Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37372244

RESUMO

This paper focuses on the adaptive control problem of a class of uncertain time-delay nonlinear cyber-physical systems (CPSs) with both unknown time-varying deception attacks and full-state constraints. Since the sensors are disturbed by external deception attacks making the system state variables unknown, this paper first establishes a new backstepping control strategy based on compromised variables and uses dynamic surface techniques to solve the disadvantages of the huge computational effort of the backstepping technique, and then establishes attack compensators to mitigate the impact of unknown attack signals on the control performance. Second, the barrier Lyapunov function (BLF) is introduced to restrict the state variables. In addition, the unknown nonlinear terms of the system are approximated using radial basis function (RBF) neural networks, and the Lyapunov-Krasovskii function (LKF) is introduced to eliminate the influence of the unknown time-delay terms. Finally, an adaptive resilient controller is designed to ensure that the system state variables converge and satisfy the predefined state constraints, all signals of the closed-loop system are semi-globally uniformly ultimately bounded under the premise that the error variables converge to an adjustable neighborhood of origin. The numerical simulation experiments verify the validity of the theoretical results.

2.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366198

RESUMO

Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method-typically used to deal with the measurement noise time-correlation-is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated.

3.
Entropy (Basel) ; 24(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35455110

RESUMO

The quasi-consensus of a class of nonlinear time-varying multi-agent systems suffering from both external inputs and deception attacks is studied in this paper. This is different from a time-varying matrix, which is assumed to be bounded; further reasonable assumptions are supposed. In addition, impulsive deception attacks modeled with Bernoulli variables are considered. Sufficient conditions to achieve quasi-consensus are given, and the upper bounds of the error state related to the deception attacks is derived. Finally, a numerical simulation example is provided to show the validity of the obtained results.

4.
Sensors (Basel) ; 21(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34770354

RESUMO

This paper investigates the problem of networked load frequency control (LFC) of power systems (PSs) against deception attacks. To lighten the load of the communication network, a new adaptive event-triggered scheme (ETS) is developed on the premise of maintaining a certain control performance of LFC systems. Compared with the existing ETSs, the proposed adaptive ETS can adjust the number of triggering packets, along with the state changes in the presence of deception attacks, which can reduce the average data-releasing rate. In addition, sufficient conditions can be derived, providing a trade-off between the limited network communication resources and the desired control performance of PSs. Finally, an application case is presented for the PSs to demonstrate the advantages of the proposed approach.

5.
Entropy (Basel) ; 23(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34682015

RESUMO

This paper investigates the problem of adaptive event-triggered synchronization for uncertain FNNs subject to double deception attacks and time-varying delay. During network transmission, a practical deception attack phenomenon in FNNs should be considered; that is, we investigated the situation in which the attack occurs via both communication channels, from S-C and from C-A simultaneously, rather than considering only one, as in many papers; and the double attacks are described by high-level Markov processes rather than simple random variables. To further reduce network load, an advanced AETS with an adaptive threshold coefficient was first used in FNNs to deal with deception attacks. Moreover, given the engineering background, uncertain parameters and time-varying delay were also considered, and a feedback control scheme was adopted. Based on the above, a unique closed-loop synchronization error system was constructed. Sufficient conditions that guarantee the stability of the closed-loop system are ensured by the Lyapunov-Krasovskii functional method. Finally, a numerical example is presented to verify the effectiveness of the proposed method.

6.
Sensors (Basel) ; 20(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187344

RESUMO

In this paper, the distributed filtering problem is addressed for a class of discrete-time stochastic systems over a sensor network with a given topology, susceptible to suffering deception attacks, launched by potential adversaries, which can randomly succeed or not with a known success probability, which is not necessarily the same for the different sensors. The system model integrates some random imperfections and features that are frequently found in real networked environments, namely: (1) fading measurements; (2) multiplicative noises in both the state and measurement equations; and (3) sensor additive noises cross-correlated with each other and with the process noise. According to the network communication scheme, besides its own local measurements, each sensor receives the measured outputs from its adjacent nodes. Based on such measurements, a recursive algorithm is designed to obtain the least-squares linear filter of the state. Thereafter, each sensor receives the filtering estimators previously obtained by its adjacent nodes, and these estimators are all fused to obtain the desired distributed filter as the minimum mean squared error matrix-weighted linear combination of them. The theoretical results are illustrated by a simulation example, where the efficiency of the developed distributed estimation strategy is discussed in terms of the error variances.

7.
Sensors (Basel) ; 19(14)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337128

RESUMO

In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance.

8.
ISA Trans ; 144: 18-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914614

RESUMO

This work is devoted the problem of a security-guaranteed filter design for a class of discrete-time Markov jump systems that are vulnerable to stochastic deception attacks and have random sensor saturation. Deception attacks, in particular, are taken into account in the filter when the attacker attempts to modify the broadcast signal in communication networks by inserting some misleading information data into the assessment output. The Bernoulli distribution is satisfied by two sets of introduced stochastic variables. It shows the likelihood that the broadcaster's data transmissions will be the focus of deception attacks and sensor saturation. The Lyapunov functional technique is established, and criteria are derived to ensure that the system is mean-square stable. Furthermore, explicit expression of the filter gains is obtained by solving a set of linear matrix inequalities. Lastly, two simulation examples including a synthetic genetic regulatory network are provided to further demonstrate the validity and efficiency of the suggested theoretical results.

9.
Neural Netw ; 172: 106090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176117

RESUMO

The multiagent systems have shared broad application in many practical systems including unmanned aircraft clusters, intelligent robots, and intelligent transportation. However, many unexpected cyber-attacks may disturb or disrupt the normal communication of the agents, thus reducing the interacting efficiency of multiagent systems. Ever since the cyber-attacks have been proposed, the resilient control problem for multiagent systems has been intensively explored in light of the communication network growth. However, most of the consequences only focused on denial-of-service (DoS) attacks or deception attacks independently. Distinguished from the existing resilient control mechanisms, the current investigation represents the first attempt at designing an adaptive resilient controller for multiagent systems according to the sampled-based adaptive event-triggered manner, where denial-of-service (DoS) attacks and deception attacks are both considered. First, the hybrid cyber-attacks model and its impact on the closed-loop system are addressed. And then, an adaptive event-triggered strategy is proposed to reduce network resource consumption and ease the communication burden, where the designed adaptive law can automatically adjust the triggering threshold. Finally, the consensus state of multiagent systems is capable of achieving via a series of reasonable control rules formulated through Lyapunov functional approach despite suffering hybrid cyber-attacks. And a simulation example is given to substantiate the feasibility of the proposed method.


Assuntos
Aeronaves , Resiliência Psicológica , Simulação por Computador , Consenso , Inteligência
10.
Neural Netw ; 179: 106586, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39096747

RESUMO

In this paper, the design of an adaptive neural event-triggered control scheme for a class of switched nonlinear systems affected by external disturbances and deception attacks is presented. In order to address the effects caused by unknown disturbances, a switched nonlinear disturbance observer is used, and the error between the estimated signals and actual disturbances is small. Meanwhile, a prescribed performance function is introduced, which aims to ensure system output reaches the performance bounds within a predefined finite time. In addition, a dynamic event-triggered mechanism is designed to reduce the communication load. Based on the theoretical analysis, all signals within the closed-loop system are bounded, while simultaneously ensuring the complete elimination of Zeno behavior. Finally, the validity and efficacy of the scheme are proven by an example of numerical simulation.

11.
Neural Netw ; 168: 206-213, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769457

RESUMO

This paper proposes an innovative approach for mitigating the effects of deception attacks in Markov jumping systems by developing an adaptive neural network control strategy. To address the challenge of dual-mode monitoring mechanisms, two independent Markov chains are used to describe the state changes of the system and the intermittent actuator. By employing a mapping technique, these individual chains are amalgamated into a unified joint Markov chain. Additionally, to effectively approximate the unbounded false signals injected by deception attacks, an adaptive neural network technique is skillfully built. A mode monitoring scheme is implemented to design an asynchronous control law that links the mode information between the joint Markov chain and controller with fewer modes. The paper derives sufficient criteria for the mean-square bounded stability of the resulting system based on Lyapunov theories. Finally, a numerical experiment is conducted to demonstrate the effectiveness of the proposed method.


Assuntos
Redes Neurais de Computação , Cadeias de Markov
12.
Math Biosci Eng ; 20(1): 859-878, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650792

RESUMO

This paper copes with event-triggered stabilization for networked control systems subject to deception attacks. A new switched event-triggered scheme (ETS) is designed by introducing a term regarding the last triggering moment in the trigger condition. This increases the difficulty of triggering, thus reducing trigger times compared to some existing ETSs. Furthermore, to cater for actual deception attack behavior, the occurrence of deception attacks is assumed to be a time-dependent stochastic variable that obeys the Bernoulli distribution with probability uncertainty. By means of a piecewise-defined Lyapunov function, a sufficient condition is developed to assure that the close-loop system under deception attacks is exponentially stable in regards to mean square. On the basis of this, a joint design of the desired trigger and feedback-gain matrices is presented. Finally, a simulation example is given to confirm the validity of the design method.


Assuntos
Simulação por Computador , Probabilidade , Incerteza
13.
Neural Netw ; 162: 225-239, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921433

RESUMO

In this work, we address hybrid-driven-based robust synchronization problem for multi-weighted complex dynamical networks with actuator saturation and deception attacks. The hybrid-triggered mechanism, which combines a switch between the event-triggered scheme and the time-triggered scheme, is often used to reduce the data transmission and the alleviate network burden. Further, the equivalent-input-disturbance technique is applied to eliminate the unknown disturbance effect of the addressed system. Moreover, a memory controller is designed under actuator saturation to ensure that the resultant augmented system is asymptotically synchronized even in the presence of deception attacks. Finally, three numerical examples are given to show the validity of the obtained theoretical results.

14.
Neural Netw ; 163: 312-326, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37094518

RESUMO

This article focuses on the resilient fixed-time stabilization of switched neural networks (SNNs) under impulsive deception attacks. A novel theorem for the fixed-time stability of impulsive systems is established by virtue of the comparison principle. Existing fixed-time stability theorems for impulsive systems assume that the impulsive strength is not greater than 1, while the proposed theorem removes this assumption. SNNs subjected to impulsive deception attacks are modeled as impulsive systems. Some sufficient criteria are derived to ensure the stabilization of SNNs in fixed time. The estimation of the upper bound for the settling time is also given. The influence of impulsive attacks on the convergence time is discussed. A numerical example and an application to Chua's circuit system are given to demonstrate the effectiveness of the theoretical results.


Assuntos
Algoritmos , Redes Neurais de Computação , Fatores de Tempo
15.
ISA Trans ; 137: 1-12, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36725413

RESUMO

This paper studies the issue of developing the optimal deception attacks on the multiple channels in cyber-physical systems, where the attackers are limited by energy constraints. To fully utilize the eavesdropped data, by linearly combining the innovations from the different channels, a fusion attack model is proposed under the stealthiness condition. According to the statistical characteristics of the correlated stochastic variables and the orthogonality principle, the state estimation error is quantified and analyzed by deriving the iteration of the error covariance matrices of the remote estimators under the proposed attack framework. Moreover, by analyzing the correlations of the decision variables in the objective function, it is shown that the attack parameters and energy allocation strategy can be derived by two steps without loss of optimality, such that the optimal attack scheme is acquired by solving a multivariate semi-definite programming (SDP) problem and a linear 0-1 programming problem respectively. Finally, simulation examples are provided to illustrate the effectiveness of the proposed method.

16.
ISA Trans ; 135: 23-34, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36270809

RESUMO

This paper studies the hybrid event-triggered tracking control based on an unmanned autonomous helicopter (UAH) and an unmanned ground vehicle (UGV) under unmeasurable states, transmission delay, external disturbance, and deception attacks. By designing a switching condition, a hybrid event-triggered scheme (ETS) is proposed to realize an elegant trade-off between less data transmissions and control performance. Then, based on the designs of the observer and tracking controller, an augmented closed-loop system is established, and a sufficient condition on uniform ultimate boundedness is presented. Moreover, a co-design method of the hybrid ETS, observer, and controller is obtained via linear matrix inequalities (LMIs), which is further extended by utilizing an improved adaptive hybrid ETS. Finally, some simulation and comparisons are exploited to illustrate the proposed method.

17.
Math Biosci Eng ; 20(8): 14550-14577, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37679148

RESUMO

This paper examines the distributed filtering and fixed-point smoothing problems for networked systems, considering random parameter matrices, time-correlated additive noises and random deception attacks. The proposed distributed estimation algorithms consist of two stages: the first stage creates intermediate estimators based on local and adjacent node measurements, while the second stage combines the intermediate estimators from neighboring sensors using least-squares matrix-weighted linear combinations. The major contributions and challenges lie in simultaneously considering various network-induced phenomena and providing a unified framework for systems with incomplete information. The algorithms are designed without specific structure assumptions and use a covariance-based estimation technique, which does not require knowledge of the evolution model of the signal being estimated. A numerical experiment demonstrates the applicability and effectiveness of the proposed algorithms, highlighting the impact of observation uncertainties and deception attacks on estimation accuracy.

18.
ISA Trans ; 143: 38-49, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848352

RESUMO

This article scrutinizes the stabilization and fault reconstruction issues for interval type-2 fuzzy-based cyber-physical systems with actuator faults, deception attacks and external disturbances. The primary objective of this research is to formulate the learning observer system with the interval type-2 fuzzy technique that reconstructs the actuator faults as well as the immeasurable states of the addressed fuzzy based model. Further, the information of reconstructed actuator faults is incorporated in the developed controller with the imperfect premise variables for ensuring the stabilization of the system under consideration. At the same time, the H∞ technique is employed to reduce the impact of external disturbances in the considered model. In addition to that, the deception attacks are represented as a stochastic variable that satisfies the Bernoulli distributions. On the ground of this, a set of sufficient criteria is deduced in the context of linear matrix inequalities to affirm the stability of the addressed systems. Furthermore, the requisite gain matrices are computed by resolving the obtained linear matrix inequality based stability criteria. At last, two simulation examples, including the mass-spring-damper system are exhibited to demonstrate the usefulness of analytical findings of the developed strategy.

19.
Neural Netw ; 166: 366-378, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544093

RESUMO

Under spatially averaged measurements (SAMs) and deception attacks, this article mainly studies the problem of extended dissipativity output synchronization of delayed reaction-diffusion neural networks via an adaptive event-triggered sampled-data (AETSD) control strategy. Compared with the existing ETSD control methods with constant thresholds, our scheme can be adaptively adjusted according to the current sampling and latest transmitted signals and is realized based on limited sensors and actuators. Firstly, an AETSD control scheme is proposed to save the limited transmission channel. Secondly, some synchronization criteria under SAMs and deception attacks are established by utilizing Lyapunov-Krasovskii functional and inequality techniques. Then, by solving linear matrix inequalities (LMIs), we obtain the desired AETSD controller, which can satisfy the specified level of extended dissipativity behaviors. Lastly, one numerical example is given to demonstrate the validity of the proposed method.


Assuntos
Redes Neurais de Computação , Fatores de Tempo , Difusão
20.
Neural Netw ; 145: 189-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34763245

RESUMO

In this paper, the issue of synchronization is investigated for coupled neural networks subject to stochastic deception attacks. Firstly, a general differential inequality with delayed impulses is given. Then, the established differential inequality is further extended to the case of delayed stochastic impulses, in which both the impulsive instants and impulsive intensity are stochastic. Secondly, by modeling the stochastic discrete-time deception attacks as stochastic impulses, synchronization criteria of the coupled neural networks under the corresponding attacks are given. Finally, two numerical examples are provided to demonstrate the correctness of the theoretical results.


Assuntos
Enganação , Redes Neurais de Computação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa