Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 319(3): E509-E518, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663097

RESUMO

Dimethylguanidino valeric acid (DMGV) is a marker of fatty liver disease, incident coronary artery disease, cardiovascular mortality, and incident diabetes. Recently, it was reported that circulating DMGV levels correlated positively with consumption of sugary beverages and negatively with intake of fruits and vegetables in three Swedish community-based cohorts. Here, we validate these results in the Framingham Heart Study Third Generation Cohort. Furthermore, in mice, diets rich in sucrose or fat significantly increased plasma DMGV concentrations. DMGV is the product of metabolism of asymmetric dimethylarginine (ADMA) by the hepatic enzyme AGXT2. ADMA can also be metabolized to citrulline by the cytoplasmic enzyme DDAH1. We report that a high-sucrose diet induced conversion of ADMA exclusively into DMGV (supporting the relationship with sugary beverage intake in humans), while a high-fat diet promoted conversion of ADMA to both DMGV and citrulline. On the contrary, replacing dietary native starch with high-fiber-resistant starch increased ADMA concentrations and induced its conversion to citrulline, without altering DMGV concentrations. In a cohort of obese nondiabetic adults, circulating DMGV concentrations increased and ADMA levels decreased in those with either liver or muscle insulin resistance. This was similar to changes in DMGV and ADMA concentrations found in mice fed a high-sucrose diet. Sucrose is a disaccharide of glucose and fructose. Compared with glucose, incubation of hepatocytes with fructose significantly increased DMGV production. Overall, we provide a comprehensive picture of the dietary determinants of DMGV levels and association with insulin resistance.


Assuntos
Biomarcadores/metabolismo , Guanidinas/metabolismo , Cardiopatias/metabolismo , Doenças Metabólicas/metabolismo , Valeratos/metabolismo , Adulto , Amidoidrolases/metabolismo , Animais , Bebidas Gaseificadas , Citrulina/metabolismo , Dieta , Gorduras na Dieta/farmacologia , Humanos , Resistência à Insulina , Fígado/enzimologia , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Sacarose/farmacologia , Transaminases/metabolismo
2.
Nephrol Dial Transplant ; 29(11): 2035-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25002409

RESUMO

BACKGROUND: Asymmetric and symmetric dimethylarginines (ADMA and SDMA) predict complications and mortality in cardiovascular and renal diseases. Alanine:glyoxylate aminotransferase 2 (AGXT2) can metabolize both ADMA and SDMA; however, this metabolic pathway is still poorly understood. The goal of our study was to test the hypothesis that AGXT2 is compensatory upregulated in the settings of ADMA overload and bilateral nephrectomy. METHODS: ADMA was infused for 3 days using osmotic minipumps in mice. Half of the mice underwent bilateral nephrectomy 24 h before the end of the infusion. RESULTS: Infusion of ADMA caused a 3- to 4-fold increase in plasma and urine ADMA levels and a 2- to 3-fold increase in plasma and urine levels of the ADMA-specific metabolite of AGXT2 α-keto-δ-(N,N-dimethylguanidino)valeric acid (DMGV). Bilateral nephrectomy led to an ∼4-fold increase of plasma SDMA levels, but did not change plasma ADMA levels. Interestingly, plasma levels of DMGV were elevated 32-fold in the mice, which underwent bilateral nephrectomy. Neither bilateral nephrectomy nor ADMA infusion caused upregulation of AGXT2 expression or activity. CONCLUSIONS: Our data demonstrate that short-term elevation of systemic levels of ADMA leads to a dramatic increase of DMGV formation without upregulation of AGXT2 expression or activity, which suggests that AGXT2-mediated pathway of ADMA metabolism is not saturated under normal conditions and may play a major role in the maintenance of ADMA homeostasis in the setting of local or systemic elevation of ADMA levels.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Alanina/fisiologia , Arginina/análogos & derivados , Nefrectomia , Transaminases/biossíntese , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Arginina/administração & dosagem , Arginina/farmacocinética , Biomarcadores/sangue , Biomarcadores/urina , Western Blotting , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Regulação da Expressão Gênica , Infusões Intravenosas , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Transaminases/genética
3.
Front Immunol ; 13: 918241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990633

RESUMO

Activated effector T cells (Teff) and/or compromised regulatory T cells (Treg) underlie many chronic inflammatory diseases. We discovered a novel pathway to regulate survival and expansion of Teff without compromising Treg survival and a potential therapeutic to treat these diseases. We found dimethylguanidino valeric acid (DMGV) as a rheostat for Teff survival: while cell-intrinsic DMGV generated by Alanine-Glyoxylate Aminotransferase 2 (AGXT2) is essential for survival and expansion by inducing mitochondrial ROS and regulation of glycolysis, an excessive (or exogenous) DMGV level inhibits activated Teff survival, thereby the AGXT2-DMGV-ROS axis functioning as a switch to turn on and off Teff expansion. DMGV-induced ROS is essential for glycolysis in Teff, and paradoxically DMGV induces ROS only when glycolysis is active. Mechanistically, DMGV rapidly activates mitochondrial calcium uniporter (MCU), causing a surge in mitochondrial Ca2+ without provoking calcium influx to the cytosol. The mitochondrial Ca2+ surge in turn triggers the mitochondrial Na+/Ca2+ exchanger (NCLX) and the subsequent mitochondrial Na+ import induces ROS by uncoupling the Coenzyme Q cycle in Complex III of the electron transport chain. In preclinical studies, DMGV administration significantly diminished the number of inflammatory T cells, effectively suppressing chronic inflammation in mouse models of colitis and rheumatoid arthritis. DMGV also suppressed expansion of cancer cells in vitro and in a mouse T cell leukemic model by the same mechanism. Our data provide a new pathway regulating T cell survival and a novel mode to treat autoimmune diseases and cancers.


Assuntos
Guanidinas , Inflamação , Cetoácidos , Neoplasias , Linfócitos T , Transaminases , Animais , Cálcio/metabolismo , Sobrevivência Celular/genética , Guanidinas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/genética , Cetoácidos/uso terapêutico , Camundongos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Linfócitos T/fisiologia , Transaminases/genética
4.
Metabolites ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34822417

RESUMO

Bariatric surgery improves obesity-related comorbidities. Methylarginines are biomarkers of cardiometabolic risk, liver steatosis, and insulin resistance. Here, we aimed to investigate methylarginines in obese patients undergoing bariatric surgery and compared them to age- and sex-matched healthy subjects. Thirty-one obese patients who underwent bariatric surgery and 31 healthy individuals were used for this retrospective study. The basal serum methylarginine levels were determined in the healthy individuals and the obese patients, before surgery and 6 and 12 months after surgery, by mass spectrometry. Compared with the healthy individuals, the obese patients displayed elevated monomethylarginine (mean change: +95%, p < 0.001), asymmetric-dimethylarginine (+105%, p < 0.001), symmetric-dimethylarginine (+25%, p = 0.003), and dimethylguanidino valerate (+32%, p = 0.008) concentrations. Bariatric surgery durably reduced the body mass index by 28% (12 months, 95%CI: 24-33, p = 0.002) and improved plasma lipids, insulin resistance, and liver function. Bariatric surgery reduced the serum levels of monomethylarginine and asymmetric-dimethylarginine by 12% (95%CI: 6-17) and 36% (95%CI: 27-45) (12 months, p = 0.003), respectively, but not symmetric-dimethylarginine or dimethylguanidino valerate. The monomethylarginine and asymmetric-dimethylarginine concentrations were strongly correlated with markers of dyslipidemia, insulin resistance, and a fatty liver. Serum dimethylguanidino valerate was primarily correlated with glycemia and renal function, whereas serum symmetric-dimethylarginine was almost exclusively associated with renal function. In conclusion, the monomethylarginine and asymmetric-dimethylarginine levels are efficiently decreased by bariatric surgery, leading to a reduced atherogenic profile in obese patients. Methylarginines follow different metabolic patterns, which could help for the stratification of cardiometabolic disorders in obese patients.

5.
Pharmacol Ther ; 140(3): 239-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23859953

RESUMO

Nitric oxide (NO) is synthetized enzymatically from l-arginine (l-Arg) by three NO synthase isoforms, iNOS, eNOS and nNOS. The synthesis of NO is selectively inhibited by guanidino-substituted analogs of l-Arg or methylarginines such as asymmetric dimethylarginine (ADMA), which results from protein degradation in cells. Many disease states, including cardiovascular diseases and diabetes, are associated with increased plasma levels of ADMA. The N-terminal catalytic domain of these NOS isoforms binds the heme prosthetic group as well as the redox cofactor, tetrahydrobiopterin (BH(4)) associated with a regulatory protein, calmodulin (CaM). The enzymatic activity of NOS depends on substrate and cofactor availability. The importance of BH(4) as a critical regulator of eNOS function suggests that BH(4) may be a rational therapeutic target in vascular disease states. BH(4) oxidation appears to be a major contributor to vascular dysfunction associated with hypertension, ischemia/reperfusion injury, diabetes and other cardiovascular diseases as it leads to the increased formation of oxygen-derived radicals due to NOS uncoupling rather than NO. Accordingly, abnormalities in vascular NO production and transport result in endothelial dysfunction leading to various cardiovascular disorders. However, some disorders including a wide range of functions in the neuronal, immune and cardiovascular system were associated with the over-production of NO. Inhibition of the enzyme should be a useful approach to treat these pathologies. Therefore, it appears that both a lack and excess of NO production in diseases can have various important pathological implications. In this context, NOS modulators (exogenous and endogenous) and their therapeutic effects are discussed.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Óxido Nítrico Sintase/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa