Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(16): 3044-3060.e11, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39142279

RESUMO

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.


Assuntos
DNA Primase , Replicação do DNA , Proteínas de Ligação a DNA , Quadruplex G , Instabilidade Genômica , Proteína 2 Homóloga a MutS , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 2 Homóloga a MutS/genética , DNA Primase/metabolismo , DNA Primase/genética , Homeostase do Telômero , Dano ao DNA , Células HEK293 , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , DNA Polimerase Dirigida por DNA
2.
Mol Cell ; 81(1): 198-211.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33296677

RESUMO

Replication fork reversal is a global response to replication stress in mammalian cells, but precisely how it occurs remains poorly understood. Here, we show that, upon replication stress, DNA topoisomerase IIalpha (TOP2A) is recruited to stalled forks in a manner dependent on the SNF2-family DNA translocases HLTF, ZRANB3, and SMARCAL1. This is accompanied by an increase in TOP2A SUMOylation mediated by the SUMO E3 ligase ZATT and followed by recruitment of a SUMO-targeted DNA translocase, PICH. Disruption of the ZATT-TOP2A-PICH axis results in accumulation of partially reversed forks and enhanced genome instability. These results suggest that fork reversal occurs via a sequential two-step process. First, HLTF, ZRANB3, and SMARCAL1 initiate limited fork reversal, creating superhelical strain in the newly replicated sister chromatids. Second, TOP2A drives extensive fork reversal by resolving the resulting topological barriers and via its role in recruiting PICH to stalled forks.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , Genoma Humano , Instabilidade Genômica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , DNA Helicases/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Annu Rev Genet ; 53: 445-482, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31577909

RESUMO

Structural maintenance of chromosomes (SMC) complexes are key organizers of chromosome architecture in all kingdoms of life. Despite seemingly divergent functions, such as chromosome segregation, chromosome maintenance, sister chromatid cohesion, and mitotic chromosome compaction, it appears that these complexes function via highly conserved mechanisms and that they represent a novel class of DNA translocases.


Assuntos
Cromátides , Cromossomos/metabolismo , DNA/química , DNA/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos/química , Cromossomos/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Mitose , Complexos Multiproteicos/química , Regiões Promotoras Genéticas , Recombinação V(D)J , Coesinas
4.
Mol Cell ; 66(5): 581-596.e6, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552615

RESUMO

The action of DNA topoisomerase II (Top2) creates transient DNA breaks that are normally concealed inside Top2-DNA covalent complexes. Top2 poisons, including ubiquitously present natural compounds and clinically used anti-cancer drugs, trap Top2-DNA complexes. Here, we show that cells actively prevent Top2 degradation to avoid the exposure of concealed DNA breaks. A genome-wide screen revealed that fission yeast cells lacking Rrp2, an Snf2-family DNA translocase, are strongly sensitive to Top2 poisons. Loss of Rrp2 enhances SUMOylation-dependent ubiquitination and degradation of Top2, which in turn increases DNA damage at sites where Top2-DNA complexes are trapped. Rrp2 possesses SUMO-binding ability and prevents excessive Top2 degradation by competing against the SUMO-targeted ubiquitin ligase (STUbL) for SUMO chain binding and by displacing SUMOylated Top2 from DNA. The budding yeast homolog of Rrp2, Uls1, plays a similar role, indicating that this genome protection mechanism is widely employed, a finding with implications for cancer treatment.


Assuntos
Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Instabilidade Genômica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Sumoilação , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Resistência a Medicamentos , Etoposídeo/farmacologia , Genoma Fúngico/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Inibidores da Topoisomerase II/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Mol Cell ; 67(5): 882-890.e5, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886337

RESUMO

DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , DNA de Neoplasias/biossíntese , Neoplasias/enzimologia , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Origem de Replicação , Animais , Sistemas CRISPR-Cas , DNA Helicases/genética , DNA de Neoplasias/genética , DNA de Neoplasias/ultraestrutura , Células HCT116 , Células HEK293 , Humanos , Cinética , Camundongos , Mutação , Neoplasias/genética , Neoplasias/ultraestrutura , Antígeno Nuclear de Célula em Proliferação/genética , Interferência de RNA , Transfecção , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
6.
Mol Microbiol ; 117(5): 1263-1274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411648

RESUMO

In many bacteria, cell division begins before the sister chromosomes are fully segregated. Specific DNA translocases ensure that the chromosome is removed from the closing septum, such as the transmembrane protein FtsK in Escherichia coli. Bacillus subtilis contains two FtsK homologues, SpoIIIE and SftA. SftA is active during vegetative growth whereas SpoIIIE is primarily active during sporulation and pumps the chromosome into the spore compartment. FtsK and SpoIIIE contain several transmembrane helices, however, SftA is assumed to be a cytoplasmic protein. It is unknown how SftA is recruited to the cell division site. Here we show that SftA is a peripheral membrane protein, containing an N-terminal amphipathic helix that reversibly anchors the protein to the cell membrane. Using a yeast two-hybrid screen we found that SftA interacts with the conserved cell division protein SepF. Based on extensive genetic analyses and previous data we propose that the septal localization of SftA depends on either SepF or the cell division protein FtsA. Since SftA seems to interfere with the activity of SepF, and since inactivation of SepF mitigates the sensitivity of a ∆sftA mutant for ciprofloxacin, we speculate that SftA might delay septum synthesis when chromosomal DNA is in the vicinity.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Divisão Celular/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
7.
J Cell Sci ; 133(3)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31932509

RESUMO

The regulation of telomere and centromere structure and function is essential for maintaining genome integrity. Schizosaccharomyces pombe Rrp1 and Rrp2 are orthologues of Saccharomyces cerevisiae Uls1, a SWI2/SNF2 DNA translocase and SUMO-targeted ubiquitin ligase. Here, we show that Rrp1 or Rrp2 overproduction leads to chromosome instability and growth defects, a reduction in global histone levels and mislocalisation of centromere-specific histone Cnp1. These phenotypes depend on putative DNA translocase activities of Rrp1 and Rrp2, suggesting that Rrp1 and Rrp2 may be involved in modulating nucleosome dynamics. Furthermore, we confirm that Rrp2, but not Rrp1, acts at telomeres, reflecting a previously described interaction between Rrp2 and Top2. In conclusion, we identify roles for Rrp1 and Rrp2 in maintaining centromere function by modulating histone dynamics, contributing to the preservation of genome stability during vegetative cell growth.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , DNA , Instabilidade Genômica/genética , Humanos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Telômero/genética
8.
J Biol Chem ; 294(13): 5050-5059, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30723158

RESUMO

TraB is an FtsK-like DNA translocase responsible for conjugative plasmid transfer in mycelial Streptomyces Unlike other conjugative systems, which depend on a type IV secretion system, Streptomyces requires only TraB protein to transfer the plasmid as dsDNA. The γ-domain of this protein specifically binds to repeated 8-bp motifs on the plasmid sequence, following a mechanism that is reminiscent of the FtsK/SpoIIIE chromosome segregation system. In this work, we purified and characterized the enzymatic activity of TraB, revealing that it is a DNA-dependent ATPase that is highly stimulated by dsDNA substrates. Interestingly, we found that unlike the SpoIIIE protein, the γ-domain of TraB does not confer sequence-specific ATPase stimulation. We also found that TraB binds G-quadruplex DNA structures with higher affinity than TraB-recognition sequences (TRSs). An EM-based structural analysis revealed that TraB tends to assemble as large complexes comprising four TraB hexamers, which might be a prerequisite for DNA translocation across cell membranes. In summary, our findings shed light on the molecular mechanism used by the DNA-translocating motor TraB, which may be shared by other membrane-associated machineries involved in DNA binding and translocation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Streptomyces/metabolismo , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Quadruplex G , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Streptomyces/química
9.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29439991

RESUMO

Like many bacteria, Bacillus subtilis possesses two DNA translocases that affect chromosome segregation at different steps. Prior to septum closure, nonsegregated DNA is moved into opposite cell halves by SftA, while septum-entrapped DNA is rescued by SpoIIIE. We have used single-molecule fluorescence microscopy and tracking (SMT) experiments to describe the dynamics of the two different DNA translocases, the cell division protein FtsA and the glycolytic enzyme phosphofructokinase (PfkA), in real time. SMT revealed that about 30% of SftA molecules move through the cytosol, while a fraction of 70% is septum bound and static. In contrast, only 35% of FtsA molecules are static at midcell, while SpoIIIE molecules diffuse within the membrane and show no enrichment at the septum. Several lines of evidence suggest that FtsA plays a role in septal recruitment of SftA: an ftsA deletion results in a significant reduction in septal SftA recruitment and a decrease in the average dwell time of SftA molecules. FtsA can recruit SftA to the membrane in a heterologous eukaryotic system, suggesting that SftA may be partially recruited via FtsA. Therefore, SftA is a component of the division machinery, while SpoIIIE is not, and it is otherwise a freely diffusive cytosolic enzyme in vivo Our developed SMT script is a powerful technique to determine if low-abundance proteins are membrane bound or cytosolic, to detect differences in populations of complex-bound and unbound/diffusive proteins, and to visualize the subcellular localization of slow- and fast-moving molecules in live cells.IMPORTANCE DNA translocases couple the late events of chromosome segregation to cell division and thereby play an important role in the bacterial cell cycle. The proteins fall into one of two categories, integral membrane translocases or nonintegral translocases. We show that the membrane-bound translocase SpoIIIE moves slowly throughout the cell membrane in B. subtilis and does not show a clear association with the division septum, in agreement with the idea that it binds membrane-bound DNA, which can occur through cell division across nonsegregated chromosomes. In contrast, SftA behaves like a soluble protein and is recruited to the division septum as a component of the division machinery. We show that FtsA contributes to the recruitment of SftA, revealing a dual role of FtsA at the division machinery, but it is not the only factor that binds SftA. Our work represents a detailed in vivo study of DNA translocases at the single-molecule level.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Divisão Celular/genética
10.
Proc Natl Acad Sci U S A ; 112(7): 2006-10, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646438

RESUMO

RNA polymerase (RNAP) loses activity during transcription as it stalls at various inactive states due to erratic translocation. Reactivation of these stalled RNAPs is essential for efficient RNA synthesis. Here we report a 4.7-Å resolution crystal structure of the Escherichia coli RNAP core enzyme in complex with ATPase RapA that is involved in reactivating stalled RNAPs. The structure reveals that RapA binds at the RNA exit channel of the RNAP and makes the channel unable to accommodate the formation of an RNA hairpin. The orientation of RapA on the RNAP core complex suggests that RapA uses its ATPase activity to propel backward translocation of RNAP along the DNA template in an elongation complex. This structure provides insights into the reactivation of stalled RNA polymerases and helps support ATP-driven backward translocation as a general mechanism for transcriptional regulation.


Assuntos
Proteínas de Escherichia coli/fisiologia , Transcrição Gênica/fisiologia , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Modelos Moleculares
11.
J Biol Chem ; 291(25): 13040-7, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129284

RESUMO

Saccharomyces cerevisiae RNA polymerase (Pol) II locates transcription start sites (TSS) at TATA-containing promoters by scanning sequences downstream from the site of preinitiation complex formation, a process that involves the translocation of downstream promoter DNA toward Pol II. To investigate a potential role of yeast Pol II transcription in TSS scanning, HIS4 promoter derivatives were generated that limited transcripts in the 30-bp scanned region to two nucleotides in length. Although we found that TSS scanning does not require RNA synthesis, our results revealed that transcription in the purified yeast basal system is largely ATP-independent despite a requirement for the TFIIH DNA translocase subunit Ssl2. This result is rationalized by our finding that, although they are poorer substrates, UTP and GTP can also be utilized by Ssl2. ATPγS is a strong inhibitor of rNTP-fueled translocation, and high concentrations of ATPγS make transcription completely dependent on added dATP. Limiting Pol II function with low ATP concentrations shifted the TSS position downstream. Combined with prior work, our results show that Pol II transcription plays an important role in TSS selection but is not required for the scanning reaction.


Assuntos
RNA Polimerase II/fisiologia , Saccharomyces cerevisiae/enzimologia , Sítio de Iniciação de Transcrição , Sequência de Bases , DNA Helicases/química , DNA Helicases/fisiologia , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Polimerase II/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/fisiologia , Transcrição Gênica
12.
Plant J ; 88(4): 521-530, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27458713

RESUMO

DNA lesions such as crosslinks represent obstacles for the replication machinery. Nonetheless, replication can proceed via the DNA damage tolerance pathway also known as postreplicative repair pathway. SNF2 ATPase Rad5 homologs, such as RAD5A of the model plant Arabidopsis thaliana, are important for the error-free mode of this pathway. We able to demonstrate before, that RAD5A is a key factor in the repair of DNA crosslinks in Arabidopsis. Here, we show by in vitro analysis that AtRAD5A protein is a DNA translocase able to catalyse fork regression. Interestingly, replication forks with a gap in the leading strand are processed best, in line with its suggested function. Furthermore AtRAD5A catalyses branch migration of a Holliday junction and is furthermore not impaired by the DNA binding of a model protein, which is indicative of its ability to displace other proteins. Rad5 homologs possess HIRAN (Hip116, Rad5; N-terminal) domains. By biochemical analysis we were able to demonstrate that the HIRAN domain variant from Arabidopsis RAD5A mediates structure selective DNA binding without the necessity for a free 3'OH group as has been shown to be required for binding of HIRAN domains in a mammalian RAD5 homolog. The biological importance of the HIRAN domain in AtRAD5A is demonstrated by our result that it is required for its function in DNA crosslink repair in vivo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , DNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA/química , Dano ao DNA/genética , Dano ao DNA/fisiologia , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Ligação Proteica
13.
Proc Natl Acad Sci U S A ; 111(11): 4037-42, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24554077

RESUMO

Transcription-coupled nucleotide excision repair (TCR) accelerates the removal of noncoding lesions from the template strand of active genes, and hence contributes to genome-wide variations in mutation frequency. Current models for TCR suppose that a lesion must cause RNA polymerase (RNAP) to stall if it is to be a substrate for accelerated repair. We have examined the substrate requirements for TCR using a system in which transcription stalling and damage location can be uncoupled. We show that Mfd-dependent TCR in bacteria involves the formation of a damage search complex that can detect lesions downstream of a stalled RNAP, and that the strand specificity of the accelerated repair pathway is independent of the requirement for a lesion to stall RNAP. We also show that an ops (operon polarity suppressor) transcription pause site, which causes backtracking of RNAP, can promote the repair of downstream lesions when those lesions do not themselves cause the polymerase to stall. Our findings indicate that the transcription-repair coupling factor Mfd, which is an ATP-dependent superfamily 2 helicase that binds to RNAP, continues to translocate along DNA after RNAP has been displaced until a lesion in the template strand is located. The discovery that pause sites can promote the repair of nonstalling lesions suggests that TCR pathways may play a wider role in modulating mutation frequencies in different parts of the genome than has previously been suspected.


Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Genoma Bacteriano/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/metabolismo , Plasmídeos/genética
14.
Exploration (Beijing) ; 3(2): 20210056, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37324034

RESUMO

Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.

15.
DNA Repair (Amst) ; 116: 103354, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738143

RESUMO

Mitotic DNA synthesis, also known as MiDAS, has been suggested to be a form of RAD52-dependent break-induced replication (BIR) that repairs under-replicated DNA regions of the genome in mitosis prior to chromosome segregation. Cockayne syndrome group B (CSB) protein, a chromatin remodeler of the SNF2 family, has been implicated in RAD52-dependent BIR repair of stalled replication forks. However, whether CSB plays a role in MiDAS has not been characterized. Here, we report that CSB functions epistatically with RAD52 to promote MiDAS at common fragile sites in response to replication stress, and prevents genomic instability associated with defects in MiDAS. We show that CSB is dependent upon the conserved phenylalanine at position 796 (F796), which lies in the recently-reported pulling pin that is required for CSB's translocase activity, to mediate MiDAS, suggesting that CSB uses its DNA translocase activity to promote MiDAS. Structural analysis reveals that CSB shares with a subset of SNF2 family proteins a translocase regulatory region (TRR), which is important for CSB's function in MiDAS. We further demonstrate that phosphorylation of S1013 in the TRR regulates the function of CSB in MiDAS and restart of stalled forks but not in fork degradation in BRCA2-deficient cells and UV repair. Taken together, these results suggest that the DNA translocase activity of CSB in vivo is likely to be highly regulated by post-translational modification in a context-specific manner.


Assuntos
Síndrome de Cockayne , Cromatina , Síndrome de Cockayne/genética , DNA/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo
16.
Front Cell Dev Biol ; 9: 670392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041245

RESUMO

During genome replication, replication forks often encounter obstacles that impede their progression. Arrested forks are unstable structures that can give rise to collapse and rearrange if they are not properly processed and restarted. Replication fork reversal is a critical protective mechanism in higher eukaryotic cells in response to replication stress, in which forks reverse their direction to form a Holliday junction-like structure. The reversed replication forks are protected from nuclease degradation by DNA damage repair proteins, such as BRCA1, BRCA2, and RAD51. Some of these molecules work cooperatively, while others have unique functions. Once the stress is resolved, the replication forks can restart with the help of enzymes, including human RECQ1 helicase, but restart will not be considered here. Here, we review research on the key factors and mechanisms required for the remodeling and protection of stalled replication forks in mammalian cells.

17.
Cell Biosci ; 4(1): 54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276341

RESUMO

Biomotors are extensively involved in biological processes including cell mitosis, bacterial binary fission, DNA replication, DNA repair, homologous recombination, Holliday junction resolution, RNA transcription, and viral genome packaging. Traditionally, they were classified into two categories including linear and rotation motors. In 2013, a third class of motor by revolution mechanism without rotation was discovered. In this issue of "Structure and mechanisms of nanomotors in the cells", four comprehensive reviews are published to address the latest advancements of the structure and motion mechanism of a variety of biomotors in archaea, animal viruses, bacteria, and bacteriophages.

18.
Cell Biosci ; 4: 30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940480

RESUMO

BACKGROUND: Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. RESULTS: Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left-handed twist of dsDNA that is aligned with the channel could occur due to the conformational change of the phage motor channels from a left-handed configuration for DNA entry to a right-handed configuration for DNA ejection for host cell infection. CONCLUSIONS: The revolution motor is widespread among biological systems, and can be distinguished from rotation motors by channel size and chirality. The revolution mechanism renders dsDNA void of coiling and torque during translocation of the lengthy helical chromosome, thus resulting in more efficient motor energy conversion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa