maximum extract recovery (5.95% w/w) was obtained by DW extract. Highest phenolics and flavonoids content, total antioxidant capacity, total reduction potential, percentfree radical scavenging, ß-carotene scavenging and iron chelating activities were exhibited by M extract. RP-HPLC analysis revealed significant amounts of various polyphenolic compounds (vanillic acid, syringic acid, emodin and luteolin), artemisinin, dihydro artemisinin, artesunate and artemether in ethyl acetate (EA) extract. Total 40 compounds were detected through HRMS. A noteworthy antimicrobial activity (MIC 22.22 µg/ml) was exhibited by EA extract against A. fumigatus and several bacterial strains. Maximum antimalarial, antileishmanial, brine shrimp lethality and cytotoxic potential against cancer cells was manifested by EA extract. None of the extracts exhibited genotoxicity and toxicity against isolated lymphocytes. Highest α-amylase and α-glucosidase inhibition capacities were demonstrated by DW extract. Various in-vivo anti-inflammatory models revealed significant (p < 0.05) anti-inflammatory potential of M and DW extracts. In conclusion, present findings divulged theremarkable pharmacological potential of A. brevifolia and endorse its richness in artemisinin.

5.
Saudi Pharm J ; 30(7): 934-945, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35903524

RESUMO

Cardiovascular diseases are a major cause of mortality, and vascular injury, a common pathological basis of cardiovascular disease, is deeply correlated with macrophage apoptosis and inflammatory response. Genistein, a type of phytoestrogen, exerts cardiovascular protective activities, but the underlying mechanism has not been fully elucidated. In this study, RAW264.7 cells were treated with genistein, lipopolysaccharide (LPS), nuclear factor-kappa B (NF-κB) inhibitor, and/or protein kinase B (AKT) agonist to determine the role of genistein in apoptosis and inflammation in LPS-stimulated cells. Simultaneously, high fat diet-fed C57BL/6 mice were administered genistein to evaluate the function of genistein on LPS-induced cardiovascular injury mouse model. Here, we demonstrated that LPS obviously increased apoptosis resistance and inflammatory response of macrophages by promoting miR-21 expression, and miR-21 downregulated tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) expression by targeting the coding region. Genistein reduced miR-21 expression by inhibiting NF-κB, then blocked toll-like receptor 4 (TLR4) pathway and AKT phosphorylation dependent on TIPE2, resulting in inhibition of LPS. Our research suggests that miR-21/TIPE2 pathway is involved in M1 macrophage apoptosis and inflammatory response, and genistein inhibits the progression of LPS-induced cardiovascular injury at the epigenetic level via regulating the promoter region of Vmp1 by NF-κB.

6.
Sens Actuators B Chem ; 345: 130411, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34248284

RESUMO

The outbreak of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global pandemic. The high infectivity of SARS-CoV-2 highlights the need for sensitive, rapid and on-site diagnostic assays of SARS-CoV-2 with high-throughput testing capability for large-scale population screening. The current detection methods in clinical application need to operate in centralized labs. Though some on-site detection methods have been developed, few tests could be performed for high-throughput analysis. We here developed a gold nanoparticle-based visual assay that combines with CRISPR/Cas12a-assisted RT-LAMP, which is called Cas12a-assisted RT-LAMP/AuNP (CLAP) assay for rapid and sensitive detection of SARS-CoV-2. In optimal condition, we could detect down to 4 copies/µL of SARS-CoV-2 RNA in 40 min. by naked eye. The sequence-specific recognition character of CRISPR/Cas12a enables CLAP a superior specificity. More importantly, the CLAP is easy for operation that can be extended to high-throughput test by using a common microplate reader. The CLAP assay holds a great potential to be applied in airports, railway stations, or low-resource settings for screening of suspected people. To the best of our knowledge, this is the first AuNP-based colorimetric assay coupled with Cas12 and RT-LAMP for on-site diagnosis of COVID-19. We expect CLAP assay will improve the current COVID-19 screening efforts, and make contribution for control and mitigation of the pandemic.

7.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901196

RESUMO

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

8.
Acta Odontol Scand ; 79(2): 112-117, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32730717

RESUMO

OBJECTIVE: Viability of periodontal ligament fibroblast cells (PDFC) is one of the key factors in determining the success of replantation of avulsed teeth. Extra-oral time and transport media are closely related to the same. The present study aims to evaluate and compare the efficiency of Cornisol, Hank's balanced salt solution (HBSS) and normal saline in preserving the viability of PDFC. MATERIALS AND METHODS: The human PDFC were isolated from primary culture from freshly extracted human premolars. Effect of Cornisol, HBSS and normal saline on viability of isolated PDFC was assessed using standard MTT assay. The cells were exposed to the experimental solutions (Cornisol/HBSS/normal saline) for varying time points (30 min, 1 h, 24 h, 48 h and 96 h) and viability was determined by colorimetric MTT method by quantifying the amount of formazan crystal formed (optical density). Experiment was performed in triplicates and the data were subjected to statistical analysis. RESULTS: Statistical analysis was performed using the Kruskal-Wallis ANOVA with post hoc Bonferroni's test with a significance level of p value ≤.05. Cornisol ≥ HBSS > saline. CONCLUSION: Cornisol can be used as a storage media for avulsed teeth and is significantly more effective than HBSS in maintaining the periodontal ligament cell viability at tested time intervals.


Assuntos
Soluções para Preservação de Órgãos , Avulsão Dentária , Animais , Sobrevivência Celular , Fibroblastos , Humanos , Leite , Ligamento Periodontal
9.
Saudi Pharm J ; 29(5): 361-368, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34135662

RESUMO

Commiphora myrrha (Nees) Engl. (C. myrrha) resin is the most Middle Eastern herbal medicine used against numerous diseases. After being decocted or macerated, this resin is widely consumed among Saudi Arabian patients who are already under prescribed medication. Despite its popularity, no studies have been reported on potential modulation effects of these resin extracts on drug metabolism. Therefore, we studied C. myrrha resin extracts on the expression of cytochrome P450 (CYP) drug-metabolizing isoenzyme in human hepatocellular carcinoma cell line HepG2. The C. myrrha extracts were prepared by sonication and boiling, resembling the most popular traditional preparations of maceration and decoction, respectively. Both boiled and sonicated aqueous extracts were fingerprinted using high-performance liquid chromatography equipped with ultra-violet detector (HPLC-UVD). The viability of HepG2 cells treated with these aqueous extracts was determined using CellTiter-Glo® assay in order to select the efficient and non-toxic resin extract concentrations for phase-I metabolic CYP isoenzyme expression analysis. The isoenzyme gene and protein expression levels of CYP 2C8, 2C9, 2C19, and 3A4 were assessed using reverse transcription-quantitative polymerase chain reaction and Western blot technologies. The HPLC-UVD fingerprinting revealed different chromatograms for C. myrrha boiled and sonicated aqueous extracts. Both aqueous extracts were toxic to HepG2 cells when tested at concentrations exceeding 150 µg/ml of the dry crude extract. The CYP 2C8, 2C9, and 2C19 mRNA expression levels increased up to 4.0-fold in HepG2 cells treated with either boiled or sonicated C. myrrha aqueous extracts tested between 1 and 30 µg/ml, as compared with the untreated cells. However, CYP3A4 mRNA expression level exceeded the 2.0-fold cutoff when the cells were exposed to 30 µg/ml of C. myrrha extracts. The up-regulation of CYP mRNA expression levels induced by both boiled and sonicated C. myrrha aqueous extracts was confirmed at the CYP protein expression levels. In conclusion, both sonicated and boiled C. myrrha aqueous extracts modulate CYP 2C8, 2C9, 2C19, and 3A4 gene expression at clinically-relevant concentrations regardless of preparation methods. Further in vitro and in vivo experiments are required for CYP isoenzyme activity assessment and the establishment of herb-drug interaction profile for these traditional medicinal resin extracts.

10.
Saudi Pharm J ; 29(8): 857-873, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34408546

RESUMO

BACKGROUND: Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). METHODS: CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. RESULTS: CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an 'initial burst effect' followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. CONCLUSION: The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.

11.
Saudi Pharm J ; 29(9): 1061-1069, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34588851

RESUMO

The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.

12.
Saudi Pharm J ; 29(12): 1405-1415, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35002378

RESUMO

Icariin is commonly used for the clinical treatment of osteonecrosis of the femoral head (ONFH). miR-23a-3p plays a vital role in regulating the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). The present study aimed to investigate the roles of icariin and miR-23a-3p in the osteogenic differentiation of BMSCs and an ONFH model. BMSCs were isolated and cultured in vitro using icariin-containing serum at various concentrations, and BMSCs were also transfected with a miR-23a inhibitor. The alkaline phosphatase (ALP) activity and cell viability as well as BMP-2/Smad5/Runx2 and WNT/ß-catenin pathway-related mRNA and protein expression were measured in BMSCs. Additionally, a dual-luciferase reporter assay and pathway inhibitors were used to verify the relationship of icariin treatment/miR-23a and the above pathways. An ONFH rat model was established in vivo, and a 28-day gavage treatment and lentivirus transfection of miR-23a-3p inhibitor were performed. Then, bone biochemical markers (ELISA kits) in serum, femoral head (HE staining and Digital Radiography, DR) and the above pathway-related proteins were detected. Our results revealed that icariin treatment/miR-23a knockdown promoted BMSC viability and osteogenic differentiation as well as increased the mRNA and protein expression of BMP-2, BMP-4, Runx2, p-Smad5, Wnt1 and ß-catenin in BMSCs and ONFH model rats. In addition, icariin treatment/miR-23a knockdown increased bone biochemical markers (ACP-5, BAP, NTXI, CTXI and OC) and improved ONFH in ONFH model rats. In addition, a dual-luciferase reporter assay verified that Runx2 was a direct target of miR-23a-3p. These data indicated that icariin promotes BMSC viability and osteogenic differentiation as well as improves ONFH by decreasing miR-23a-3p levels and regulating the BMP-2/Smad5/Runx2 and WNT/ß-catenin pathways.

13.
J Cell Physiol ; 234(6): 7718-7724, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515823

RESUMO

Serum starvation is a widely used condition in molecular biology experiments. Opti-MEM is a serum-reduced media used during transfection of genetic molecules into mammalian cells. However, the impact of such media on cell viability and protein synthesis is unknown. A549 human lung epithelial cell viability and morphology were adversely affected by growing in Opti-MEM. The cellular protein levels of chloride intracellular channel protein 1, proteasome subunit alpha Type 2, and heat shock 70 kDa protein 5 were dysregulated in A549 cells after growing in serum-reduced media. Small interfering RNA transfection was done in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum, and knockdown efficacy was determined compared with Opti-MEM. Similar amounts of knockdown of the target proteins were achieved in DMEM, and cell viability was higher compared with Opti-MEM after transfection. Careful consideration of the impact of Opti-MEM media during the culture or transfection is important for experimental design and results interpretation.


Assuntos
Sobrevivência Celular/fisiologia , Meios de Cultura , Células Epiteliais/citologia , Pulmão/citologia , Células A549 , Contagem de Células/métodos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas/metabolismo , Humanos
14.
Exp Eye Res ; 181: 25-37, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653966

RESUMO

Epithelial wound healing is essential for maintaining the function and clarity of the cornea. Successful repair after injury involves the coordinated movements of cell sheets over the wounded region. While collective migration has been the focus of studies, the effects that environmental changes have on this form of movement are poorly understood. To examine the role of substrate compliancy on multi-layered epithelial sheet migration, we performed traction force and confocal microscopy to determine differences in traction forces and to examine focal adhesions on synthetic and biological substrates. The leading edges of corneal epithelial sheets undergo retraction or contraction prior to migration, and alterations in the sheet's stiffness are affected by the amount of force exerted by cells at the leading edge. On substrates of 30 kPa, cells exhibited greater and more rapid movement than on substrates of 8 kPa, which are similar to that of the corneal basement membrane. Vinculin and its phosphorylated residue Y1065 were prominent along the basal surface of migrating cells, while Y822 was prominent between neighboring cells along the leading edge. Vinculin localization was diffuse on a substrate where the basement membrane was removed. Furthermore, when cells were cultured on fibronectin-coated acrylamide substrates of 8 and 50 kPa and then wounded, there was an injury-induced phosphorylation of Y1065 and substrate dependent changes in the number and size of vinculin containing focal adhesions. These results demonstrate that changes in substrate stiffness affected traction forces and vinculin dynamics, which potentially could contribute to the delayed healing response associated with certain corneal pathologies.


Assuntos
Células Epiteliais/fisiologia , Epitélio/fisiologia , Análise de Variância , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Córnea/fisiologia , Células Epiteliais/metabolismo , Humanos , Limbo da Córnea/citologia , Fosforilação , Vinculina/fisiologia
15.
Med Mycol ; 57(3): 374-383, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878229

RESUMO

We found that a large inoculum of Cryptococcus gattii cells, when plated on Dulbecco's modified eagle's medium (DMEM) incorporated into agar, died within a few hours provided that DMEM agar plates had been stored in darkness for approximately 3 days after preparation. Standard conditions were developed for quantification of killing. The medium lost its fungicidal activity when exposed to visible light of wave length ∼400 nm. The amount of energy required was estimated at 5.8 × 104 joules @ 550 nm. Liquid DMEM conditioned by incubation over DMEM agar plates stored in darkness was fungicidal. We found that fungicidal activity was heat-stable (100°C). Dialysis tubing with MWC0 < 100 Daltons retained fungicidal activity. Neutral pH was required. Strains of Cryptococcus were uniformly sensitive, but some Candida species were resistant. Components of DMEM required for killing were pyridoxal and cystine. Micromolar amounts of iron shortened the time required for DMEM agar plates to become fungicidal when stored in the dark. Organic and inorganic compounds bearing reduced sulfur atoms at millimolar concentrations inhibited fungicidal activity. Our results point to a light-sensitive antifungal compound formed by reaction of pyridoxal with cystine possibly by Schiff base formation.


Assuntos
Antifúngicos/farmacologia , Cryptococcus/efeitos dos fármacos , Cryptococcus/efeitos da radiação , Meios de Cultura/química , Luz , Ágar/química , Cryptococcus/crescimento & desenvolvimento , Cistina/farmacologia , Concentração de Íons de Hidrogênio , Piridoxal/farmacologia , Bases de Schiff/química
16.
Biosci Biotechnol Biochem ; 82(4): 689-697, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29165050

RESUMO

The genus Bifidobacterium is well known to have beneficial health effects. We discovered that quercetin and related polyphenols enhanced the secretion of anti-inflammatory substances by Bifidobacterium adolescentis. This study investigated characteristics of the anti-inflammatory substances secreted by B. adolescentis. The culture supernatant of B. adolescentis with quercetin reduced the levels of inflammatory mediators in activated macrophages. Spontaneous quercetin degradant failed to increase anti-inflammatory activity, while the enhancement of anti-inflammatory activity by quercetin was sustained after washout of quercetin. Physicochemical treatment of the culture supernatant indicated that its bioactive substances may be heat-stable, non-phenolic, and acidic biomolecules with molecular weights less than 3 kDa. Acetate and lactate have little or no effect on nitric oxide production. Taken together, the anti-inflammatory substances secreted by B. adolescentis may be small molecules but not short chain fatty acids. In agreement with these findings, stearic acid was tentatively identified as a bioactive candidate compound.


Assuntos
Anti-Inflamatórios/farmacologia , Bifidobacterium adolescentis/efeitos dos fármacos , Alimento Funcional , Quercetina/farmacologia , Acetatos/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Bifidobacterium adolescentis/metabolismo , Western Blotting , Linhagem Celular , Cromatografia Líquida , Meios de Cultura , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lactatos/metabolismo , Lipopolissacarídeos/farmacologia , Espectrometria de Massas , Camundongos , Peso Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Ácidos Esteáricos/farmacologia
17.
Biosci Biotechnol Biochem ; 82(5): 800-809, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29452534

RESUMO

Dry eye syndrome (DES) is considered as an ocular surface inflammatory disease. Previous studies have shown inflammation plays an important role in the progression and onset of DES. Co-culture of human bone marrow mesenchymal stem cells (HBMSCs) and macrophages showed immunomodulatory effects via regulation of cytokine regulation. Thus, the aim of this study was to investigate the effect of the interaction of these cells on in vitro DES model. The conditioned media (CM) from macrophages, HBMSCs, and HBMSCs + macrophages were treated to human corneal epithelial cells, which showed significant reduction in IL-1α and IL-1ß expression levels in HBMSCs + macrophages group. Moreover, the IL-1 Receptor Antagonist (IL-1RA) was highly expressed in the CM from the HBMSCs + macrophages group. Wounded eyes of mice were treated with IL-1RA at 0-100 ng/mL for 16 h, the wound size was reduced. The results of this study might lead to the identification of new therapeutic targets for DES.


Assuntos
Células da Medula Óssea/citologia , Epitélio Corneano/efeitos dos fármacos , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia em Gel , Técnicas de Cocultura , Meios de Cultivo Condicionados , Epitélio Corneano/patologia , Humanos , Inflamação/induzido quimicamente , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Espectrometria de Massas em Tandem , Acetato de Tetradecanoilforbol/farmacologia , Cicatrização/efeitos dos fármacos
18.
Proc Natl Acad Sci U S A ; 112(20): E2725-34, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25870293

RESUMO

Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro.


Assuntos
Encéfalo/fisiologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Humanos , Técnicas In Vitro , Neurônios/metabolismo , Técnicas de Patch-Clamp
19.
Toxicol Mech Methods ; 28(2): 115-121, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28826359

RESUMO

Acrolein is a reactive α,ß-unsaturated aldehyde known for its adduction to endogenous biomolecules, resulting in initiation or exacerbation of several disease pathways. In-vitro systems are routinely used to elucidate the cytotoxic or mechanistic role(s) of acrolein in pathogenesis. Nevertheless, the half-life of acrolein in biological or in-vitro systems, e.g. blood or culture media, has not been well characterized. Since in-vitro cytotoxic and mechanistic investigations routinely expose cultures to acrolein from 1 hour to 72 hours, we aimed to characterize the half-life of acrolein in culture medium to ascertain the plausible exposure window. Half-life determinations were conducted in low-serum DMEM at room temperature and 37 °C, both with and without H9c2 cells. For quantitative assessment, acrolein was derivatized to a fluorescent 7-hydroxyquinoline method validated in-house and assessed via fluorescent spectroscopy. In closed vessel experiments at room temperature, acrolein in DMEM was reduced by more than 40% at 24 hours, irrespective of the initial concentration. Expectedly, open vessel experiments demonstrated accelerated depletion over time at room temperature, and faster still at 37 °C. The presence of cells tended to further accelerate degradation by an additional 15-30%, depending on temperature. These results undermine described experimental exposure conditions stated in most in-vitro experiments. Recognition of this discrepancy between stated and actual exposure metrics warrant examination of novel alternative objective and representative exposure characterization for in-vitro studies to facilitate translation to in-vivo and in-silico methods.


Assuntos
Acroleína/análise , Acroleína/química , Animais , Linhagem Celular , Sobrevivência Celular , Meios de Cultura/análise , Meia-Vida , Hidroxiquinolinas/química , Limite de Detecção , Mioblastos Cardíacos/efeitos dos fármacos , Ratos , Espectrometria de Fluorescência
20.
Saudi Pharm J ; 26(3): 311-322, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29556122

RESUMO

Cancer is one of the biggest problems in public health worldwide. Plants have been shown important role in anticancer research. Viscum album L. (Santalaceae), commonly known as mistletoe, is a semi-parasitic plant that grows on different host trees. In complementary medicine, extracts from European mistletoe (Viscum album L.) have been used in the treatment of cancer. The study was conducted to identify chemical composition and antitumor potential of Viscum album tinctures. Chemical analysis performed by high resolution chromatography equipped with high resolution mass spectrometer identified caffeic acid, chlorogenic acid, sakuranetin, isosakuranetin, syringenin 4-O-glucoside, syringenin 4-O-apiosyl-glucoside, alangilignoside C and ligalbumoside A compounds. Some of these compounds are probably responsible for the reduction of tumoral cellular growth in a dose-dependent manner. It was observed that melanoma murine cells (B16F10) were more sensitive to V. album tinctures than human leukaemic cells (K562), besides non-tumoral cells (MA-104) had a much lower cytotoxicity to them. Apoptotic-like cells were observed under light microscopy and were confirmed by a typical DNA fragmentation pattern. Additionally, flow cytometry results using Annexin-V/FITC permitted to quantify increased expression of early and late apoptotic markers on tumoral cells, confirming augmented Sub G0 population, which was probably associated with a consistent decrease in G1, and an increase in S or G2/M populations. Results indicate the chemical composition of V. album tinctures influences the mechanisms of in vitro tumoral cell death, suggesting a potential use in cancer pharmacotherapy research.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa