Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799452

RESUMO

Programmed death ligand 1 (PD-L1), an immune-checkpoint protein expressed on cancer cells, also functions independently of the immune system. We found that PD-L1 inhibits the killing of cancer cells in response to DNA damage in an immune-independent manner by suppressing their acute response to type I interferon (IFN; IFN-I). In addition, PD-L1 plays a critical role in sustaining high levels of constitutive expression in cancer cells of a subset of IFN-induced genes, the IFN-related DNA damage resistance signature (IRDS) which, paradoxically, protects cancer cells. The cyclic GMP-AMP synthase-stimulator of the IFN genes (cGAS-STING) pathway is constitutively activated in a subset of cancer cells in the presence of high levels of PD-L1, thus leading to a constitutive, low level of IFN-ß expression, which in turn increases IRDS expression. The constitutive low level of IFN-ß expression is critical for the survival of cancer cells addicted to self-produced IFN-ß. Our study reveals immune-independent functions of PD-L1 that inhibit cytotoxic acute responses to IFN-I and promote protective IRDS expression by supporting protective chronic IFN-I responses, both of which enhance the resistance of cancer cells to DNA damage.


Assuntos
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Dano ao DNA/fisiologia , Interferon Tipo I/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Interferon Tipo I/genética , Interferon beta , Interferon gama/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Nucleotidiltransferases , Transdução de Sinais , Microambiente Tumoral
2.
J Biol Chem ; 298(7): 102065, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618021

RESUMO

Long noncoding RNAs (lncRNAs) are important tissue-specific regulators of gene expression, and their dysregulation can induce aberrant gene expression leading to various pathological conditions, including cancer. Although many lncRNAs have been discovered by computational analysis, most of these are as yet unannotated. Herein, we describe the nature and function of a novel lncRNA detected downstream of the human parathyroid hormone (PTH) gene in both extremely rare ectopic PTH-producing retroperitoneal malignant fibrous histiocytoma and parathyroid tumors with PTH overproduction. This novel lncRNA, which we have named "PTH-AS," has never been registered in a public database, and here, we investigated for the first time its exact locus, length, transcription direction, polyadenylation, and nuclear localization. Microarray and Gene Ontology analyses demonstrated that forced expression of PTH-AS in PTH-nonexpressing human breast cancer T47D cells did not induce the ectopic expression of the nearby PTH gene but did significantly upregulate Janus kinase-signal transducer and activator of transcription pathway-related genes such as cancer-promoting interferon-related DNA damage resistance signature (IRDS) genes. Importantly, we show that PTH-AS expression not only enhanced T47D cell invasion and resistance to the DNA-damaging drug doxorubicin but also promoted lung metastasis rather than tumor growth in a mouse xenograft model. In addition, PTH-AS-expressing T47D tumors showed increased macrophage infiltration that promoted angiogenesis, similar to IRDS-associated cancer characteristics. Although the detailed molecular mechanism remains imperfectly understood, we conclude that PTH-AS may contribute to tumor development, possibly through IRDS gene upregulation.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Interferons/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897789

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.


Assuntos
Neoplasias de Mama Triplo Negativas , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Mucina-1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Cancer Drug Resist ; 5(3): 703-720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176767

RESUMO

Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism. Some rare cancer cells, however, manage to adapt to avoid senescence and continue to proliferate. One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor. In this review, we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS: the increased activity of the base excision repair (BER) pathway, achieved through the enhanced expression of BER enzymes and DNA repair accessory factors. These proteins, exemplified here by the CUT domain proteins CUX1, CUX2, and SATB1, stimulate the activity of BER enzymes. The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels. As a by-product of this adaptation, these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation, temozolomide, and cisplatin. Moreover, considering the intrinsic error rate associated with DNA repair and translesion synthesis, the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population, thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance, a major obstacle to clinical treatment.

5.
DNA Repair (Amst) ; 107: 103202, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419700

RESUMO

Degradation Factor 1 was discovered 20 years ago as a yeast protein copurifying with Rad26, a helicase involved in transcription-coupled DNA repair. It was subsequently shown to control the ubiquitylation and destruction of the large subunit of DNA damage-arrested RNA Polymerase II. Since that time, much has been learned about Def1's role in polymerase destruction and new functions of the protein have been revealed. We now understand that Def1 is involved in more than just RNA polymerase II regulation. Most of its known functions are associated with maintaining chromosome and genomic integrity, but other exciting activities outside this realm have been suggested. Here we review this fascinating protein, describe its regulation and present a hypothesis that Def1 is a central coordinator of ubiquitin signaling pathways in cells.


Assuntos
RNA Polimerase II
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa