Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Mol Cell ; 84(3): 596-610.e6, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215754

RESUMO

Although DNA N6-methyl-deoxyadenosine (6mA) is abundant in bacteria and protists, its presence and function in mammalian genomes have been less clear. We present Direct-Read 6mA sequencing (DR-6mA-seq), an antibody-independent method, to measure 6mA at base resolution. DR-6mA-seq employs a unique mutation-based strategy to reveal 6mA sites as misincorporation signatures without any chemical or enzymatic modulation of 6mA. We validated DR-6mA-seq through the successful mapping of the well-characterized G(6mA)TC motif in the E. coli DNA. As expected, when applying DR-6mA-seq to mammalian systems, we found that genomic DNA (gDNA) 6mA abundance is generally low in most mammalian tissues and cells; however, we did observe distinct gDNA 6mA sites in mouse testis and glioblastoma cells. DR-6mA-seq provides an enabling tool to detect 6mA at single-base resolution for a comprehensive understanding of DNA 6mA in eukaryotes.


Assuntos
Metilação de DNA , Escherichia coli , Animais , Camundongos , Escherichia coli/genética , Genoma/genética , DNA/metabolismo , Eucariotos/genética , Desoxiadenosinas/genética , Mamíferos/metabolismo
2.
Mol Cell ; 81(20): 4116-4136, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34480848

RESUMO

Enzyme-mediated chemical modifications of nucleic acids are indispensable regulators of gene expression. Our understanding of the biochemistry and biological significance of these modifications has largely been driven by an ever-evolving landscape of technologies that enable accurate detection, mapping, and manipulation of these marks. Here we provide a summary of recent technical advances in the study of nucleic acid modifications with a focus on techniques that allow accurate detection and mapping of these modifications. For each modification discussed (N6-methyladenosine, 5-methylcytidine, inosine, pseudouridine, and N4-acetylcytidine), we begin by introducing the "gold standard" technique for its mapping and detection, followed by a discussion of techniques developed to address any shortcomings of the gold standard. By highlighting the commonalities and differences of these techniques, we hope to provide a perspective on the current state of the field and to lay out a guideline for development of future technologies.


Assuntos
Metilação de DNA , DNA/metabolismo , Técnicas Genéticas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Citidina/análogos & derivados , Citidina/metabolismo , DNA/genética , Epigênese Genética , Humanos , Inosina/metabolismo , Pseudouridina/metabolismo , RNA/genética , RNA Mensageiro/genética
3.
Physiol Rev ; 100(4): 1753-1777, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32326823

RESUMO

Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.


Assuntos
Epigenoma/fisiologia , Insuficiência Cardíaca/metabolismo , Animais , Epigênese Genética , Humanos
4.
J Bacteriol ; : e0014524, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133004

RESUMO

In response to predation by bacteriophages and invasion by other mobile genetic elements such as plasmids, bacteria have evolved specialized defense systems that are often clustered together on genomic islands. The O1 El Tor strains of Vibrio cholerae responsible for the ongoing seventh cholera pandemic (7PET) contain a characteristic set of genomic islands involved in host colonization and disease, many of which contain defense systems. Notably, Vibrio pathogenicity island 2 contains several characterized defense systems as well as a putative type I restriction-modification (T1RM) system, which, interestingly, is interrupted by two genes of unknown function. Here, we demonstrate that the T1RM system is active, methylates the host genomes of a representative set of 7PET strains, and identify a specific recognition sequence that targets non-methylated plasmids for restriction. We go on to show that the two genes embedded within the T1RM system encode a novel two-protein modification-dependent restriction system related to the GmrSD family of type IV restriction enzymes. Indeed, we show that this system has potent anti-phage activity against diverse members of the Tevenvirinae, a subfamily of bacteriophages with hypermodified genomes. Taken together, these results expand our understanding of how this highly conserved genomic island contributes to the defense of pandemic V. cholerae against foreign DNA. IMPORTANCE: Defense systems are immunity systems that allow bacteria to counter the threat posed by bacteriophages and other mobile genetic elements. Although these systems are numerous and highly diverse, the most common types are restriction enzymes that can specifically recognize and degrade non-self DNA. Here, we show that the Vibrio pathogenicity island 2, present in the pathogen Vibrio cholerae, encodes two types of restriction systems that use distinct mechanisms to sense non-self DNA. The first system is a classical Type I restriction-modification system, and the second is a novel modification-dependent type IV restriction system that recognizes hypermodified cytosines. Interestingly, these systems are embedded within each other, suggesting that they are complementary to each other by targeting both modified and non-modified phages.

5.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155108

RESUMO

TET/JBP (ten-eleven translocation/base J binding protein) enzymes are iron(II)- and 2-oxo-glutarate-dependent dioxygenases that are found in all kingdoms of life and oxidize 5-methylpyrimidines on the polynucleotide level. Despite their prevalence, few examples have been biochemically characterized. Among those studied are the metazoan TET enzymes that oxidize 5-methylcytosine in DNA to hydroxy, formyl, and carboxy forms and the euglenozoa JBP dioxygenases that oxidize thymine in the first step of base J biosynthesis. Both enzymes have roles in epigenetic regulation. It has been hypothesized that all TET/JBPs have their ancestral origins in bacteriophages, but only eukaryotic orthologs have been described. Here we demonstrate the 5mC-dioxygenase activity of several phage TETs encoded within viral metagenomes. The clustering of these TETs in a phylogenetic tree correlates with the sequence specificity of their genomically cooccurring cytosine C5-methyltransferases, which install the methyl groups upon which TETs operate. The phage TETs favor Gp5mC dinucleotides over the 5mCpG sites targeted by the eukaryotic TETs and are found within gene clusters specifying complex cytosine modifications that may be important for DNA packaging and evasion of host restriction.


Assuntos
5-Metilcitosina/metabolismo , Bacteriófagos/metabolismo , DNA/metabolismo , Sequência de Aminoácidos , Metilação de DNA , Dioxigenases , Hidroxilação , Metagenômica , Motivos de Nucleotídeos/genética , Oxirredução , Filogenia
6.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34459479

RESUMO

DNA N6-methyladenine is an important type of DNA modification that plays important roles in multiple biological processes. Despite the recent progress in developing DNA 6mA site prediction methods, several challenges remain to be addressed. For example, although the hand-crafted features are interpretable, they contain redundant information that may bias the model training and have a negative impact on the trained model. Furthermore, although deep learning (DL)-based models can perform feature extraction and classification automatically, they lack the interpretability of the crucial features learned by those models. As such, considerable research efforts have been focused on achieving the trade-off between the interpretability and straightforwardness of DL neural networks. In this study, we develop two new DL-based models for improving the prediction of N6-methyladenine sites, termed LA6mA and AL6mA, which use bidirectional long short-term memory to respectively capture the long-range information and self-attention mechanism to extract the key position information from DNA sequences. The performance of the two proposed methods is benchmarked and evaluated on the two model organisms Arabidopsis thaliana and Drosophila melanogaster. On the two benchmark datasets, LA6mA achieves an area under the receiver operating characteristic curve (AUROC) value of 0.962 and 0.966, whereas AL6mA achieves an AUROC value of 0.945 and 0.941, respectively. Moreover, an in-depth analysis of the attention matrix is conducted to interpret the important information, which is hidden in the sequence and relevant for 6mA site prediction. The two novel pipelines developed for DNA 6mA site prediction in this work will facilitate a better understanding of the underlying principle of DL-based DNA methylation site prediction and its future applications.


Assuntos
Adenosina/análogos & derivados , Biologia Computacional/métodos , Metilação de DNA , DNA/genética , Epigenômica/métodos , DNA/química , Aprendizado Profundo
7.
Methods ; 204: 142-150, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35477057

RESUMO

DNA N6-methyladenine (6mA) is a key DNA modification, which plays versatile roles in the cellular processes, including regulation of gene expression, DNA repair, and DNA replication. DNA 6mA is closely associated with many diseases in the mammals and with growth as well as development of plants. Precisely detecting DNA 6mA sites is of great importance to exploration of 6mA functions. Although many computational methods have been presented for DNA 6mA prediction, there is still a wide gap in the practical application. We presented a convolution neural network (CNN) and bi-directional long-short term memory (Bi-LSTM)-based deep learning method (Deep6mAPred) for predicting DNA 6mA sites across plant species. The Deep6mAPred stacked the CNNs and the Bi-LSTMs in a paralleling manner instead of a series-connection manner. The Deep6mAPred also employed the attention mechanism for improving the representations of sequences. The Deep6mAPred reached an accuracy of 0.9556 over the independent rice dataset, far outperforming the state-of-the-art methods. The tests across plant species showed that the Deep6mAPred is of a remarkable advantage over the state of the art methods. We developed a user-friendly web application for DNA 6mA prediction, which is freely available at http://106.13.196.152:7001/ for all the scientific researchers. The Deep6mAPred would enrich tools to predict DNA 6mA sites and speed up the exploration of DNA modification.


Assuntos
Metilação de DNA , Aprendizado Profundo , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Animais , DNA/metabolismo , Mamíferos/genética
8.
Cell Mol Life Sci ; 79(10): 511, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066650

RESUMO

Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.


Assuntos
Doenças Neurodegenerativas , Epigênese Genética , Humanos , Ativação de Macrófagos , Microglia/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , RNA não Traduzido/genética
9.
Proc Natl Acad Sci U S A ; 117(51): 32370-32379, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288723

RESUMO

The design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or µ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21-targeted µ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21-regulated tumor suppressor proteins. This antitumoral effect is superior to the effect of the corresponding phosphorothioate. Peritumoral administration of µ-oligonucleotide results in its rapid distribution and efficient accumulation in the tumor. Blood biochemistry and morphometric studies of internal organs revealed no pronounced toxicity of µ-oligonucleotides. This new oligonucleotide class provides a powerful tool for antisense technology.


Assuntos
Amidas/química , Antineoplásicos/farmacologia , MicroRNAs/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Ácidos Fosfóricos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos SCID , Terapia de Alvo Molecular , Oligonucleotídeos Antissenso/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Proc Natl Acad Sci U S A ; 117(25): 14322-14330, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32518115

RESUMO

Phosphorothioate (PT) DNA modifications-in which a nonbonding phosphate oxygen is replaced with sulfur-represent a widespread, horizontally transferred epigenetic system in prokaryotes and have a highly unusual property of occupying only a small fraction of available consensus sequences in a genome. Using Salmonella enterica as a model, we asked a question of fundamental importance: How do the PT-modifying DndA-E proteins select their GPSAAC/GPSTTC targets? Here, we applied innovative analytical, sequencing, and computational tools to discover a novel behavior for DNA-binding proteins: The Dnd proteins are "parked" at the G6mATC Dam methyltransferase consensus sequence instead of the expected GAAC/GTTC motif, with removal of the 6mA permitting extensive PT modification of GATC sites. This shift in modification sites further revealed a surprising constancy in the density of PT modifications across the genome. Computational analysis showed that GAAC, GTTC, and GATC share common features of DNA shape, which suggests that PT epigenetics are regulated in a density-dependent manner partly by DNA shape-driven target selection in the genome.


Assuntos
Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/metabolismo , Epigênese Genética/fisiologia , Epigenômica , Fosfatos/metabolismo , 2-Aminopurina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Consenso , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Salmonella enterica/genética
11.
Yi Chuan ; 45(10): 887-903, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37872112

RESUMO

There are abundant base modifications in bacteriophages' genomes, mainly for avoiding the digestion of host endonucleases. More than 40 years ago, researchers discovered that 2-amino-adenine (Z) completely replaced adenine (A) and forms a complementary pairing with three hydrogen bonds with thymine (T) in the DNA of cyanophage S-2L, forming a distinct "Z-genome". In recent years, researchers have discovered and validated the biosynthetic pathway of Z-genome in various bacteriophages, constituting a multi-enzyme system. This system includes the phage-encoded enzymes deoxy-2'-aminoadenylosuccinate synthetase (PurZ), deoxyadenosine triphosphate hydrolase (dATPase/DatZ), deoxyadenosine/deoxyguanosine triphosphate pyrophosphatase (DUF550/MazZ) and DNA polymerase (DpoZ). In this review, we provide a concise overview of the historical discovery on diversely modified nucleosides in bacteriophages, then we comprehensively summarize the research progress on multiple enzymes involved in the Z-genome biosynthetic pathway. Finally, the potential applications of the Z-genome and the enzymes in its biosynthetic pathway are discussed in order to provide reference for research in this field.


Assuntos
Bacteriófagos , Bacteriófagos/genética , DNA Viral/genética , DNA Viral/metabolismo , Vias Biossintéticas/genética , Adenina , Desoxiadenosinas/metabolismo
12.
BMC Genomics ; 23(1): 249, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361121

RESUMO

BACKGROUND: Single molecule measurements of DNA polymerization kinetics provide a sensitive means to detect both secondary structures in DNA and deviations from primary chemical structure as a result of modified bases. In one approach to such analysis, deviations can be inferred by monitoring the behavior of DNA polymerase using single-molecule, real-time sequencing with zero-mode waveguide. This approach uses a Single Molecule Real Time (SMRT)-sequencing measurement of time between fluorescence pulse signals from consecutive nucleosides incorporated during DNA replication, called the interpulse duration (IPD). RESULTS: In this paper we present an analysis of loci with high IPDs in two genomes, a bacterial genome (E. coli) and a eukaryotic genome (C. elegans). To distinguish the potential effects of DNA modification on DNA polymerization speed, we paired an analysis of native genomic DNA with whole-genome amplified (WGA) material in which DNA modifications were effectively removed. Adenine modification sites for E. coli are known and we observed the expected IPD shifts at these sites in the native but not WGA samples. For C. elegans, such differences were not observed. Instead, we found a number of novel sequence contexts where IPDs were raised relative to the average IPDs for each of the four nucleotides, but for which the raised IPD was present in both native and WGA samples. CONCLUSION: The latter results argue strongly against DNA modification as the underlying driver for high IPD segments for C. elegans, and provide a framework for separating effects of DNA modification from context-dependent DNA polymerase kinetic patterns inherent in underlying DNA sequence for a complex eukaryotic genome.


Assuntos
Caenorhabditis elegans , Escherichia coli , Animais , Caenorhabditis elegans/genética , DNA/química , DNA/genética , Escherichia coli/genética , Polimerização , Análise de Sequência de DNA/métodos
13.
Genes Dev ; 28(20): 2304-13, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25258363

RESUMO

In mammalian DNA, cytosine occurs in several chemical forms, including unmodified cytosine (C), 5-methylcytosine (5 mC), 5-hydroxymethylcytosine (5 hmC), 5-formylcytosine (5 fC), and 5-carboxylcytosine (5 caC). 5 mC is a major epigenetic signal that acts to regulate gene expression. 5 hmC, 5 fC, and 5 caC are oxidized derivatives that might also act as distinct epigenetic signals. We investigated the response of the zinc finger DNA-binding domains of transcription factors early growth response protein 1 (Egr1) and Wilms tumor protein 1 (WT1) to different forms of modified cytosine within their recognition sequence, 5'-GCG(T/G)GGGCG-3'. Both displayed high affinity for the sequence when C or 5 mC was present and much reduced affinity when 5 hmC or 5 fC was present, indicating that they differentiate primarily oxidized C from unoxidized C, rather than methylated C from unmethylated C. 5 caC affected the two proteins differently, abolishing binding by Egr1 but not by WT1. We ascribe this difference to electrostatic interactions in the binding sites. In Egr1, a negatively charged glutamate conflicts with the negatively charged carboxylate of 5 caC, whereas the corresponding glutamine of WT1 interacts with this group favorably. Our analyses shows that zinc finger proteins (and their splice variants) can respond in modulated ways to alternative modifications within their binding sequence.


Assuntos
Citosina/análogos & derivados , Proteínas WT1/química , Proteínas WT1/genética , Proteínas WT1/metabolismo , Cristalização , Citosina/metabolismo , Metilação de DNA , Proteína 1 de Resposta de Crescimento Precoce/química , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , Modelos Moleculares , Mutação , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína
14.
Molecules ; 27(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458636

RESUMO

Covalent protein capture (cross-linking) by reactive DNA derivatives makes it possible to investigate structural features by fixing complexes at different stages of DNA-protein recognition. The most common cross-linking methods are based on reactive groups that interact with native or engineered cysteine residues. Nonetheless, high reactivity of most of such groups leads to preferential fixation of early-stage complexes or even non-selective cross-linking. We synthesised a set of DNA reagents carrying an acrylamide group attached to the C5 atom of a 2'-deoxyuridine moiety via various linkers and studied cross-linking with MutS as a model protein. MutS scans DNA for mismatches and damaged nucleobases and can form multiple non-specific complexes with DNA that may cause non-selective cross-linking. By varying the length of the linker between DNA and the acrylamide group and by changing the distance between the reactive nucleotide and a mismatch in the duplex, we showed that cross-linking occurs only if the distance between the acrylamide group and cysteine is optimal within the DNA-protein complex. Thus, acrylamide-modified DNA duplexes are excellent tools for studying DNA-protein interactions because of high selectivity of cysteine trapping.


Assuntos
Cisteína , Proteínas de Escherichia coli , Acrilamida , Pareamento Incorreto de Bases , Cisteína/química , DNA/química , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteínas
15.
Chemistry ; 27(31): 8100-8104, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769637

RESUMO

The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and α-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous. This vagueness is caused by the fact that these oxidized mdC derivatives are also formed as oxidative lesions, resulting in unclear basal levels that are likely to have no epigenetic function. Here, we report the xdC levels in the fungus Amanita muscaria in comparison to murine embryonic stem cells (mESCs), HEK cells and induced pluripotent stem cells (iPSCs), to obtain information about the basal levels of hmdC, fdC and cadC as DNA lesions in the genome.


Assuntos
Epigênese Genética , Estresse Oxidativo , 5-Metilcitosina , Amanita , Animais , Metilação de DNA , Desoxicitidina/análogos & derivados , Humanos , Camundongos , Oxirredução
16.
Proc Natl Acad Sci U S A ; 115(14): E3116-E3125, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555775

RESUMO

Certain viruses of bacteria (bacteriophages) enzymatically hypermodify their DNA to protect their genetic material from host restriction endonuclease-mediated cleavage. Historically, it has been known that virion DNAs from the Delftia phage ΦW-14 and the Bacillus phage SP10 contain the hypermodified pyrimidines α-putrescinylthymidine and α-glutamylthymidine, respectively. These bases derive from the modification of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU) in newly replicated phage DNA via a pyrophosphorylated intermediate. Like ΦW-14 and SP10, the Pseudomonas phage M6 and the Salmonella phage ViI encode kinase homologs predicted to phosphorylate 5-hmdU DNA but have uncharacterized nucleotide content [Iyer et al. (2013) Nucleic Acids Res 41:7635-7655]. We report here the discovery and characterization of two bases, 5-(2-aminoethoxy)methyluridine (5-NeOmdU) and 5-(2-aminoethyl)uridine (5-NedU), in the virion DNA of ViI and M6 phages, respectively. Furthermore, we show that recombinant expression of five gene products encoded by phage ViI is sufficient to reconstitute the formation of 5-NeOmdU in vitro. These findings point to an unexplored diversity of DNA modifications and the underlying biochemistry of their formation.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , DNA Viral/biossíntese , Timidina/química , Uridina/química , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Genoma Viral
17.
Proc Natl Acad Sci U S A ; 115(13): E2988-E2996, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531068

RESUMO

The chemical diversity of physiological DNA modifications has expanded with the identification of phosphorothioate (PT) modification in which the nonbridging oxygen in the sugar-phosphate backbone of DNA is replaced by sulfur. Together with DndFGH as cognate restriction enzymes, DNA PT modification, which is catalyzed by the DndABCDE proteins, functions as a bacterial restriction-modification (R-M) system that protects cells against invading foreign DNA. However, the occurrence of dnd systems across a large number of bacterial genomes and their functions other than R-M are poorly understood. Here, a genomic survey revealed the prevalence of bacterial dnd systems: 1,349 bacterial dnd systems were observed to occur sporadically across diverse phylogenetic groups, and nearly half of these occur in the form of a solitary dndBCDE gene cluster that lacks the dndFGH restriction counterparts. A phylogenetic analysis of 734 complete PT R-M pairs revealed the coevolution of M and R components, despite the observation that several PT R-M pairs appeared to be assembled from M and R parts acquired from distantly related organisms. Concurrent epigenomic analysis, transcriptome analysis, and metabolome characterization showed that a solitary PT modification contributed to the overall cellular redox state, the loss of which perturbed the cellular redox balance and induced Pseudomonas fluorescens to reconfigure its metabolism to fend off oxidative stress. An in vitro transcriptional assay revealed altered transcriptional efficiency in the presence of PT DNA modification, implicating its function in epigenetic regulation. These data suggest the versatility of PT in addition to its involvement in R-M protection.


Assuntos
DNA Bacteriano/genética , Epigênese Genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Fosfatos/química , Pseudomonas fluorescens/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Epigenômica , Genoma Bacteriano , Metabolômica , Filogenia , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/metabolismo , Transcrição Gênica , Transcriptoma
18.
J Integr Neurosci ; 20(3): 529-539, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34645086

RESUMO

Rab3a, a subtype protein in the Rab3 family amongst the small G proteins, is closely associated with the learning and memory formation process. Various neuronal stimuli can induce the expression of Rab3a; however, how DNA modification is involved in regulating its expression is not fully understood. Ten-eleven translocation (TET) proteins can oxidate methylcytosine to hydroxymethylcytosine, which can further activate gene expression. Previous studies reported that TET-mediated regulation of 5hmC induced by learning is involved in neuronal activation. However, whether Tet protein regulates Rab3a is unknown. To understand the role of TET-mediated 5hmC on Rab3a in neuronal activation, we adopted a KCl-induced depolarization protocol in cultured primary cortical neurons to mimic neuronal activity in vitro. After KCl treatment, Rab3a and Tet3 mRNA expression were induced. Moreover, we observed a decrease in the methylation level and an increase of hydroxymethylation level surrounding the CpG island near the transcription start site of Rab3a. Furthermore, recently, Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) has proven powerful in identifying open chromatin in the genome of various eukaryotes. Using FAIRE-qPCR, we observed a euchromatin state and the increased occupancy of Tet3, H3K4me3, and H3K27ac at the promoter region of Rab3a after KCl treatment. Finally, by using shRNA to knockdown Tet3 prior KCl treatment, all changes mentioned above vanished. Thus, our findings elucidated that the neuronal activity-induced accumulation of hydroxymethylation, which Tet3 mediates, can introduce an active and permissive chromatin structure at Rab3a promoter and lead to the induction of Rab3a mRNA expression.


Assuntos
Metilação de DNA/fisiologia , Dioxigenases/metabolismo , Neurônios/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Camundongos , Mitose/fisiologia
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(5): 642-650, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34986527

RESUMO

In neuronal system, epigenetic modifications are essential for neuronal development, the fate determination of neural stem cells and neuronal function. The dysfunction of epigenetic regulation is closely related to occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease. Abnormally elevated DNA methylation inhibits the expression of some DNA repair-related genes and affects the progression of Huntington's disease. In the brain of Alzheimer's disease patients, the levels of H3K27ac and H3K9ac histone modifications increased. In addition, the alteration of RNA methylation in animal models of Alzheimer's disease and Parkinson's disease showed discrepancy trends. Therefore, epigenetic modifications may serve as potential therapeutic targets for neurodegenerative diseases. Here, we summarize the recent progress of the roles of epigenetic modifications in neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Metilação de DNA , Epigênese Genética , Humanos , Doenças Neurodegenerativas/genética , Doença de Parkinson/genética , Processamento de Proteína Pós-Traducional
20.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511377

RESUMO

Several reports have demonstrated that Campylobacter bacteriophage DNA is refractory to manipulation, suggesting that these phages encode modified DNA. The characterized Campylobacter jejuni phages fall into two phylogenetic groups within the Myoviridae: the genera Firehammervirus and Fletchervirus Analysis of genomic nucleosides from several of these phages by high-pressure liquid chromatography-mass spectrometry confirmed that 100% of the 2'-deoxyguanosine (dG) residues are replaced by modified bases. Fletcherviruses replace dG with 2'-deoxyinosine, while the firehammerviruses replace dG with 2'-deoxy-7-amido-7-deazaguanosine (dADG), noncanonical nucleotides previously described, but a 100% base substitution has never been observed to have been made in a virus. We analyzed the genome sequences of all available phages representing both groups to elucidate the biosynthetic pathway of these noncanonical bases. Putative ADG biosynthetic genes are encoded by the Firehammervirus phages and functionally complement mutants in the Escherichia coli queuosine pathway, of which ADG is an intermediate. To investigate the mechanism of DNA modification, we isolated nucleotide pools and identified dITP after phage infection, suggesting that this modification is made before nucleotides are incorporated into the phage genome. However, we were unable to observe any form of dADG phosphate, implying a novel mechanism of ADG incorporation into an existing DNA strand. Our results imply that Fletchervirus and Firehammervirus phages have evolved distinct mechanisms to express dG-free DNA.IMPORTANCE Bacteriophages are in a constant evolutionary struggle to overcome their microbial hosts' defenses and must adapt in unconventional ways to remain viable as infectious agents. One mode of adaptation is modifying the viral genome to contain noncanonical nucleotides. Genome modification in phages is becoming more commonly reported as analytical techniques improve, but guanosine modifications have been underreported. To date, two genomic guanosine modifications have been observed in phage genomes, and both are low in genomic abundance. The significance of our research is in the identification of two novel DNA modification systems in Campylobacter-infecting phages, which replace all guanosine bases in the genome in a genus-specific manner.


Assuntos
Bacteriófagos/genética , Campylobacter jejuni/virologia , Desoxiguanosina/genética , Inosina/genética , Vias Biossintéticas/genética , DNA Viral/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Genoma Viral , Inosina/análogos & derivados , Inosina/metabolismo , Myoviridae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa