Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 284, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798635

RESUMO

BACKGROUND: Secretome analysis is a valuable tool to study host-pathogen protein interactions and to identify new proteins that are important for plant health. Microbial signatures elicit defense responses in plants, and by that, the plant immune system gets triggered prior to pathogen infection. Functional properties of secretory proteins from Xanthomonas axonopodis pv. dieffenbachiae (Xad1) involved in priming plant immunity was evaluated. RESULTS: In this study, the secretome of Xad1 was analyzed under host plant extract-induced conditions, and mass spectroscopic analysis of differentially expressed protein was identified as plant-defense-activating protein viz., flagellin C (FliC). The flagellin and Flg22 peptides both elicited hypersensitive reaction (HR) in non-host tobacco, activated reactive oxygen species (ROS) scavenging enzymes, and increased pathogenesis-related (PR) gene expression viz., NPR1, PR1, and down-regulation of PR2 (ß-1,3-glucanase). Protein docking studies revealed the Flg22 epitope of Xad1, a 22 amino acid peptide region in FliC that recognizes plant receptor FLS2 to initiate downstream defense signaling. CONCLUSION: The flagellin or the Flg22 peptide from Xad1 was efficient in eliciting an HR in tobacco via salicylic acid (SA)-mediated defense signaling that subsequently triggers systemic immune response epigenetically. The insights from this study can be used for the development of bio-based products (small PAMPs) for plant immunity and health.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xanthomonas axonopodis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flagelina/genética , Nicotiana/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Peptídeos/metabolismo , Doenças das Plantas/genética
2.
BMC Microbiol ; 22(1): 112, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461247

RESUMO

BACKGROUND: Black shank disease caused by Phytophthora nicotianae is a serious threat to flue-cured tobacco production. Whole-plant resistance is characterized by the expression of a number of pathogenesis-related proteins, genes, and the activity of different defense-related enzymes. In this study, we investigated the activity of defense-related enzymes and expression of differentially expressed proteins through the iTRAQ technique across two flue-cured tobacco cultivars, i.e., K326 and Hongda, in response to the black shank pathogen. RESULTS: Results showed that the highest disease incidence was recorded in flue-cured tobacco cultivar Hongda compared with K326, which shows that Hongda is more susceptible to P. nicotianae than K326. A total of 4274 differentially expressed proteins were detected at 0 h and after 24 h, 72 h of post-inoculation with P. nicotianae. We found that 17 proteins induced after inoculation with P. nicotianae, including pathogenesis (5), photosynthesis (3), oxidative phosphorylation (6), tricarboxylic acid cycle (1), heat shock (1), and 14-3-3 (1) and were involved in the resistance of flue-cured tobacco against black shank disease. The expression of 5 pathogenesis-related proteins and the activities of defense-related enzymes (PPO, POD, SOD, and MDA) were significantly higher in the leaves of K326 than Hongda after inoculation with P. nicotianae. CONCLUSION: These results provide new molecular insights into flue-cured tobacco responses to P. nicotianae. It is concluded that differences in protein expressions and defense-related enzymes play an important role in developing resistance in flue-cured tobacco cultivars against black shank disease.


Assuntos
Phytophthora , Doenças das Plantas/genética , Folhas de Planta , Nicotiana/genética
3.
Pestic Biochem Physiol ; 171: 104721, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357543

RESUMO

Green mold, caused by Penicillium digitatum, is the most economically important postharvest disease of orange fruit worldwide. The aim of this study was to evaluate the effect of ß-aminobutyric acid (BABA) treatment on the inhibition of P. digitatum both in orange fruit and in vitro as well as the possible mechanisms of action. BABA at 125 mM significantly inhibited mycelial growth, spore germination, and germ tube elongation of P. digitatum by 93.3, 90.3, and 90.5%, respectively. The relative electrical conductivity of mycelium was increased for a period of 0-36 h after treated with BABA at 125 mM. Furthermore, BABA caused a high level of malondialdehyde (MDA) in P. digitatum mycelia during four days of incubation. The ergosterol content in the plasma membrane of P. digitatum was significantly lower in BABA-treated mycelia. Also, protein and sugar leakage were increased with BABA treatment compared with that in the control. Besides, BABA caused a considerable reduction in the total lipid content of P. digitatum mycelia at 125 mM. Scanning electron microscopy (SEM) of P. digitatum treated with BABA at 125 mM showed shrunken, distorted, and collapsed mycelia. The application of BABA at 125 mM in orange fruit inoculated with P. digitatum suppressed disease incidence and disease severity by 74.6 and 77.3%, respectively, compared to untreated fruit. Moreover, the activity of defense-related enzymes, including peroxidase (POD), polyphenoloxidase (PPO), and phenylalanine ammonia-lyase (PAL) were significantly enhanced in the orange fruit treated with BABA at 125 mM.


Assuntos
Citrus , Penicillium , Aminobutiratos , Antifúngicos , Frutas
4.
Compr Rev Food Sci Food Saf ; 20(1): 563-582, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443789

RESUMO

Consumers are increasingly aware of the importance of regular consumption of fresh fruit in their diet. Since fresh fruit are highly sensitive to postharvest decay, several investigations focused on the study natural compounds alternative to synthetic fungicides, to extend their shelf life. A long list of studies reported the effectiveness of the natural biopolymer chitosan in control of postharvest diseases of fresh fruit. However, these findings remain controversial, with many mixed claims in the literature. In this work, we used random-effects meta-analysis to investigate the effects of 1% chitosan on (a) postharvest decay incidence; (b) mycelium growth of fungal pathogens Botrytis cinerea, Penicillium spp., Colletotrichum spp. and Alternaria spp.; and (c) phenylalanine ammonia-lyase, chitinase and ß-1,3-glucanase activities. Chitosan significantly reduced postharvest disease incidence (mean difference [MD], -30.22; p < 0.00001) and in vitro mycelium growth (MD, -54.32; p  < 0.00001). For host defense responses, there were significantly increased activities of ß-1,3-glucanase (MD, 115.06; p = 0.003) and chitinase (MD, 75.95; p < 0.0002). This systematic review contributes to confirm the multiple mechanisms of mechanisms of action of chitosan, which has unique properties in the natural compound panorama. Chitosan thus represents a model plant protection biopolymer for sustainable control of postharvest decay of fresh fruit.


Assuntos
Anti-Infecciosos , Quitosana , Anti-Infecciosos/farmacologia , Botrytis , Quitosana/farmacologia , Conservação de Alimentos , Frutas
5.
J Sci Food Agric ; 100(5): 1949-1961, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31846082

RESUMO

BACKGROUND: The postharvest application of pectic-oligosaccharides (POS) as an elicitor to improve the postharvest shelf-life and nutritional quality by stimulating natural defense mechanisms in strawberries was studied. Strawberries (cv. Festival) were treated with POS (at 0, 2, 5, and 9 g L-1 ) and evaluated for firmness, weight loss, color, soluble solids, titratable acidity (TA), total phenolic and anthocyanin content, antioxidant capacity, decay, and some defense-related enzyme activity during storage at 2 ± 0.5 °C for 14 days. RESULTS: Treatment with POS significantly delayed (P < 0.05) strawberry decay, and reduced the water loss and softening of fruit during storage. Strawberries treated with POS showed a significant increase in total phenolic and anthocyanin content, and antioxidant capacity when compared with controls. Interestingly, POS induced higher activity of phenylalanine ammonia-lyase (PAL), chitinase, and ß-1,3-glucanase in strawberries. Compared to the control, the activity of enzymes was markedly increased in fruit treated with all tested POS concentrations, particularly chitinase, and ß-1,3-glucanase activities, but 5 and 9 g L-1 POS were the most effective treatments for maintaining the quality attributes and improving anthocyanin accumulation and antioxidant capacity of strawberries. CONCLUSION: These findings suggest that POS treatment could potentially be applied to maintain quality attributes, reduce decay, and further enrich the anthocyanin content and antioxidant capacity of strawberries during postharvest storage. The results also suggest that the positive effects of POS on strawberries could be associated with the rapid accumulation of chitinase and ß-1,3-glucanase activities, and the increase of PAL enzyme activity leading to the synthesis and accumulation of anthocyanins. © 2019 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Fragaria/efeitos dos fármacos , Frutas/química , Oligossacarídeos/farmacologia , Pectinas/farmacologia , Antocianinas/análise , Antioxidantes/análise , Armazenamento de Alimentos , Fragaria/química , Frutas/efeitos dos fármacos , Valor Nutritivo , Fenóis/análise , Fenilalanina Amônia-Liase/análise
6.
Biosci Biotechnol Biochem ; 80(11): 2277-2283, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27405462

RESUMO

The present study was aimed to evaluate the effectiveness of a biocontrol agent Bacillus subtilis CBR05 for control of soft rot disease (Erwinia carotovora subsp. carotovora) in tomato, and the possible mechanisms of its resistance induction have been investigated under pot conditions. Results showed that plants inoculated with B. subtilis CBR05 had lower disease incidence (36%). A significant increase in superoxide dismutase, catalase, peroxidase, and polyphenol oxidase activities was observed in plants inoculated with B. subtilis between 48 and 72 hpi. Also, the transcript profiles of Glu and Phenyl ammonia lyase (PAL) showed a significant up-regulation following inoculation. The most significant up-regulation was observed in transcript profile of PAL that showed 0.49 Fold Expression, at 72 hpi as compared to its expression at 12 hpi. These results suggest that systemic induction of defense-related genes expression and antioxidant enzyme activity by B. subtilis could play a pivotal role in disease resistance against soft rot disease.

7.
Front Biosci (Landmark Ed) ; 28(1): 20, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36722276

RESUMO

BACKGROUND: Fusarium wilt and Ascochyta blight are the most important diseases of chickpea. The current study was designed to investigate the individual and combined effect of salicylic acid (SA) with Pseudomonas stutzeri and Pseudomonas putida to suppress Fusarium wilt and promote growth of chickpea varieties: Thal-2006 and Punjab-2008. METHODS: At the time of sowing, inoculum of Fusarium oxysporum was applied to the soil and the incidence of Fusarium wilt was recorded after 60 days. The seeds were inoculated with Pseudomonas stutzeri and Pseudomonas putida prior to sowing. Chickpea plants were treated with salicylic acid at seedling stage. RESULTS: The combination of P. stutzeri and SA significantly increased root length (166% and 145%), shoot height (50% and 47%) and shoot biomass (300% and 233%) in cv. Thal-2006 and cv. Punjab-2008, respectively, in infected plants. Similarly, the combined treatment of P. putida + SA, also enhanced the plant growth parameters of chickpea varieties. Maximum reduction in disease severity was observed in both P. stutzeri + SA (90% and 84%) and P. putida + SA (79% and 77%) treatments in cv. Thal-2006 and Punjab-2008, respectively. Both P. putida + SA and P. stutzeri + SA treatments resulted in increased leaf relative water and total protein content, peroxidase, superoxide dismutase, phenylalanine ammonia-lyase and polyphenol oxidase activities in both resistant (cv. Thal-2006) and susceptible (cv. Punjab-2008) cultivars. Both treatments also significantly reduced malondialdehyde (MDA) and proline content in cv. Thal-2006 and Punjab-2008. Cultivar Thal-2006 was more effective than cv. Punjab-2008. CONCLUSIONS: The results suggested that, in combination, salicylic acid and P. stutzeri may play an important role in controlling Fusarium wilt diseases by inducing systemic resistance in chickpea.


Assuntos
Cicer , Fusarium , Doenças das Plantas , Ácido Salicílico , Biomassa , Cicer/microbiologia , Terapia Combinada , Malondialdeído , Doenças das Plantas/prevenção & controle , Ácido Salicílico/farmacologia , Pseudomonas , Inoculantes Agrícolas
8.
Front Plant Sci ; 14: 1140596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968373

RESUMO

Chrysanthemum White Rust (CWR) caused by Puccinia horiana Henn. is a major disease in the production process of chrysanthemum, which is widely spread all over the world and can be called "cancer" of chrysanthemum. To clarify the disease resistance function of disease resistance genes can provide a theoretical basis for the utilization and genetic improvement of chrysanthemum resistant varieties. In this study, the resistant cultivar 'China Red' was used as the experimental material. We constructed the silencing vector pTRV2-CmWRKY15-1 and obtained the silenced line named TRV-CmWRKY15-1. The results of enzyme activity after inoculation with pathogenic fungi showed that the activities of antioxidant enzymes SOD, POD, CAT and defense-related enzymes PAL and CHI in leaves were stimulated under the stress of P. horiana. In the WT, the activities of SOD, POD and CAT at the peak value were 1.99 times, 2.84 times and 1.39 times higher than that in TRV-CmWRKY15-1, respectively. And the activities of PALand CHI at the peak were 1.63 times and 1.12 times of TRV-CmWRKY15-1. The content of MDA and soluble sugar also confirmed that chrysanthemum was more susceptible to pathogenic fungi when CmWRKY15-1 was silenced. The expression levels of POD, SOD, PAL and CHI at different time points showed that the expressions of defense enzyme related genes were inhibited in TRV-WRKY15-1 under the infection of P. horiana, which weakened the ability of chrysanthemum to resist white rust. In conclusion, CmWRKY15-1 may increased the resistance of chrysanthemum to white rust by increasing the activity of protective enzyme system, which laid a foundation for breeding new varieties with disease resistance.

9.
Int J Food Microbiol ; 362: 109485, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34823080

RESUMO

Blackhead disease is a major fungal disease causing the quality deterioration of postharvest 'Korla' fragrant pear. In this study, the relationships of resistance to blackhead disease with the enzyme activity, phenolic compounds, and mycotoxin metabolism of 'Korla' fragrant pear were investigated, through UV-C irradiation of 0.12, 0.24, 0.36, 0.48, 0.72 and 1.08 kJ/m2 on 'Korla' fragrant pear inoculated with Alternaria alternata (Fries) Keissler (A. alternata). The results showed that the low-dose UV-C irradiation (0.36 kJ/m2) effectively controlled blackhead disease. The activities of chitinase (CHI), ß-1,3-glucanase (GLU), peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia-lyase (PAL), and the content of phenolic compounds in fruit were enhanced, whereas the activities of lipoxygenase (LOX), polyphenol oxidase (PPO), and the contents of hydrogen peroxide (H2O2) and mycotoxins (including AOH, AME, and TeA) were decreased. Therefore, the low-dose UV-C irradiation could improve the resistance to blackhead disease and reduce the production of mycotoxins in 'Korla' fragrant pear. This study proves that UV-C irradiation may be a potentially effective strategy for the control of blackhead disease and the improvement of quality of postharvest 'Korla' fragrant pear.


Assuntos
Micotoxinas , Pyrus , Resistência à Doença , Frutas , Peróxido de Hidrogênio , Odorantes/análise
10.
Foods ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954094

RESUMO

Dimethyl dicarbonate (DMDC), a food additive, can be added to a variety of foods as a preservative. This study aimed to evaluate the inhibitory effects of DMDC on Geotrichum citri-aurantii in vitro and in vivo, as well as the potential antifungal mechanism. In vitro experiments showed that 250 mg/L DMDC completely inhibited the growth of G. citri-aurantii and significantly inhibited spore germination by 96.33%. The relative conductivity and propidium iodide (PI) staining results showed that DMDC at 250 mg/L increased membrane permeability and damaged membrane integrity. Malondialdehyde (MDA) content and 2, 7-Dichlorodihydrofluorescein diacetate (DCHF-DA) staining determination indicated that DMDC resulted in intracellular reactive oxygen species (ROS) accumulation and lipid peroxidation. Scanning electron microscopy (SEM) analysis found that the mycelia were distorted and the surface collapsed after DMDC treatment. Morphological changes in mitochondria and the appearance of cavities were observed by transmission electron microscopy (TEM). In vivo, 500 mg/L DMDC and G. citri-aurantii were inoculated into the wounds of citrus. After 7 days of inoculation, DMDC significantly reduced the disease incidence and disease diameter of sour rot. The storage experiment showed that DMDC treatment did not affect the appearance and quality of fruits. In addition, we found that DMDC at 500 mg/L significantly increased the activity of citrus defense-related enzymes, including peroxidase (POD) and phenylalanine ammonia-lyase (PAL). Therefore, DMDC could be used as an effective method to control citrus sour rot.

11.
Plants (Basel) ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297731

RESUMO

Cucumber mosaic virus (CMV) causes a significant threat to crop output sustainability and human nutrition worldwide, since it is one of the most prevalent plant viruses infecting most kinds of plants. Nowadays, different types of nanomaterials are applied as a control agent against different phytopathogens. However, their effects against viral infections are still limited. In the current study, the antiviral activities of the biosynthesized silver nanoparticles (Ag-NPs) mediated by aqueous extract of Ocimum basilicum against cucumber mosaic virus in squash (Cucurbita pepo L.) were investigated. The prepared Ag-NPs were characterized using scanning electron microscopy (SEM), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and zeta potential distribution techniques. DLS, SEM, and TEM analyses showed that the Ag-NPs were spherical, with sizes ranging from 26.3 to 83 nm with an average particle size of about 32.6 nm. FTIR identified different functional groups responsible for the capping and stability of Ag-NPs. The zeta potential was reported as being -11.1 mV. Under greenhouse conditions, foliar sprays of Ag-NPs (100 µg/mL) promoted growth, delayed disease symptom development, and significantly reduced CMV accumulation levels of treated plants compared to non-treated plants. Treatment with Ag-NPs 24 h before or after CMV infection reduced CMV accumulation levels by 92% and 86%, respectively. There was also a significant increase in total soluble carbohydrates, free radical scavenging activity, antioxidant enzymes (PPO, SOD, and POX), as well as total phenolic and flavonoid content. Furthermore, systemic resistance was induced by significantly increasing the expression levels of pathogenesis-related genes (PR-1 and PR-5) and polyphenolic pathway genes (HCT and CHI). These findings suggest that Ag-NPs produced by O. basilicum could be used as an elicitor agent and as a control agent in the induction and management of plant viral infections.

12.
Viruses ; 14(8)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016452

RESUMO

The application of microbe-derived products as natural biocontrol agents to boost systemic disease resistance to virus infections in plants is a prospective strategy to make agriculture more sustainable and environmentally friendly. In the current study, the rhizobacterium Bacillus amyloliquefaciens strain TBorg1 was identified based on 16S rRNA, rpoB, and gyrA gene sequences, and evaluated for its efficiency in conferring protection of tomato from infection by Tobacco mosaic virus (TMV). Under greenhouse circumstances, foliar sprays of TBorg1 culture filtrate (TBorg1-CF) promoted tomato growth, lowered disease severity, and significantly decreased TMV accumulation in systemically infected leaves of treated plants relative to untreated controls. TMV accumulation was reduced by 90% following the dual treatment, applied 24 h before and after TMV infection. Significant increases in levels of total soluble carbohydrates, proteins, and ascorbic acid were also found. In addition, a significant rise in activities of enzymes capable of scavenging reactive oxygen species (PPO and POX), as well as decreased levels of non-enzymatic oxidative stress markers (H2O2 and MDA) were observed, compared to untreated plants. Enhanced systemic resistance to TMV was indicated by significantly increased transcript accumulation of polyphenolic pathway (C4H, HCT, and CHI) and pathogenesis-related (PR-1 and PR-5) genes. Out of the 15 compounds identified in the GC-MS analysis, 1,2-benzenedicarboxylic acid mono(2-ethylhexyl) ester and phenol, 2,4-bis(1,1-dimethylethyl), as well as L-proline, N-valeryl-, and heptadecyl ester were present in the highest concentrations in the ethyl acetate extract of TBorg1-CF. In addition, significant amounts of n-hexadecanoic acid, pyrrolo [1,2-a] pyrazine-1,4-dione hexahydro-3-(2-methylpropyl)-, nonane, 5-butyl-, and eicosane were also detected. These compounds may act as inducers of systemic resistance to viral infection. Our findings indicate that the newly isolated B. amyloliquefaciens strain TBorg1 could be a potentially useful rhizobacterium for promoting plant growth and a possible source of biocontrol agents for combating plant virus infections.


Assuntos
Bacillus amyloliquefaciens , Solanum lycopersicum , Vírus do Mosaico do Tabaco , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Ésteres/metabolismo , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Fenóis , Doenças das Plantas , Proteínas de Plantas/genética , RNA Ribossômico 16S/genética , Nicotiana , Vírus do Mosaico do Tabaco/genética
13.
Microorganisms ; 10(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144416

RESUMO

Ralstonia solanacearum is one of the globally significant plant pathogens that infect a wide host range of economically important plants. A study was conducted to evaluate the hypothesis that an avirulent strain of R. solanacearum can act as a biocontrol mediator for managing potato bacterial wilt. Virulent R. solanacearum was isolated and identified (GenBank accession number; OP180100). The avirulent strain was obtained from the virulent strain through storage for 3 weeks until the development of deep red colonies. The virulent strain had higher lytic activity than the avirulent strain. Tubers' treatments by the avirulent strain of R. solanacearum, (supernatant, boiled supernatant, and dead cells) significantly reduced plant disease rating and increased the growth, physiological activities, and biomass of potato compared to the untreated, infected control. The major components detected by GC-MS in the supernatant revealed 10.86% palmitic acid (virulent), and 18.03% 1,3-dioxolane, 2,4,5-trimethyl- (avirulent), whereas the major component in the boiled supernatant was 2-hydroxy-gamma-butyrolactone in the virulent (21.17%) and avirulent (27.78%) strains. This is the first research that assessed the influence of boiled supernatant and dead cells of virulent and avirulent R.solanacearum strains in controlling bacterial wilt disease. Additional work is encouraged for further elucidation of such a topic.

14.
Int J Food Microbiol ; 382: 109931, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36137461

RESUMO

Blue mold decay is a major postharvest disease of apples, causing considerable losses to the apple industry. In the early stage of this research, an antagonistic yeast, Hannaella sinensis, with a good control effect on the blue mold of apples, was selected. On this basis, the main purpose of this work was to study the biocontrol effect of H. sinensis on the blue mold of apples and the mechanisms involved. The results showed that H. sinensis could effectively control the blue mold decay of apples, reduce the rot rate and diameter, and the antagonistic effect strengthened with the increase of H. sinensis concentration (1 × 108 cells/mL). Further in vitro experiments proved that H. sinensis could significantly inhibit the spore germination and germ tube length of P. expansum. In addition, stable colonization of H. sinensis on apple wounds and surfaces confirmed the environmental adaptability and the ability to compete with other microbiota for nutrition and space. Moreover, H. sinensis induced the activities of resistance-related enzymes such as polyphenol oxidase (PPO), peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL) in apples and the content of the coding genes corresponding to these enzymes was also higher than that of the control group. Our results indicate that H. sinensis treatment could induce the disease resistance of apples. In summary, H. sinensis served as a promising antagonistic yeast for the prevention and treatment of postharvest blue mold decay of apples.


Assuntos
Malus , Penicillium , Ascorbato Peroxidases , Basidiomycota , Catecol Oxidase , Fungos , Fenilalanina Amônia-Liase/farmacologia , Saccharomyces cerevisiae , Superóxido Dismutase/farmacologia
15.
Front Microbiol ; 12: 618252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33574808

RESUMO

The aim of the present study was to investigate the effects of ethanol vapor on the inhibition of Alternaria alternata and Botrytis cinerea in postharvest blueberry and the induction of defense-related enzymes (DREs) activities in fungi-inoculated blueberries stored at 0±0.5°C for 16days. Results indicated that ethanol vapor markedly inhibited the mycelial growth of A. alternata and B. cinerea in a dose-dependent manner, with inhibition rates of 9.1% (250µlL-1), 36.4% (500µlL-1), and 5.5% (1,000µlL-1) on A. alternata and 14.2% (250µlL-1), 44.7% (500µlL-1), and 76.6% (1,000µlL-1) on B. cinerea, respectively. Meanwhile, ethanol vapor also enhanced the activities of DREs in fungi-inoculated blueberries, including ß-1,3-glucanase (GLU), chitinase (CHI), phenylalnine ammonialyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO). In particular, 500µlL-1 ethanol vapor increased the activities of DREs by 84.7% (GLU), 88.0% (CHI), 37.9% (PAL), 85.5% (POD), and 247.0% (PPO) in A. alternata-inoculated blueberries and 103.8% (GLU), 271.1% (CHI), 41.1% (PAL), 148.3% (POD), and 74.4% (PPO) in B. cinerea-inoculated blueberries, respectively. But, the activity of PPO was decreased by 55.2 and 31.9% in 500µlL-1 ethanol-treated blueberries inoculated with A. alternata and B. cinerea, respectively, after 8days of storage. Moreover, the surface structure and ultrastructure of 500µlL-1 ethanol-treated blueberry fruit cells were more integrated than those of other treatments. The findings of the present study suggest that ethanol could be used as an activator of defense responses in blueberry against Alternaria and Botrytis rots, by activating DREs, having practical application value in the preservation of postharvest fruit and vegetables.

16.
Plants (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834704

RESUMO

The present study aimed to investigate the potentiality of certain biocontrol agents, namely Bacillus subtilis, B. pumilus, B. megaterium, Pseudomonas fluorescens, Serratia marcescens, Trichoderma album, T. harzianum and T. viride, as well as the synthetic fungicide difenoconazole to control celery powdery mildew caused by Erysiphe heraclei DC, in vitro (against conidia germination and germ tube length of E. heraclei) and in vivo (against disease severity and AUDPC). In vitro, it was found that the antifungal activity of the tested biocontrol agents significantly reduced the germination percentage of the conidia and germ tube length of the pathogen. The reduction in conidia germination ranged between 88.2% and 59.6% as a result of the treatment with B. subtilis and T. album, respectively compared with 97.1% by the synthetic fungicide difenoconazole. Moreover, the fungicide achieved the highest reduction in germ tube length (92.5%) followed by B. megaterium (82.0%), while T. album was the least effective (62.8%). Spraying celery plants with the tested biocontrol agents in the greenhouse significantly reduced powdery mildew severity, as well as the area under the disease progress curve (AUDPC), after 7, 14, 21 and 28 days of application. In this regard, B. subtilis was the most efficient followed by B. pumilus, S. marcescens and B. megaterium, with 80.1, 74.4, 73.2 and 70.5% reductions in disease severity, respectively. In AUDPC, reductions of those microorganisms were 285.3, 380.9, 396.7 and 431.8, respectively, compared to 1539.1 in the control treatment. On the other hand, the fungicide difenoconazole achieved maximum efficacy in reducing disease severity (84.7%) and lowest AUDPC (219.3) compared to the other treatments. In the field, all the applied biocontrol agents showed high efficiency in suppressing powdery mildew on celery plants, with a significant improvement in growth and yield characteristics. In addition, they caused an increase in the concentration of leaf pigments, and the activities of defense-related enzymes such as peroxidase (PO) and polyphenol oxidase (PPO) and total phenol content (TPC). In conclusion, the results showed the possibility of using tested biocontrol agents as eco-friendly alternatives to protect celery plants against powdery mildew.

17.
Plants (Basel) ; 10(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34685934

RESUMO

Plant growth-promoting rhizobacteria (PGPR) is a microbial population found in the rhizosphere of plants that can stimulate plant development and restrict the growth of plant diseases directly or indirectly. In this study, 90 rhizospheric soil samples from five agro climatic zones of chilli (Capsicum annuum L.) were collected and rhizobacteria were isolated, screened and characterized at morphological, biochemical and molecular levels. In total, 38% of rhizobacteria exhibited the antagonistic capacity to suppress Ralstonia solanacearum growth and showed PGPR activities such as indole acetic acid production by 67.64% from total screened rhizobacteria isolates, phosphorus solubilization by 79.41%, ammonia by 67.75%, HCN by 58.82% and siderophore by 55.88%. We performed a principal component analysis depicting correlation and significance among plant growth-promoting activities, growth parameters of chilli and rhizobacterial strains. Plant inoculation studies indicated a significant increase in growth parameters and PDS1 strain showed maximum 71.11% biocontrol efficiency against wilt disease. The best five rhizobacterial isolates demonstrating both plant growth-promotion traits and biocontrol potential were characterized and identified as PDS1-Pseudomonas fluorescens (MN368159), BDS1-Bacillus subtilis (MN395039), UK4-Bacillus cereus (MT491099), UK2-Bacillus amyloliquefaciens (MT491100) and KA9-Bacillus subtilis (MT491101). These rhizobacteria have the potential natural elicitors to be used as biopesticides and biofertilizers to improve crop health while warding off soil-borne pathogens. The chilli cv. Pusa Jwala treated with Bacillus subtilis KA9 and Pseudomonas fluorescens PDS1 showed enhancement in the defensive enzymes PO, PPO, SOD and PAL activities in chilli leaf and root tissues, which collectively contributed to induced resistance in chilli plants against Ralstonia solanacearum. The induction of these defense enzymes was found higher in leave tissues (PO-4.87-fold, PP0-9.30-fold, SOD-9.49-fold and PAL-1.04-fold, respectively) in comparison to roots tissue at 48 h after pathogen inoculation. The findings support the view that plant growth-promoting rhizobacteria boost defense-related enzymes and limit pathogen growth in chilli plants, respectively, hence managing the chilli bacterial wilt.

18.
J Fungi (Basel) ; 7(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925014

RESUMO

Monilinia laxa causes serious postharvest damage on apricot fruits under shelf-life storage conditions. Plant elicitors of methyl jasmonate (MeJA) and salicylic acid (SA) can reduce this damage, and their research can explain the background of the plant defense physiological processes in M. laxa-infected fruits. The aims of this study were: (i) to evaluate the effect of various concentrations of MeJA and SA on brown rot incidence (BRI) and lesion diameter (LD) of apricot fruits; (ii) to measure the temporal patterns for the effect of 0.4 mmol L-1 MeJA and 2 mmol L-1 SA treatments on BRI, LD and seven fruit measures (fruit firmness (FF), lignin content (LC), total soluble phenol content (TSPC), total antioxidant capacity (TAC) and enzyme activities of PAL, POD and SOD) in treatments of M. laxa-inoculated versus (vs.) non-inoculated fruits over an eight-day shelf-life storage period; and (iii) to determine inter-correlations among the seven fruit measures for MeJA and SA treatments. Both MeJA and SA significantly reduced BRI and LD. LC, FF, TAC, TSPC, as well as SOD and PAL activities in the MeJA and SA treatments were higher than the water-treated control in most assessment days and both inoculation treatments. In both inoculation treatments, the activity of POD in the SA-treated fruits was higher than MeJA-treated and control fruits at all dates. In MeJA vs. SA and inoculated vs. non-inoculated treatments, six variable pairs (FF vs. TSPC, FF vs. TAC, TAC vs. PAL, PAL vs. POD, PAL vs. SOD, and POD vs. SOD) showed significant inter-correlation values. Principal component analyses explained 96% and 93% of the total variance for inoculated and non-inoculated treatments, respectively. In inoculated treatments, both PC1 and PC2 explained 41% of the total variance and correlated with FF, TSPC and TAC and with PAL, SOD and POD, respectively. In non-inoculated treatments, PC1 and PC2 explained 49% and 44% of the total variance and correlated with LC, PAL, POD and SOD and with FF, TSPC and TAC, respectively. It can be concluded that MeJA and SA are useful in the practice to enhance the plant defense system against brown rot by reducing fungal growth and by improving physical and antioxidant attributes (FF, LC, TAC and TSPC) and the activity of defense-related enzymes (PAL, POD and SOD) in apricot fruits during shelf-life storage conditions.

19.
Insects ; 11(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019207

RESUMO

Using host plant resistance (HPR) in management of insect pests is often environmentally friendly and suitable for sustainable development of agricultural industries. However, this strategy can be limited by rapid evolution of insect populations that overcome HPR, for which the underlying molecular factors and mechanisms are not well understood. To address this issue, we analyzed transcriptomes of two distinct biotypes of the grain aphid, Sitobion avenae (Fabricius), on wheat and barley. This analysis revealed a large number of differentially expressed genes (DEGs) between biotypes 1 and 3 on wheat and barley. The majority of them were common DEGs occurring on both wheat and barley. GO and KEGG enrichment analyses for these common DEGs demonstrated significant expression divergence between both biotypes in genes associated with digestion and defense. Top defense-related common DEGs with the most significant expression changes included three peroxidases, two UGTs (UDP-glycosyltransferase), two cuticle proteins, one glutathione S-transferases (GST), one superoxide dismutase, and one esterase, suggesting their potentially critical roles in the divergence of S. avenae biotypes. A relatively high number of specific DEGs on wheat were identified for peroxidases (9) and P450s (8), indicating that phenolic compounds and hydroxamic acids may play key roles in resistance of wheat against S. avenae. Enrichment of specific DEGs on barley for P450s and ABC transporters suggested their key roles in this aphid's detoxification against secondary metabolites (e.g., alkaloids) in barley. Our results can provide insights into the molecular factors and functions that explain biotype adaptation in insects and their use of resistant plants. This study also has significant implications for developing new resistant cultivars, developing strategies that limit rapid development of insect biotypes, and extending resistant crop cultivars' durability and sustainability in integrated management programs.

20.
Food Sci Nutr ; 7(8): 2625-2635, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31428350

RESUMO

Volatile organic compounds (VOCs) of antagonistic yeasts are considered as environmental safe fumigants to promote the resistance and quality of strawberry (Fragaria ananassa). By GC-MS assays, VOCs of Hanseniaspora uvarum (H. uvarum) fumigated strawberry fruit showed increased contents of methyl caproate (5.8%), methyl octanoate (5.1%), and methyl caprylate (10.9%) in postharvest cold storage. Possible mechanisms of H. uvarum VOCs involved in regulations of the defense-related enzymes and substances in strawberry were investigated during postharvest storage in low temperature and high humidity (2 ± 1°C, RH 90%-95%). Defense-related enzymes assays indicated H. uvarum VOCs stimulated the accumulation of CAT, SOD, POD, APX, PPO, and PAL and inhibited biosynthesis of MDA in strawberry fruit under storage condition. Moreover, the expression levels of related key enzyme genes, such as CAT, SOD, APX42, PPO, and PAL6, were consistently increased in strawberry fruit after H. uvarum VOCs fumigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa