Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 119(8): 2115-2121, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470424

RESUMO

A continuous viral inactivation (CVI) tubular reactor was designed for low pH viral inactivation within a continuous downstream system across multiple scales of operation. The reactors were designed to provide a minimum residence time of >60 min. The efficacy of this tubular reactor was tested with xenotropic murine leukemia virus (X-MuLV) through pulse injection experiments. It was determined that the minimum residence time of the small-scale reactor design, when operated at the target process flow rate, occurred between 63 and 67 min. Inactivation kinetics were compared between continuous operation and standard batch practices using three monoclonal antibodies. The quantification of the virus log reduction values (LRV) was similar between the two modes of operation and most of the acid-treated samples had virus concentrations below the limit of detection. However, residual infectivity was still present in the endpoint batch samples of two experiments while the continuous samples always remained below the limit of detection. This provides the foundation for leveraging a standard batch-based model to quantify the LRV for a CVI unit operation.


Assuntos
Inativação de Vírus , Animais , Concentração de Íons de Hidrogênio , Cinética , Vírus da Leucemia Murina/fisiologia , Camundongos
2.
Biotechnol Bioeng ; 118(9): 3367-3374, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33638416

RESUMO

As part of a viral mitigating strategy for continuous bioprocessing, that utilizes a plug flow reactor (PFR) for continuous viral inactivation (CVI), understanding the minimum residence time as a function of reactor scale and operational conditions is critical. An empirical-based model was utilized to calculate the minimum duration a virus particle experiences within a plug flow reactor as a function of reactor design and operational conditions. This empirical model's calculations were challenged by pulse injecting the bacteriophage ΦX-174 in non-inactivating conditions and monitoring the discharge of the PFR with infectivity assays. The initial proposed empirical model, with the constraint of requiring an operational Dean number of >100, proved to be effective at calculating first breakthrough of ΦX-174 but only for the appropriate Dean number conditions. With the knowledge gained from the first empirical model, a second was generated to eliminate the Dean number constraint. This second modified empirical model proved to be successful at calculating the first breakthrough at all Dean number's tested, however CVI operation at the lower Dean's number will lead to an increased asymmetry (i.e., increased tailing) in the residence time distribution.


Assuntos
Bacteriófago phi X 174 , Reatores Biológicos , Modelos Biológicos , Inativação de Vírus
3.
Biotechnol Bioeng ; 117(3): 637-645, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31709510

RESUMO

A continuous viral inactivation (CVI) chamber has been designed to operate with acceptable residence time distribution (RTD) characteristics. However, altering the CVI's geometry and operation to accommodate the scale was not obvious. In this work, we elucidate the influence of Dean vortices and leverage the transition into the weak turbulent regime to establish relationships between input variables and process outputs. This study was targeted to understand and quantify the impact of viscosity, Dean number, internal diameter, and path length on the RTD. When the Dean number exceeds 70, radial mixing generated by the Dean vortices began to consistently alter the axial dispersive effects experienced by the pulse injection. Increasing to a Dean number of >100, the axial dispersive effects were dominated by the Dean vortices which allowed the calculation of the minimum and maximum residence time to be generated. This work provides a method to calculate operational solutions for a tubular incubation reactor in terms of path length, internal diameter, flow rate, and target minimum and maximum residence time specifications that assures both viral residence times while also establishing criteria to maximize product quality during continuous operation.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Biotecnologia/normas , Inativação de Vírus , Anticorpos Monoclonais , Produtos Biológicos/normas , Concentração de Íons de Hidrogênio , Reologia , Viscosidade
4.
Electrophoresis ; 39(3): 512-520, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29168894

RESUMO

To explore and utilize the advantages of droplet-based microfluidics, hydrodynamics, and mixing process within droplets traveling though the T junction channel and convergent-divergent sinusoidal microchannels are studied by numerical simulations and experiments, respectively. In the T junction channel, the mixing efficiency is significantly influenced by the twirling effect, which controls the initial distributions of the mixture during the droplet formation stage. Therefore, the internal recirculating flow can create a convection mechanism, thus improving mixing. The twirling effect is noticeably influenced by the velocity of the continuous phase; in the sinusoidal channel, the Dean vortices and droplet deformation are induced by centrifugal force and alternative velocity gradient, thus enhancing the mixing efficiency. The best mixing occurred when the droplet size is comparable with the channel width. Finally, we propose a unique optimized structure, which includes a T junction inlet joined to a sinusoidal channel. In this structure, the mixing of fluids in the droplets follows two routes: One is the twirling effect and symmetric recirculation flow in the straight channel. The other is the asymmetric recirculation and droplet deformation in the winding and variable cross-section. Among the three structures, the optimized structure has the best mixing efficiency at the shortest mixing time (0.25 ms). The combination of the twirling effect, variable cross-section effect, and Dean vortices greatly intensifies the chaotic flow. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Dimetilpolisiloxanos/química , Desenho de Equipamento/instrumentação , Hidrodinâmica , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Químicos , Tamanho da Partícula , Reologia , Soluções , Propriedades de Superfície , Fatores de Tempo
5.
Eur J Mech B Fluids ; 107: 165-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220585

RESUMO

The cochlea, situated within the inner ear, is a spiral-shaped, liquid-filled organ responsible for hearing. The physiological significance of its shape remains uncertain. Previous research has scarcely addressed the occurrence of transverse flow within the cochlea, particularly in relation to its unique shape. This study aims to investigate the impact of the geometric features of the cochlea on fluid dynamics by characterizing transverse flow induced by harmonically oscillating axial flow in square ducts with curvature and torsion resembling human cochlear anatomy. We examined four geometries to investigate curvature and torsion effects on axial and transverse flow components. Twelve frequencies from 0.125 Hz to 256 Hz were studied, covering infrasound and low-frequency hearing, with mean inlet velocity amplitudes representing levels expected for normal conversation or louder situations. Our simulations show that torsion contributes significantly to transverse flow in unsteady conditions, and that its contribution increases with increasing oscillation frequency. Curvature alone has a small effect on transverse flow strength, which decreases rapidly with increasing frequency. Strikingly, the combined effect of curvature and torsion on transverse flow is greater than expected from a simple superposition of the two effects, especially when the relative contribution of curvature alone becomes negligible. These findings may be relevant to understanding physiological processes in the cochlea, including metabolite transport and wall shear stress. Further studies are needed to investigate possible implications for cochlear mechanics.

6.
Nanomaterials (Basel) ; 10(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916991

RESUMO

A new micro heat exchanger was analyzed using numerical formulation of conjugate heat transfer for single-phase fluid flow across copper microchannels. The flow across bent channels harnesses asymmetric laminar flow and dean vortices phenomena for heat transfer enhancement. The single-channel analysis was performed to select the bent channel aspect ratio by varying width and height between 35-300 µm for Reynolds number and base temperature magnitude range of 100-1000 and 320-370 K, respectively. The bent channel results demonstrate dean vortices phenomenon at the bend for Reynolds number of 500 and above. Thermal performance factor analysis shows an increase of 18% in comparison to straight channels of 200 µm width and height. Alumina nanoparticles at 1% and 3% concentration enhance the Nusselt number by an average of 10.4% and 23.7%, respectively, whereas zirconia enhances Nusselt number by 16% and 33.9% for same concentrations. On the other hand, thermal performance factor analysis shows a significant increase in pressure drop at high Reynolds number with 3% particle concentration. Using zirconia for nanofluid, Nusselt number of the bent multi-channel model is improved by an average of 18% for a 3% particle concentration as compared to bent channel with deionized water.

7.
Vaccine ; 36(29): 4215-4221, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29891350

RESUMO

Foetal Bovine Serum (FBS) and porcine trypsin are one of the essential raw materials used in the manufacturing of cell culture based viral vaccines. Being from animal origin, these raw materials can potentially contaminate the final product by known or unknown adventitious agents. The issue is more serious in case of live attenuated viral vaccines, where there is no inactivation step which can take care of such adventitious agents. It is essential to design production processes which can offer maximum viral clearance potential for animal origin products. Ultraviolet-C irradiation is known to inactivate various adventitious viral agents; however there are limited studies on ultraviolet inactivation of viruses in liquid media. We obtained a recently developed UVivatec ultraviolet-C (UV-C) irradiation based viral clearance system for evaluating its efficacy to inactivate selected model viruses. This system has a unique design with spiral path of liquid allowing maximum exposure to UV-C light of a short wavelength of 254 nm. Five live attenuated vaccine viruses and four other model viruses were spiked in tissue culture media and exposed to UV-C irradiation. The pre and post UV-C irradiation samples were analyzed for virus content to find out the extent of inactivation of various viruses. These experiments showed substantial log reduction for the majority of the viruses with few exceptions based on the characteristics of these viruses. Having known the effect of UV irradiation on protein structure, we also evaluated the post irradiation samples of culture media for growth promoting properties using one of the most fastidious human diploid cells (MRC-5). UV-C exposure did not show any notable impact on the nutritional properties of culture media. The use of an UV-C irradiation based system is considered to be promising approach to mitigate the risk of adventitious agents in cell culture media arising through animal derived products.


Assuntos
Desinfecção/métodos , Viabilidade Microbiana/efeitos da radiação , Soro/virologia , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Desinfecção/instrumentação , Tecnologia Farmacêutica/instrumentação , Tecnologia Farmacêutica/métodos
8.
J Biomech ; 65: 12-22, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29102268

RESUMO

The flow of cells through curved vessels is often encountered in various biomedical and bioengineering applications, such as red blood cells (RBCs) passing through the curved arteries in circulation, and cells sorting through a shear-induced migration in a curved channels. Most of past numerical studies focused on the cell deformation in small straight microvessels, or on the flow pattern in large curved vessels without considering the cell deformation. However, there have been few attempts to study the cell deformation and the associated flow pattern in a curved microvessel. In this work, a particle-based method, smoothed dissipative particle dynamics (SDPD), is used to simulate the motion and deformation of a RBC in a curved microvessel of diameter comparable to the RBC diameter. The emphasis is on the effects of the curvature, the type and the size of the curved microvessel on the RBC deformation and the flow pattern. The simulation results show that a small curved shape of the microvessel has negligible effect on the RBC behavior and the flow pattern which are similar to those in a straight microvessel. When the microvessel is high in curvature, the secondary flow comes into being with a pair of Dean vortices, and the velocity profile of the primary flow is skewed toward the inner wall of the microvessel. The RBC also loses the axisymmetric deformation, and it is stretched first and then shrinks when passing through the curved part of the microvessel with the large curvature. It is also found that a pair of Dean vortices arise only under the condition of De>1 (De is the Dean number, a ratio of centrifugal to viscous competition). The Dean vortices are more easily observed in the larger or more curved microvessels. Finally, it is observed that the velocity profile of primary flow is skewed toward the inner wall of curved microvessel, i.e., the fluid close to the inner wall flows faster than that close to the outer wall. This is contrary to the common sense in large curved vessels. This velocity skewness was found to depend on the curvature of the microvessel, as well as the viscous and inertial forces.


Assuntos
Eritrócitos/fisiologia , Microvasos/fisiologia , Modelos Cardiovasculares , Simulação por Computador , Humanos , Movimento (Física) , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa