Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(19): 3979-3991.e4, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375584

RESUMO

Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , DNA Fúngico/genética , Hereditariedade , Heterocromatina/genética , Sequências Reguladoras de Ácido Nucleico , Schizosaccharomyces/genética , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/metabolismo , Epigênese Genética , Regulação Fúngica da Expressão Gênica , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Nucleus ; 10(1): 93-115, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31068058

RESUMO

During meiosis, homologous chromosomes undergo a dramatic movement in order to correctly align. This is a critical meiotic event but the molecular properties of this 'chromosomal dance' still remainunclear. We identified DEB-1 - an orthologue of mammalian vinculin - as a new component of the mechanistic modules responsible for attaching the chromosomes to the nuclear envelope as apart of the LINC complex. In early meiotic nuclei of C. elegans, DEB-1 is localized to the nuclear periphery and alongside the synaptonemal complex of paired homologues. Upon DEB-1 depletion, chromosomes attached to SUN-1 foci remain highly motile until late pachytene. Although the initiation of homologue pairing started normally, irregularities in the formation of the synaptonemal complex occur, and these results in meiotic defects such as increased number of univalents at diakinesis and high embryonic lethality. Our data identify DEB-1 as a new player regulating chromosome dynamics and pairing during meiotic prophase I.


Assuntos
Caenorhabditis elegans/genética , Pareamento Cromossômico/genética , Cromossomos/genética , Meiose/genética , Vinculina/genética , Animais
3.
Toxicol Rep ; 1: 36-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28962224

RESUMO

Isoprene, a possible carcinogen, is a petrochemical and a natural product being primarily produced by plants. It is biotransformed to 2-ethenyl-2-methyloxirane (IP-1,2-O) and 2-(1-methylethenyl)oxirane (IP-3,4-O), both of which can be further metabolized to 2-methyl-2,2'-bioxirane (MBO). MBO is mutagenic, but IP-1,2-O and IP-3,4-O are not. While IP-1,2-O has been reported being genotoxic, the genotoxicity of IP-3,4-O and MBO, and the cross-linking potential of MBO have not been examined. In the present study, we used the comet assay to investigate the concentration- and time-dependent genotoxicity profiles of the three metabolites and the cross-linking potential of MBO in human hepatocyte L02 cells. For the incubation time of 1 h, all metabolites showed positive concentration-dependent profiles with a potency rank order of IP-3,4-O > MBO > IP-1,2-O. In human hepatocellular carcinoma (HepG2) and human leukemia (HL60) cells, IP-3,4-O was still more potent in inducing DNA breaks than MBO at high concentrations (>200 µM), although at low concentrations (≤200 µM) IP-3,4-O exhibited slightly lower or similar potency to MBO. Interestingly, their time-dependent genotoxicity profiles (0.5-4 h) in L02 cells were different from each other: IP-1,2-O and MBO (200 µM) exhibited negative and positive profiles, respectively, with IP-3,4-O lying in between, namely, IP-3,4-O-caused DNA breaks did not change over the exposure time. Further experiments demonstrated that hydrolysis of IP-1,2-O contributed to the negative profile and MBO induced cross-links at high concentrations and long incubation times. Collectively, the results suggested that IP-3,4-O might play a significant role in the toxicity of isoprene.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa