Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.105
Filtrar
Mais filtros

Eixos temáticos
País como assunto
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(7): 7686-7701, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057096

RESUMO

The importance of decellularized extracellular matrix (dECM) as a natural biomaterial in tissue engineering and regenerative medicine is rapidly growing. The core objective of the decellularization process is to eliminate cellular components while maximizing the preservation of the ECM's primary structure and components. Establishing a rapid, effective, and minimally destructive decellularization technique is essential for obtaining high-quality dECM to construct regenerative organs. This study focused on human umbilical cord tissue, designing different reagent combinations for decellularization protocols while maintaining a consistent processing time. The impact of these protocols on the decellularization efficiency of human umbilical cord tissue was evaluated. The results suggested that the composite decellularization strategy utilizing trypsin/EDTA + Triton X-100 + sodium deoxycholate was the optimal approach in this study for preparing decellularized human umbilical cord dECM. After 5 h of decellularization treatment, most cellular components were eliminated, confirmed through dsDNA quantitative detection, hematoxylin and eosin (HE) staining, and DAPI staining. Meanwhile, Masson staining, periodic acid-silver methenamine (PASM) staining, periodic acid-Schiff (PAS) staining, and immunofluorescent tissue section staining results revealed that the decellularized scaffold retained extracellular matrix components, including collagen and glycosaminoglycans (GAGs). Compared to native umbilical cord tissue, electron microscopy results demonstrated that the microstructure of the extracellular matrix was well preserved after decellularization. Furthermore, Fourier-transform infrared spectroscopy (FTIR) findings indicated that the decellularization process successfully retained the main functional group structures of extracellular matrix (ECM) components. The quantitative analysis of collagen, elastin, and GAG content validated the advantages of this decellularization process in preserving and purifying ECM components. Additionally, it was confirmed that this decellularized matrix exhibited no cytotoxicity in vitro. This study achieved short-term decellularization preparation for umbilical cord tissue through a combined decellularization strategy.

2.
Mol Med ; 30(1): 7, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200442

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is considered an important pathological basis for spinal degenerative diseases. Tissue engineering is a powerful therapeutic strategy that can effectively restore the normal biological properties of disc units. In this study, hydrogels loaded with growth/differentiation factor 5 (GDF5) and stem cells were combined to provide an effective strategy for nucleus pulposus regeneration. METHODS: Nucleus pulposus stem cells (NPSCs) were obtained by low-density inoculation and culture, and their stem cell characteristics were verified by flow cytometry and a tri-lineage-induced differentiation experiment. A decellularized nucleus pulposus matrix (DNPM) and chitosan hybrid hydrogel was prepared, and GDF5-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were incorporated into the hydrogels to obtain a composite hydrogels with GDF5-loaded microspheres. Taking bone marrow mesenchymal stem cells (BMSCs) as a reference, the effect of composite hydrogels with GDF5-loaded microspheres on the chondrogenic differentiation of NPSCs was evaluated. A model of intervertebral disc degeneration induced by acupuncture on the tail of rats was constructed, and the repair effect of composite hydrogels with GDF5-loaded microspheres combined with NPSCs on IDD was observed. RESULTS: Stem cell phenotype identification, stemness gene expression and tri-lineage-induced differentiation confirmed that NPSCs had characteristics similar to those of BMSCs. The rat DNPM and chitosan hybrid hydrogels had good mechanical properties, and the GDF5-loaded microspheres sustainably released GDF5. NPSCs grew normally in the composite hydrogels and gradually expressed a chondrocyte phenotype. Animal experiments showed that the composite hydrogels with GDF5-loaded microspheres combined with NPSCs effectively promoted nucleus pulposus regeneration and that the effect of the hydrogels on the repair of IDD was significantly better than that of BMSCs. CONCLUSION: GDF5-loaded microspheres combined with DNPM/chitosan composite hydrogels can effectively promote the differentiation of NPSCs into nucleus pulposus-like cells and effectively preventIDD.


Assuntos
Quitosana , Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Ratos , Hidrogéis , Degeneração do Disco Intervertebral/terapia , Microesferas , Células-Tronco
3.
Biochem Biophys Res Commun ; 736: 150511, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39128269

RESUMO

Mesenchymal stromal/stem cells (MSCs) and their secretome are known to exert beneficial effects in many pathological states. However, MSCs therapeutic properties can be reduced due to unsuitable in vitro maintenance conditions. Standard culture protocols neglect the fact that MSCs exist in vivo in the closest connection with the extracellular matrix (ECM), the complex protein network providing an instructive microenvironment. We found recently that conditioned medium from human endometrial MSCs cultured on cell-derived decellularized extracellular matrix (CM-dECM) is dramatically enriched in a number of paracrine factors such as GM-CSF, FGF-2, HGF, MMP-1, MCP-1, IL-6, IL-8, CXCL-1, -2, -5, -6 (Ushakov et al., 2024). Given that several upregulated molecules belong to myokines that are known to participate in skeletal muscle regeneration, we hypothesized that CM-dECM may promote restoration of damaged muscle tissue. Here, we found that CM-dECM injections into barium chloride-injured murine m. tibialis anterior caused myofiber hypertrophy and promoted angiogenesis. Besides, CM-dECM significantly contributed to progression of murine C2C12 myoblasts cell cycle suggesting that muscle repair in vivo may be connected with stimulation of resident myoblasts proliferation. In this study, a role for secretome of endometrial MSCs cultured on dECM in injured murine skeletal muscle regeneration was outlined first. Our findings demonstrate that culture on dECM may be considered as a novel preconditioning approach enhancing MSCs therapeutic potential.

4.
Small ; 20(23): e2308815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161254

RESUMO

Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.


Assuntos
Encéfalo , Diferenciação Celular , Matriz Extracelular , Laminina , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/química , Encéfalo/metabolismo , Animais , Neurônios/metabolismo , Doenças Neuroinflamatórias/metabolismo , Suínos , Astrócitos/metabolismo , Microglia/metabolismo , Inflamação/patologia
5.
Small ; 20(11): e2304088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939310

RESUMO

The use of natural cartilage extracellular matrix (ECM) has gained widespread attention in the field of cartilage tissue engineering. However, current approaches for delivering functional scaffolds for osteoarthritis (OA) therapy rely on knee surgery, which is limited by the narrow and complex structure of the articular cavity and carries the risk of injuring surrounding tissues. This work introduces a novel cell microcarrier, magnetized cartilage ECM-derived scaffolds (M-CEDSs), which are derived from decellularized natural porcine cartilage ECM. Human bone marrow mesenchymal stem cells are selected for their therapeutic potential in OA treatments. Owing to their natural composition, M-CEDSs have a biomechanical environment similar to that of human cartilage and can efficiently load functional cells while maintaining high mobility. The cells are released spontaneously at a target location for at least 20 days. Furthermore, cell-seeded M-CEDSs show better knee joint function recovery than control groups 3 weeks after surgery in preclinical experiments, and ex vivo experiments reveal that M-CEDSs can rapidly aggregate inside tissue samples. This work demonstrates the use of decellularized microrobots for cell delivery and their in vivo therapeutic effects in preclinical tests.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Animais , Suínos , Humanos , Cartilagem Articular/fisiologia , Engenharia Tecidual , Matriz Extracelular/química , Fenômenos Magnéticos , Alicerces Teciduais/química
6.
J Biomed Sci ; 31(1): 7, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221607

RESUMO

Three-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment (TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant context. One of the key benefits of 3D cell culture in cancer research is the ability to recapitulate the complex interactions between cancer cells and their surrounding stroma. Tumors consist not only of cancer cells but also various other cell types, including stromal cells, immune cells, and blood vessels. These models bridge traditional 2D cell cultures and animal models, offering a cost-effective, scalable, and ethical alternative for preclinical research. As the field advances, 3D cell cultures are poised to play a pivotal role in understanding cancer biology and accelerating the development of effective anticancer therapies. This review article highlights the key advantages of 3D cell cultures, progress in the most common scaffold-based culturing techniques, pertinent literature on their applications in cancer research, and the ongoing challenges.


Assuntos
Neoplasias , Alicerces Teciduais , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões , Microambiente Tumoral
7.
Biotechnol Bioeng ; 121(1): 157-175, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37691171

RESUMO

Recent developments in the field of regenerative surgeries and medical applications have led to a renewed interest in adipose tissue-enriched mesenchymal stem cell scaffolds. Various advantages declared for the decellularized adipose matrix (DAM) have caused its extensive use in the transfer of stem cells or growth factors for soft tissue regeneration induction. Meanwhile, the long-term application of detergents toward DAM regeneration has been assumed as a risky obstacle in this era. Herein, a rapid, mechanical protocol was developed to prepare DAM (M-DAM) without chemicals/enzymes and was comprehensively compared with the ordinary DAM (traditional chemical method). Accordingly, this method could effectively hinder oils and cells, sustain the structural and biological elements, and contain a superior level of collagen content. In addition, more protein numbers, as well as higher basement membrane elements, glycoproteins, and extracellular matrix-related proteins were detected in the regenerated M-DAM. Also, superior adipogenesis and angiogenesis proteins were distinguished. The noncytotoxicity of the M-DAM was also approved, and a natural ecological niche was observed for the proliferation and differentiation of stem cells, confirming its great potential for vascularization and adipogenesis in vivo. The suggested technique could effectively prepare the modified DAM in variant constructions of tablets, powders, emulsions, hydrogels, and different three-dimensional-printed structures. Hence, this rapid, mechanical process can produce bioactive DAM, which has the potential to be widely used in various research fields of regenerative medicine.


Assuntos
Adipogenia , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Matriz Extracelular/metabolismo , Tecido Adiposo , Diferenciação Celular , Obesidade/metabolismo , Engenharia Tecidual/métodos
8.
Biotechnol Bioeng ; 121(4): 1453-1464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234099

RESUMO

An ideal antibacterial wound dressing with strong antibacterial behavior versus highly drug-resistant bacteria and great wound-healing capacity is still being developed. There is a clinical requirement to progress the current clinical cares that fail to fully restore the skin structure due to post-wound infections. Here, we aim to introduce a novel two-layer wound dressing using decellularized bovine skin (DBS) tissue and antibacterial nanofibers to design a bioactive scaffold with bio-mimicking the native extracellular matrix of both dermis and epidermis. For this purpose, polyvinyl alcohol (PVA)/chitosan (CS) solution was loaded with antibiotics (colistin and meropenem) and electrospun on the surface of the DBS scaffold to fabricate a two-layer antibacterial wound dressing (DBS-PVA/CS/Abs). In detail, the characterization of the fabricated scaffold was conducted using biomechanical, biological, and antibacterial assays. Based on the results, the fabricated scaffold revealed a homogenous three-dimensional microstructure with a connected pore network, a high porosity and swelling ratio, and favorable mechanical properties. In addition, according to the cell culture result, our fabricated two-layer scaffold surface had a good interaction with fibroblast cells and provided an excellent substrate for cell proliferation and attachment. The antibacterial assay revealed a strong antibacterial activity of DBS-PVA/CS/Abs against both standard strain and multidrug-resistant clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. Our bilayer antibacterial wound dressing is strongly suggested as an admirable wound dressing for the management of infectious skin injuries and now promises to advance with preclinical and clinical research.


Assuntos
Quitosana , Nanofibras , Infecção dos Ferimentos , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/química , Pele , Cicatrização , Quitosana/química , Álcool de Polivinil/química , Infecção dos Ferimentos/tratamento farmacológico , Nanofibras/química
9.
Biotechnol Appl Biochem ; 71(2): 387-401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38082540

RESUMO

An ideal scaffold for skin tissue engineering should have a suitable potential for antibacterial activity, no hemolysis, sufficient porosity for air exchange, water retention capacity, and a suitable swelling rate to maintain tissue moisture. Considering this issue, our study used decellularized ovine pericardial tissue's extracellular matrix (ECM). These scaffolds were decellularized with sodium dodecyl sulfate (SDS) and sodium deoxycholate (SD) detergents along with vacuum methods. Following imaging with scanning electron microscopy (SEM), analysis of the mechanical properties, and the measurement of the amount of DNA, collagen, and glycosaminoglycan (GAG), our study observed that the three-dimensional (3D) structure of ECM was largely preserved. Resveratrol (RES) 400 µg/µL was loaded into the above scaffold, and analysis revealed that scaffolds containing RES and with vacuum reported higher antibacterial properties, a higher swelling rate, and increased water retention capacity. The biocompatibility and hemocompatibility properties of the above scaffolds also reported a significant difference between methods of decellularization.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Ovinos , Animais , Engenharia Tecidual/métodos , Resveratrol/farmacologia , Matriz Extracelular/química , Pericárdio , Antibacterianos , Água , Alicerces Teciduais/química
10.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736214

RESUMO

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Assuntos
Tecido Adiposo , Diferenciação Celular , Fibrina , Insulina , Células-Tronco , Humanos , Diferenciação Celular/efeitos dos fármacos , Fibrina/química , Fibrina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Insulina/metabolismo , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Matriz Extracelular Descelularizada/farmacologia , Âmnio/citologia , Âmnio/metabolismo , Âmnio/química
11.
Biologicals ; 86: 101767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704951

RESUMO

Decellularization is a novel technique employed for scaffold manufacturing, as a strategy for skeletal muscle (SM) tissue engineering applications. However, poor decellularization efficacy is still a problem for the use of decellularized scaffolds as truly biocompatible biomaterials. For recellularization, adipose-derived stem cells (ASCs) are a good option, due to their immunomodulatory and pro-regenerative capacity, but few studies have described their combination with muscle-decellularized matrices (mDMs). This work aimed to evaluate the efficiency of four multi-step decellularization protocols to produce mDMs and to investigate in vitro biocompatibility with ASCs. Here, we described the different efficacies of muscle decellularization methods, suggesting the need for stricter standardization of the method, considering the large range of applications in SM tissue engineering, which is also a promising platform for preclinical studies with rat disease models using autologous cells.


Assuntos
Tecido Adiposo , Músculo Esquelético , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Animais , Músculo Esquelético/citologia , Tecido Adiposo/citologia , Alicerces Teciduais/química , Ratos , Células-Tronco/citologia , Células-Tronco/metabolismo , Matriz Extracelular Descelularizada/química , Humanos , Células Cultivadas
12.
Artigo em Inglês | MEDLINE | ID: mdl-38839698

RESUMO

PURPOSE: This study examined SSC proliferation on an epididymosome-enriched decellularized testicular matrix (DTM) hydrogel and spermatogenesis induction in azoospermic mice. METHODS: Epididymosomes were extracted and characterized using SEM and western blotting. After cryopreservation, thawed SSCs were cultured in a hydrogel-based three-dimensional (3D) culture containing 10 ng/mL GDNF or 20 µg/mL epididymosomes. SSCs were assessed using the MTT assay, flow cytometry, and qRT-PCR after two weeks of culture. The isolated SSCs were microinjected into the efferent ducts of busulfan-treated mice. DiI-labeled SSCs were followed, and cell homing was assessed after two weeks. After 8 weeks, the testes were evaluated using morphometric studies and immunohistochemistry. RESULTS: The expression of PLZF, TGF-ß, and miR-10b did not increase statistically significantly in the 3D + GDNF and 3D + epididymosome groups compared to the 3D group. Among the groups, the GDNF-treated group exhibited the highest expression of miR-21 (*P < 0.05). Caspase-3 expression was lower in the epididymosome-treated group than in the other groups (***P < 0.001). Compared to the 3D and negative control groups, the 3D + epididymosomes and 3D + GDNF groups showed an increase in spermatogenic cells. Immunohistochemical results confirmed the growth and differentiation of spermatogonial cells into spermatids in the treatment groups. CONCLUSION: The DTM hydrogel containing 20 µg/mL epididymosomes or 10 ng/mL GDNF is a novel and safe culture system that can support SSC proliferation in vitro to obtain adequate SSCs for transplantation success. It could be a novel therapeutic agent that could recover deregulated SSCs in azoospermic patients.

13.
Aesthetic Plast Surg ; 48(5): 1045-1053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37726399

RESUMO

With the development of tissue engineering, the application of decellularized adipose matrix as scaffold material in tissue engineering has been intensively explored due to its wide source and excellent potential in tissue regeneration. Decellularized adipose matrix is a promising candidate for adipose tissue regeneration, while modification of decellularized adipose matrix scaffold can also allow it to transcend the limitations of adipose tissue source properties and applied to other tissue engineering fields, including cartilage and bone tissue engineering, neural tissue engineering, and skin tissue engineering. In this review, we summarized the development of the applications of decellularized adipose matrix in different tissue engineering and present future perspectives.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Tecido Adiposo , Engenharia Tecidual , Humanos , Cicatrização , Cartilagem
14.
Cell Tissue Bank ; 25(2): 685-695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38381276

RESUMO

For decades, dermal tissue grafts have been used in various regenerative, reconstructive, and augmentative procedures across the body. To eliminate antigenicity and immunogenic response while still preserving the individual components and collective structural integrity of the extracellular matrix (ECM), dermis can be decellularized. Acellular dermal matrix (ADM) products like such are produced to accurately serve diverse clinical purposes. The aim of the present study is to evaluate the efficacy of a novel decellularization protocol of the human dermis, which eliminates residual human genetic material without compromising the biomechanical integrity and collagenous content of the tissue. Moreover, a freeze-drying protocol was validated. The results showed that though our decellularization protocol, human dermis can be decellularized obtaining a biocompatible matrix. The procedure is completely realized in GMP aseptic condition, avoiding tissue terminal sterilization.


Assuntos
Criopreservação , Derme , Liofilização , Humanos , Criopreservação/métodos , Derme/citologia , Derme Acelular , Matriz Extracelular Descelularizada/química , Transplante de Pele/métodos , Matriz Extracelular/química
15.
Aesthetic Plast Surg ; 48(11): 2210-2219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499876

RESUMO

BACKGROUND: The extracellular matrix isolated from adipose tissue, known as acellular adipose matrix (AAM), represents a novel biomaterial. AAM functions as a scaffold that not only supports stem cell proliferation and differentiation but also induces adipogenesis and angiogenesis. This study aims to investigate the volumetric effects and microenvironmental changes associated with injectable AAM in comparison to conventional fat grafting. METHODS: AAM was manufactured from fresh human abdominoplasty fat using a mechanically modified method and then transformed into an injectable form. Lipoaspirate was harvested employing the Coleman technique. A weight and volume study was conducted on athymic nude mice by injecting either injectable AAM or lipoaspirate into the scalp (n=6 per group). After eight weeks, graft retention was assessed through weight measurement and volumetric analysis using micro-computed tomography (micro-CT) scanning. Histological analysis was performed using immunofluorescence staining for perilipin and CD31. RESULTS: Injectable AAM exhibited similar weight and volume effects in murine models. Histological analysis revealed comparable inflammatory cell presence with minimal capsule formation when compared to conventional fat grafts. Adipogenesis occurred in both AAM-injected and conventional fat graft models, with no significant difference in the blood vessel area (%) between the two. CONCLUSIONS: In summary, injectable AAM demonstrates effectiveness comparable to conventional fat grafting concerning volume effects and tissue regeneration in soft tissue reconstruction. This promising allogeneic injectable holds the potential to serve as a safe and effective "Off-the-Shelf" alternative in both aesthetic and reconstructive clinical practices. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Abdominoplastia , Tecido Adiposo , Camundongos Nus , Animais , Camundongos , Tecido Adiposo/transplante , Abdominoplastia/métodos , Humanos , Feminino , Procedimentos de Cirurgia Plástica/métodos , Modelos Animais de Doenças , Microtomografia por Raio-X , Adipogenia , Distribuição Aleatória , Sobrevivência de Enxerto , Modelos Animais , Matriz Extracelular/transplante
16.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397096

RESUMO

The mesenchymal stromal/stem cells (MSCs) are known to secrete pleiotropic paracrine factors, contributing to tissue regeneration. This unique ability makes MSCs promising therapeutic tools for many diseases, including even those that were previously untreatable. Thus, the development of preconditioning approaches aimed at enhancing the paracrine function of MSCs attracts great interest. In the present work, we studied how the extracellular matrix, the essential part of the native tissue microenvironment, affects the secretory capacity of MSCs of various origins. The MSC-derived decellularized extracellular matrix (dECM), used as the cell culture substrate, triggered strong upregulation of FGF-2, MMP-1, HGF, GRO-α, GRO-ß, CXCL-5, CXCL-6, IL-6, IL-8, G-CSF and MCP-1. Functional in vitro tests revealed that conditioned media derived from MSCs cultured on dECM significantly improved 3T3 fibroblast and HaCaT keratinocyte scratch wound healing, stimulated THP-1 monocyte migration and promoted capillary-like HUVEC-based tube formation compared to conditioned media from MSCs grown on plastic. In addition, we found that FAK inhibition promoted dECM-induced upregulation of paracrine factors, suggesting that this kinase participates in the MSCs' paracrine response to dECM. Together, these findings demonstrate that dECM provides cues that considerably enhance the secretory function of MSCs. Thus, dECM usage as a cell culture substrate alone or in combination with a FAK inhibitor may be viewed as a novel MSC preconditioning technique.


Assuntos
Matriz Extracelular , Células-Tronco Mesenquimais , Humanos , Diferenciação Celular , Meios de Cultivo Condicionados/farmacologia , Técnicas de Cultura de Células , Fatores Imunológicos
17.
J Tissue Viability ; 33(2): 332-344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594147

RESUMO

Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.


Assuntos
Exossomos , Medicina Regenerativa , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Exossomos/fisiologia , Humanos , Animais , Células-Tronco Mesenquimais/fisiologia
18.
Biochem Biophys Res Commun ; 656: 46-52, 2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-36947966

RESUMO

Full-thickness skin wounds still represent a challenge for clinical treatment. Adipose-derived stem cells (ADSCs) therapy is a promising approach to achieve efficient healing in skin wounds. The excellent cell scaffold can promote proliferation, differentiation and paracrine of ADSCs in wound microenvironment, and is a key factor in ADSCs application. Herein, we first prepared the composite hydrogel with decellularized adipose tissue (DAT) and tremella polysaccharide (TPS), and loaded insulin (INS) into the DAT/TPS composite hydrogel (DAT/TPS-gel) to fabricate an efficient carrier for ADSCs in treating skin wound. Our study showed that INS modified DAT/TPS-gel (INS-DAT/TPS-gel) can promote the proliferation, differentiation and paracrine of ADSCs. INS-DAT/TPS-gel laden with ADSCs (ADSCs/INS-DAT/TPS-gel) effectively facilitated the skin wound healing in SD rats. These findings indicated that INS-DAT/TPS-gel was an effective scaffold for ADSCs transplantation, and ADSCs/INS-DAT/TPS-gel provides a potential strategy for the treatment of skin wounds.


Assuntos
Hidrogéis , Insulina , Ratos , Animais , Ratos Sprague-Dawley , Tecido Adiposo , Cicatrização , Pele/lesões
19.
Adv Funct Mater ; 33(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36816838

RESUMO

Peripheral nerve transection has a high prevalence and results in functional loss of affected limbs. The current clinical treatment using suture anastomosis significantly limits nerve recovery due to severe inflammation, secondary damage, and fibrosis. Fibrin glue, a commercial nerve adhesive as an alternative, avoids secondary damage but suffers from poor adhesion strength. To address their limitations, a highly efficacious nerve adhesive based on dual-crosslinking of dopamine-isothiocyanate modified hyaluronic acid and decellularized nerve matrix is reported in this paper. This dual-network nerve adhesive (DNNA) shows controllable gelation behaviors feasible for surgical applications, robust adhesion strength, and promoted axonal outgrowth in vitro. The in vivo therapeutic efficacy is tested using a rat-based sciatic nerve transection model. The DNNA decreases fibrosis and accelerates axon/myelin debris clearance at 10 days post-surgery, compared to suture and commercial fibrin glue treatments. At 10 weeks post-surgery, the strong adhesion and bioactivity allow DNNA to significantly decrease intraneural inflammation and fibrosis, enhance axon connection and remyelination, aid motor and sensory function recovery, as well as improve muscle contraction, compared to suture and fibrin treatments. Overall, this dual-network hydrogel with robust adhesion provides a rapid and highly efficacious nerve transection treatment to facilitate nerve repair and neuromuscular function recovery.

20.
Small ; 19(25): e2207752, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929582

RESUMO

Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.


Assuntos
Matriz Extracelular Descelularizada , Matriz Extracelular , Engenharia Tecidual/métodos , Organoides , Bioengenharia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa