RESUMO
SWI/SNF-family remodelers (BAF/PBAF in mammals) are essential chromatin regulators, and mutations in human BAF/PBAF components are associated with â¼20% of cancers. Cancer-associated missense mutations in human BRG1 (encoding the catalytic ATPase) have been characterized previously as conferring loss-of-function. Here, we show that cancer-associated missense mutations in BRG1, when placed into the orthologous Sth1 ATPase of the yeast RSC remodeler, separate into two categories: loss-of-function enzymes, or instead, gain-of-function enzymes that greatly improve DNA translocation efficiency and nucleosome remodeling in vitro. Our work identifies a structural "hub," formed by the association of several Sth1 domains, that regulates ATPase activity and DNA translocation efficiency. Remarkably, all gain-of-function cancer-associated mutations and all loss-of-function mutations physically localize to distinct adjacent regions in the hub, which specifically regulate and implement DNA translocation, respectively. In vivo, only gain-of-function cancer-associated mutations conferred precocious chromatin accessibility. Taken together, we provide a structure-function mechanistic basis for cancer-associated hyperactivity.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Mutação com Ganho de Função , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/genética , Proteínas Nucleares/genética , Nucleossomos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Translocação GenéticaRESUMO
Transcription factors normally regulate gene expression through their action at sites where they bind to DNA. However, the balance of activating and repressive functions that a transcription factor can mediate is not completely understood. Here, we showed that the transcription factor PU.1 regulated gene expression in early T cell development both by recruiting partner transcription factors to its own binding sites and by depleting them from the binding sites that they preferred when PU.1 was absent. The removal of partner factors Satb1 and Runx1 occurred primarily from sites where PU.1 itself did not bind. Genes linked to sites of partner factor "theft" were enriched for genes that PU.1 represses despite lack of binding, both in a model cell line system and in normal T cell development. Thus, system-level competitive recruitment dynamics permit PU.1 to affect gene expression both through its own target sites and through action at a distance.
Assuntos
Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Linfopoese/fisiologia , Proteínas Proto-Oncogênicas/imunologia , Linfócitos T/imunologia , Transativadores/imunologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/imunologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Linfopoese/imunologia , Proteínas de Ligação à Região de Interação com a Matriz/imunologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismoRESUMO
Over 85% of all genomic DNA in eukaryotes is organized in arrays of nucleosomes, the basic organizational principle of chromatin. The tight interaction of DNA with histones represents a significant barrier for all DNA-dependent machineries. This is in part overcome by enzymes, termed ATP-dependent remodelers, that are recruited to nucleosomes at defined locations and modulate their structure. There are several different classes of remodelers, and all use specific nucleosome features to bind to and alter nucleosomes. This review highlights and summarizes areas of interactions with the nucleosome that allow remodeling to occur.
Assuntos
DNA/metabolismo , Nucleossomos/metabolismo , RNA/metabolismo , Reparo do DNA , Replicação do DNARESUMO
Sequential 3'-to-5' activation of the Hox gene clusters in early embryos is a most fascinating issue in developmental biology. Neither the trigger nor the regulatory elements involved in the transcriptional initiation of the 3'-most Hox genes have been unraveled in any organism. We demonstrate that a series of enhancers, some of which are Wnt-dependent, is located within a HoxA 3' subtopologically associated domain (subTAD). This subTAD forms the structural basis for multiple layers of 3'-polarized features, including DNA accessibility and enhancer activation. Deletion of the cassette of Wnt-dependent enhancers proves its crucial role in initial transcription of HoxA at the 3' side of the cluster.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ativação Transcricional/genética , Proteínas Wnt/metabolismo , Animais , Embrião de Mamíferos , Elementos Facilitadores Genéticos/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Wnt/genéticaRESUMO
Cdx and Hox transcription factors are important regulators of axial patterning and are required for tissue generation along the vertebrate body axis. Cdx genes have been demonstrated to act upstream of Hox genes in midgestation embryos. Here, we investigate the role of Cdx transcription factors in the gradual colinear activation of the Hox clusters. We found that Hox temporally colinear expression is severely affected in epiblast stem cells derived from Cdx null embryos. We demonstrate that after initiation of 3' Hox gene transcription, Cdx activity is crucial for H3K27ac deposition and for accessibility of cis-regulatory elements around the central - or 'trunk' - Hox genes. We thereby identify a Cdx-responsive segment of HoxA, immediately 5' to the recently defined regulatory domain orchestrating initial transcription of the first Hox gene. We propose that this partition of HoxA into a Wnt-driven 3' part and the newly found Cdx-dependent middle segment of the cluster, forms a structural fundament of Hox colinearity of expression. Subsequently to initial Wnt-induced activation of 3' Hox genes, Cdx transcription factors would act as crucial effectors for activating central Hox genes, until the last gene of the cluster arrests the process.
Assuntos
Fator de Transcrição CDX2/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Ativação Transcricional/genética , Via de Sinalização Wnt/genética , Acetilação , Animais , Padronização Corporal/genética , Fator de Transcrição CDX2/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Genes Homeobox/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Família Multigênica/genética , Sequências Reguladoras de Ácido Nucleico/genéticaRESUMO
BACKGROUND: Proper expression of key reproductive hormones from gonadotrope cells of the pituitary is required for pubertal onset and reproduction. To further our understanding of the molecular events taking place during embryonic development, leading to expression of the glycoproteins luteinizing hormone (LH) and follicle-stimulating hormone (FSH), we characterized chromatin structure changes, imparted mainly by histone modifications, in model gonadotrope cell lines. METHODS: We evaluated chromatin status and gene expression profiles by chromatin immunoprecipitation assays, DNase sensitivity assay, and RNA sequencing in three developmentally staged gonadotrope cell lines, αT1-1 (progenitor, expressing Cga), αT3-1 (immature, expressing Cga and Gnrhr), and LßT2 (mature, expressing Cga, Gnrhr, Lhb, and Fshb), to assess changes in chromatin status and transcription factor access of gonadotrope-specific genes. RESULTS: We found the common mRNA α-subunit of LH and FSH, called Cga, to have an open chromatin conformation in all three cell lines. In contrast, chromatin status of Gnrhr is open only in αT3-1 and LßT2 cells. Lhb begins to open in LßT2 cells and was further opened by activin treatment. Histone H3 modifications associated with active chromatin were high on Gnrhr in αT3-1 and LßT2, and Lhb in LßT2 cells, while H3 modifications associated with repressed chromatin were low on Gnrhr, Lhb, and Fshb in LßT2 cells. Finally, chromatin status correlates with the progressive access of LHX3 to Cga and Gnrhr, followed by PITX1 binding to the Lhb promoter. CONCLUSION: Our data show the gonadotrope-specific genes Cga, Gnrhr, Lhb, and Fshb are not only controlled by developmental transcription factors, but also by epigenetic mechanisms that include the modulation of chromatin structure, and histone modifications.
Assuntos
Cromatina/metabolismo , Gonadotrofos/metabolismo , Gonadotropinas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Gonadotropinas/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica , Transcrição GênicaRESUMO
Nucleosomes may undergo a conformational change in which a stretch of DNA peels off the histone octamer surface as a result of thermal fluctuations or interactions with chromatin remodelers. Thus, neighboring nucleosomes may invade each other's territories by DNA unwrapping and translocation, or through initial assembly in partially wrapped states. A recent high-resolution map of distances between dyads of neighboring nucleosomes in Saccharomyces cerevisiae reveals that nucleosomes frequently overlap DNA territories of their neighbors. This conclusion is supported by lower-resolution maps of S. cerevisiae nucleosome lengths based on micrococcal nuclease digestion and paired-end sequencing. The average length of wrapped DNA follows a stereotypical pattern in genes and promoters, correlated with the well-known distribution of nucleosome occupancy: nucleosomal DNA tends to be shorter in promoters and longer in coding regions. To explain these observations, we have developed a biophysical model that uses a 10-11-bp periodic histone-DNA binding energy profile. The profile is based on the pattern of histone-DNA contacts in nucleosome crystal structures, as well as the idea of linker length discretization caused by higher-order chromatin structure. Our model is in agreement with the observed genome-wide distributions of interdyad distances, wrapped DNA lengths, and nucleosome occupancies. Furthermore, our approach explains in vitro measurements of the accessibility of nucleosome-covered target sites and nucleosome-induced cooperativity between DNA-binding factors. We rule out several alternative scenarios of histone-DNA interactions as inconsistent with the genomic data.
Assuntos
Genoma Fúngico , Nucleossomos , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Histonas/metabolismoRESUMO
Nucleosome unwrapping dynamics provide transient access to the complexes involved in DNA transcription, repair, and replication, whereas regulation of nucleosome unwrapping modulates occupancy of these complexes. Histone H3 is phosphorylated at tyrosine 41 (H3Y41ph) and threonine 45 (H3T45ph). H3Y41ph is implicated in regulating transcription, whereas H3T45ph is involved in DNA replication and apoptosis. These modifications are located in the DNA-histone interface near where the DNA exits the nucleosome, and are thus poised to disrupt DNA-histone interactions. However, the impact of histone phosphorylation on nucleosome unwrapping and accessibility is unknown. We find that the phosphorylation mimics H3Y41E and H3T45E, and the chemically correct modification, H3Y41ph, significantly increase nucleosome unwrapping. This enhances DNA accessibility to protein binding by 3-fold. H3K56 acetylation (H3K56ac) is also located in the same DNA-histone interface and increases DNA unwrapping. H3K56ac is implicated in transcription regulation, suggesting that H3Y41ph and H3K56ac could function together. We find that the combination of H3Y41ph with H3K56ac increases DNA accessibility by over an order of magnitude. These results suggest that phosphorylation within the nucleosome DNA entry-exit region increases access to DNA binding complexes and that the combination of phosphorylation with acetylation has the potential to significantly influence DNA accessibility to transcription regulatory complexes.
Assuntos
DNA/química , Histonas/química , Nucleossomos/química , Acetilação , DNA/genética , DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Nucleossomos/genética , Nucleossomos/metabolismo , Fosforilação , Transcrição Gênica/fisiologiaRESUMO
Digestion with restriction enzymes is a classical approach for probing DNA accessibility in chromatin. It allows to monitor both the cut and the uncut fraction and thereby the determination of accessibility or occupancy (= 1 - accessibility) in absolute terms as the percentage of cut or uncut molecules, respectively, out of all molecules. The protocol presented here takes this classical approach to the genome-wide level. After exhaustive restriction enzyme digestion of chromatin, DNA is purified, sheared, and converted into libraries for high-throughput sequencing. Bioinformatic analysis counts uncut DNA fragments as well as DNA ends generated by restriction enzyme digest and derives thereof the fraction of accessible DNA. This straightforward principle is technically challenged as preparation and sequencing of the libraries leads to biased scoring of DNA fragments. Our protocol includes two orthogonal approaches to correct for this bias, the "corrected cut-uncut" and the "cut-all cut" method, so that accurate measurements of absolute accessibility or occupancy at restriction sites throughout a genome are possible. The protocol is presented for the example of S. cerevisiae chromatin but may be adapted for any other species.
Assuntos
Cromatina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , DNA/genética , Genoma , Enzimas de Restrição do DNA/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
DNA accessibility has been a powerful tool in locating active regulatory elements in a cell type, but dissecting the combinatorial logic within these regulatory elements has been a continued challenge in the field. Deep learning models have been shown to be highly predictive models of regulatory DNA and have led to new biological insights on regulatory syntax and logic. Here, we provide a framework for deep learning in genomics that implements best practices and focuses on ease of use, versatility, and compatibility with existing tools for inference on DNA sequence.
Assuntos
Cromatina , Aprendizado Profundo , Sequenciamento de Nucleotídeos em Larga Escala , Genômica , DNA , Análise de Sequência de DNARESUMO
Stability of a protein-ligand complex may be sensitive to pH of its environment. Here we explore, computationally, stability of a set of protein-nucleic acid complexes using fundamental thermodynamic linkage relationship. The nucleosome, as well as an essentially random selection of 20 protein complexes with DNA or RNA, are included in the analysis. An increase in intra-cellular/intra-nuclear pH destabilizes most complexes, including the nucleosome. We propose to quantify the effect by ΔΔG0.3-the change in the binding free energy due to pH increase of 0.3 units, corresponding to doubling of the H + activity; variations of pH of this amplitude can occur in living cells, including in the course of the cell cycle, and in cancer cells relative to normal ones. We suggest, based on relevant experimental findings, a threshold of biological significance of 1 2 k B T ( â¼ 0.3 k c a l / m o l ) for changes of stability of chromatin-related protein-DNA complexes: a change in the binding affinity above the threshold may have biological consequences. We find that for 70% of the examined complexes, Δ Δ G 0.3 > 1 2 k B T (for 10%, ΔΔG0.3 is between 3 and 4 k B T). Thus, small but relevant variations of intra-nuclear pH of 0.3 may have biological consequences for many protein-nucleic acid complexes. The binding affinity between the histone octamer and its DNA, which directly affects the DNA accessibility in the nucleosome, is predicted to be highly sensitive to intra-nuclear pH. A variation of 0.3 units results in ΔΔG0.3 â¼ 10k B T ( â¼ 6 k c a l / m o l ) ; for spontaneous unwrapping of 20 bp long entry/exit fragments of the nucleosomal DNA, ΔΔG0.3 = 2.2k B T; partial disassembly of the nucleosome into the tetrasome is characterized by ΔΔG0.3 = 5.2k B T. The predicted pH -induced modulations of the nucleosome stability are significant enough to suggest that they may have consequences relevant to the biological function of the nucleosome. Accessibility of the nucleosomal DNA is predicted to positively correlate with pH variations during the cell cycle; an increase in intra-cellular pH seen in cancer cells is predicted to lead to a more accessible nucleosomal DNA; a drop in pH associated with apoptosis is predicted to make nucleosomal DNA less accessible. We speculate that processes that depend on accessibility to the DNA in the nucleosomes, such as transcription or DNA replication, might become upregulated due to relatively small, but nevertheless realistic increases of intra-nuclear pH.
RESUMO
Inflammation is a first responder against injury and infection and is also critical for the regeneration and repair of tissue after injury. The role of professional immune cells in tissue healing is well characterized. Professional immune cells respond to pathogens with humoral and cytotoxic responses; remove cellular debris through efferocytosis; secrete angiogenic cytokines and growth factors to repair the microvasculature and parenchyma. However, non-immune cells are also capable of responding to damage or pathogens. Non-immune somatic cells express pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The PRRs activation leads to the release of inflammatory cytokines required for tissue defense and repair. Notably, the activation of PRRs also triggers epigenetic changes that promote DNA accessibility and cellular plasticity. Thus, non-immune cells directly respond to the local inflammatory cues and can undergo phenotypic modifications or even cell lineage transitions to facilitate tissue regeneration. This review will focus on the novel role of cell-autonomous inflammatory signaling in mediating cell plasticity, a process which is termed transflammation. We will discuss the regulation of this process by changes in the functions and expression levels of epigenetic modifiers, as well as metabolic and ROS/RNS-mediated epigenetic modulation of DNA accessibility during cell fate transition. We will highlight the recent technological developments in detecting cell plasticity and potential therapeutic applications of transflammation in tissue regeneration.
Assuntos
Plasticidade Celular , Imunidade Inata , Humanos , Imunidade Inata/fisiologia , Transdução de Sinais , Receptores de Reconhecimento de Padrão , Citocinas , DNARESUMO
Understanding plant gene regulation has been a priority for generations of plant scientists. However, due to its complex nature, the regulatory code governing plant gene expression has yet to be deciphered comprehensively. Recently developed methods-often relying on next-generation sequencing technology and state-of-the-art computational approaches-have started to further our understanding of the gene regulatory logic used by plants. In this review, we discuss these methods and the insights into the regulatory code of plants that they can yield.
Assuntos
Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Regulação da Expressão Gênica de Plantas/genética , CromatinaRESUMO
T cell development is restricted to the thymus and is dependent on high levels of Notch signaling induced within the thymic microenvironment. To understand Notch function in thymic restriction, we investigated the basis for target gene selectivity in response to quantitative differences in Notch signal strength, focusing on the chromatin architecture of genes essential for T cell differentiation. We find that high Notch signal strength is required to activate promoters of known targets essential for T cell commitment, including Il2ra, Cd3ε, and Rag1, which feature low CpG content (LCG) and DNA inaccessibility in hematopoietic stem progenitor cells. Our findings suggest that promoter DNA inaccessibility at LCG T lineage genes provides robust protection against stochastic activation in inappropriate Notch signaling contexts, limiting T cell development to the thymus.
Assuntos
Ilhas de CpG/genética , Regiões Promotoras Genéticas/genética , Receptores Notch/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Animais , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Camundongos Endogâmicos C57BLRESUMO
The intrinsically disordered, positively charged H4 histone tail is important for chromatin structure and function. We have explored conformational ensembles of human H4 tail in solution, with varying levels of charge neutralization via acetylation or amino-acid substitutions such as KâQ. We have employed an explicit water model shown recently to be well suited for simulations of intrinsically disordered proteins. Upon progressive neutralization of the H4, its radius of gyration decreases linearly with the tail charge q, the trend is explained using a simple polymer model. While the wild type state (q=+8) is essentially a random coil, hyper-acetylated H4 (q=+3) is virtually as compact and stable as a globular protein of the same number of amino-acids. Conformational ensembles of acetylated H4 match the corresponding KâX substitutions only approximately: based on the ensemble similarity, we propose KâM as a possible alternative to the commonly used KâQ. Possible effects of the H4 tail compaction on chromatin structure are discussed within a qualitative model in which the chromatin is highly heterogeneous, easily inter-converting between various structural forms. We predict that upon progressive charge neutralization of the H4 tail, the least compact sub-states of chromatin de-condense first, followed by de-condensation of more compact structures, e.g. those that harbor a high fraction of stacked di-nucleosomes. The predicted hierarchy of DNA accessibility increase upon progressive acetylation of H4 might be utilized by the cell for selective DNA accessibility control.
Assuntos
Cromatina/ultraestrutura , DNA/química , Histonas/química , Proteínas Intrinsicamente Desordenadas/química , Processamento de Proteína Pós-Traducional , Acetilação , Substituição de Aminoácidos , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Glutamina/química , Glutamina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Lisina/química , Lisina/metabolismo , Metionina/química , Metionina/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Eletricidade Estática , Termodinâmica , Água/química , Água/metabolismoRESUMO
The NuRD complex subunit CHD4 is essential for fusion-positive rhabdomyosarcoma (FP-RMS) survival, but the mechanisms underlying this dependency are not understood. Here, a NuRD-specific CRISPR screen demonstrates that FP-RMS is particularly sensitive to CHD4 amongst the NuRD members. Mechanistically, NuRD complex containing CHD4 localizes to super-enhancers where CHD4 generates a chromatin architecture permissive for the binding of the tumor driver and fusion protein PAX3-FOXO1, allowing downstream transcription of its oncogenic program. Moreover, CHD4 depletion removes HDAC2 from the chromatin, leading to an increase and spread of histone acetylation, and prevents the positioning of RNA Polymerase 2 at promoters impeding transcription initiation. Strikingly, analysis of genome-wide cancer dependency databases identifies CHD4 as a general cancer vulnerability. Our findings describe CHD4, a classically defined repressor, as positive regulator of transcription and super-enhancer accessibility as well as establish this remodeler as an unexpected broad tumor susceptibility and promising drug target for cancer therapy.
Assuntos
Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Rabdomiossarcoma/genética , Linhagem Celular Tumoral , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismoRESUMO
Global investigation of histone marks in acute myeloid leukemia (AML) remains limited. Analyses of 38 AML samples through integrated transcriptional and chromatin mark analysis exposes 2 major subtypes. One subtype is dominated by patients with NPM1 mutations or MLL-fusion genes, shows activation of the regulatory pathways involving HOX-family genes as targets, and displays high self-renewal capacity and stemness. The second subtype is enriched for RUNX1 or spliceosome mutations, suggesting potential interplay between the 2 aberrations, and mainly depends on IRF family regulators. Cellular consequences in prognosis predict a relatively worse outcome for the first subtype. Our integrated profiling establishes a rich resource to probe AML subtypes on the basis of expression and chromatin data.
Assuntos
Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Mutação , Proteínas Nucleares , Proteínas de Fusão Oncogênica , Cromatina/genética , Cromatina/metabolismo , Cromatina/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismoRESUMO
Current methods to identify genomic alterations using whole-genome sequencing (WGS) data are often limited to single nucleotide polymorphisms and insertions and deletions that are less than 10 bp in length. These limitations are largely due to challenges in accurately mapping short sequencing reads that significantly diverge from the reference genome. Newer sequencing-based methods have been developed to define and characterize larger DNA structural elements. This is achieved by enriching for and sequencing regions of the genome that contain a specific element, followed by identifying genomic regions with high densities of mapped short reads that designate the location of these elements. This process essentially aggregates short read data into larger structural units for further characterization. Here, we describe protocols for identifying various types of genomic alterations using differential analysis of these structural units. We focus on changes in DNA accessibility, protein-DNA interactions, and chromosomal contacts as measured by ATAC-Seq, ChIP-Seq, and Hi-C respectively. As many protocols have been published describing the generation and processing of these data, we focus on simple methods that can be used to identify mutations in these data, and can be executed by someone with limited computational expertise.
Assuntos
Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Imunoprecipitação da Cromatina , HumanosRESUMO
Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2) required for HSC maintenance and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC "stemness" genes. These results demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of "stemness" gene-expression programs and proper function of adult HSCs.
Assuntos
Células-Tronco Adultas/fisiologia , Antígenos Nucleares/genética , Cromatina/genética , Células-Tronco Hematopoéticas/fisiologia , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina/fisiologia , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/genética , Camundongos , Camundongos KnockoutRESUMO
The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.