RESUMO
Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.
Assuntos
RNA , Grânulos de Estresse , Citoplasma , RNA Mensageiro/genética , Estresse Fisiológico , Humanos , Células HeLaRESUMO
While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.
Assuntos
Apoptose , Dano ao DNA , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Apoptose/efeitos da radiação , Fosforilação/efeitos da radiação , Humanos , Transdução de Sinais/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/efeitos da radiação , Ribossomos/metabolismo , Morte Celular/efeitos da radiaçãoRESUMO
The genome duplication program is affected by multiple factors in vivo, including developmental cues, genotoxic stress, and aging. Here, we monitored DNA replication initiation dynamics in regenerating livers of young and old mice after partial hepatectomy to investigate the impact of aging. In young mice, the origin firing sites were well defined; the majority were located 10-50 kb upstream or downstream of expressed genes, and their position on the genome was conserved in human cells. Old mice displayed the same replication initiation sites, but origin firing was inefficient and accompanied by a replication stress response. Inhibitors of the ATR checkpoint kinase fully restored origin firing efficiency in the old mice but at the expense of an inflammatory response and without significantly enhancing the fraction of hepatocytes entering the cell cycle. These findings unveil aging-dependent replication stress and a crucial role of ATR in mitigating the stress-associated inflammation, a hallmark of aging.
Assuntos
Envelhecimento , Proteínas Mutadas de Ataxia Telangiectasia , Replicação do DNA , Animais , Camundongos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Dano ao DNA , Hepatócitos/metabolismo , Fígado/metabolismo , Origem de Replicação , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , MasculinoRESUMO
There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.
Assuntos
Proteína Morfogenética Óssea 2 , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Melanoma , Microambiente Tumoral , Animais , Masculino , Camundongos , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Feminino , Humanos , Linhagem Celular Tumoral , Proteína Morfogenética Óssea 2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Fibroblastos/metabolismo , Invasividade Neoplásica , Receptor Tirosina Quinase Axl , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Senescência Celular , Caracteres Sexuais , Proliferação de Células , Envelhecimento , Camundongos Endogâmicos C57BLRESUMO
We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from â¼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.
Assuntos
Sistemas CRISPR-Cas , Cromatina , Epigênese Genética , Edição de Genes , Humanos , Cromatina/metabolismo , Cromatina/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Código das HistonasRESUMO
DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.
Assuntos
Reparo do DNA , Poli(ADP-Ribose) Polimerase-1 , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , HumanosRESUMO
Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.
Assuntos
Antígeno B7-H1 , DNA Helicases , Imunidade Inata , Melanoma , Evasão Tumoral , Animais , Camundongos , Antígeno B7-H1/metabolismo , Instabilidade Genômica , Melanoma/imunologia , Melanoma/metabolismo , DNA Helicases/metabolismoRESUMO
In this autobiographical article, I reflect on my Swedish background. Then I discuss endogenous DNA alterations and the base excision repair pathway and alternative repair strategies for some unusual DNA lesions. Endogenous DNA damage, such as loss of purine bases and cytosine deamination, is proposed as a major source of cancer-causing mutations.
Assuntos
DNA Glicosilases , Reparo do DNA , Dano ao DNA , DNA/genética , DNA/metabolismo , DNA Glicosilases/metabolismoRESUMO
Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.
Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Acetilação , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteômica/métodosRESUMO
All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.
Assuntos
Envelhecimento , Epigênese Genética , Animais , Envelhecimento/genética , Metilação de DNA , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genéticaRESUMO
Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding É-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.
Assuntos
Centrômero , Técnicas Genéticas , Humanos , Aneuploidia , Centrômero/genética , Deleção Cromossômica , Neoplasias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente EspaçadasRESUMO
Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.
Assuntos
Doença de Alzheimer , Encéfalo , Idoso , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Disfunção Cognitiva/metabolismo , Neurônios/metabolismoRESUMO
In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)-2'3'-cyclic GMP-AMP (cGAMP)-stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which thecGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases.
Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , DNA/genética , Humanos , Imunidade Inata/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/genéticaRESUMO
Understanding the functional consequences of single-nucleotide variants is critical to uncovering the genetic underpinnings of diseases, but technologies to characterize variants are limiting. Here, we leverage CRISPR-Cas9 cytosine base editors in pooled screens to scalably assay variants at endogenous loci in mammalian cells. We benchmark the performance of base editors in positive and negative selection screens, identifying known loss-of-function mutations in BRCA1 and BRCA2 with high precision. To demonstrate the utility of base editor screens to probe small molecule-protein interactions, we screen against BH3 mimetics and PARP inhibitors, identifying point mutations that confer drug sensitivity or resistance. We also create a library of single guide RNAs (sgRNAs) predicted to generate 52,034 ClinVar variants in 3,584 genes and conduct screens in the presence of cellular stressors, identifying loss-of-function variants in numerous DNA damage repair genes. We anticipate that this screening approach will be broadly useful to readily and scalably functionalize genetic variants.
Assuntos
Edição de Genes , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Proteína BRCA1/genética , Proteína BRCA2/genética , Sequência de Bases , Domínio Catalítico , Linhagem Celular Tumoral , Humanos , Mutação com Perda de Função , Mutagênese/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Mutação Puntual/genética , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Reprodutibilidade dos Testes , Seleção Genética , Proteína bcl-X/genéticaRESUMO
Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.
Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.
Assuntos
Dano ao DNA , Edição de Genes , Testes Genéticos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Camptotecina/farmacologia , Linhagem Celular , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Humanos , Mutação/genética , Fenótipo , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , Inibidores da Topoisomerase/farmacologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
In response to transcription-blocking DNA damage, cells orchestrate a multi-pronged reaction, involving transcription-coupled DNA repair, degradation of RNA polymerase II (RNAPII), and genome-wide transcription shutdown. Here, we provide insight into how these responses are connected by the finding that ubiquitylation of RNAPII itself, at a single lysine (RPB1 K1268), is the focal point for DNA-damage-response coordination. K1268 ubiquitylation affects DNA repair and signals RNAPII degradation, essential for surviving genotoxic insult. RNAPII degradation results in a shutdown of transcriptional initiation, in the absence of which cells display dramatic transcriptome alterations. Additionally, regulation of RNAPII stability is central to transcription recovery-persistent RNAPII depletion underlies the failure of this process in Cockayne syndrome B cells. These data expose regulation of global RNAPII levels as integral to the cellular DNA-damage response and open the intriguing possibility that RNAPII pool size generally affects cell-specific transcription programs in genome instability disorders and even normal cells.
Assuntos
Dano ao DNA , RNA Polimerase II/metabolismo , Reparo do DNA , Células HEK293 , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ubiquitinação , Raios UltravioletaRESUMO
The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.
Assuntos
Dano ao DNA , Redes Reguladoras de Genes/fisiologia , Aminoquinolinas/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Ácidos Picolínicos/farmacologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genéticaRESUMO
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
Assuntos
Meio Ambiente Extraterreno , Voo Espacial , Astronautas , Saúde , Humanos , Microbiota , Fatores de RiscoRESUMO
Strategies for installing authentic ADP-ribosylation (ADPr) at desired positions are fundamental for creating the tools needed to explore this elusive post-translational modification (PTM) in essential cellular processes. Here, we describe a phospho-guided chemoenzymatic approach based on the Ser-ADPr writer complex for rapid, scalable preparation of a panel of pure, precisely modified peptides. Integrating this methodology with phage display technology, we have developed site-specific as well as broad-specificity antibodies to mono-ADPr. These recombinant antibodies have been selected and characterized using multiple ADP-ribosylated peptides and tested by immunoblotting and immunofluorescence for their ability to detect physiological ADPr events. Mono-ADPr proteomics and poly-to-mono comparisons at the modification site level have revealed the prevalence of mono-ADPr upon DNA damage and illustrated its dependence on PARG and ARH3. These and future tools created on our versatile chemical biology-recombinant antibody platform have broad potential to elucidate ADPr signaling pathways in health and disease.