Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
J Appl Toxicol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711185

RESUMO

Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.

2.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735940

RESUMO

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Assuntos
Materiais Biocompatíveis , Resinas Compostas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dióxido de Silício , Resinas Compostas/química , Dióxido de Silício/química , Materiais Biocompatíveis/química , Materiais Dentários/química , Metacrilatos/química , Poliuretanos/química , Ácidos Polimetacrílicos/química , Polietilenoglicóis/química , Resinas Acrílicas/química
3.
Clin Oral Investig ; 27(11): 6903-6914, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831194

RESUMO

OBJECTIVES: Outstanding physical-mechanical properties and aging resistance are key requirements for dental resin composite since it will be placed in the oral environment for a long time. In this work, a new dental resin composite mainly modified by glass flakes was fabricated, and the aging resistance was evaluated by comparing with commercial composites without glass flakes. MATERIALS AND METHODS: The new dental resin composite was produced through hand blending of inorganic glass flakes/Si-Al-borosilicate glass (58wt%:7wt% of dental resin composite), POSS-MA (5wt% of resin matrix), Bis-GMA/TEGDMA(64.4wt%:27.6wt% of resin matrix), and CQ/EDMAB (0.9wt%:2.1wt% of resin matrix) together. The flexural strength, elasticity modulus, and hardness, as well as wear were tested for evaluating the aging resistance of different dental resin composite. RESULTS: Among 6 kinds of commercial composites in this study, after 6-month water storage, the maximum percentage of performance degradation is that the flexural strength decreased 39.96%, elasticity modulus decreased 51.53% and hardness decreased 12.52%. In contrast, the new synthesized material decreased 14.53%, 20.88%, and 0.61%, respectively, and performed lesser wear depth compared to some other groups (P < 0.05). CONCLUSIONS: It was observed that the new dental resin composite performed better performance stability and wear resistance when compared with commercial dimethacrylate-based or low shrinkage dental resin composite tested in this study. CLINICAL RELEVANCE: This possibly paves a path for designing tailored dental composite for practical application. Since the aging resistance of dental resin composite modified by glass flakes is superior, it has the potential to be used for promoting the durability of dental resin composite.


Assuntos
Resinas Compostas , Metacrilatos , Bis-Fenol A-Glicidil Metacrilato , Vidro , Módulo de Elasticidade , Teste de Materiais , Propriedades de Superfície
4.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674788

RESUMO

Dental caries, particularly secondary caries, which is the main contributor to dental repair failure, has been the subject of extensive research due to its biofilm-mediated, sugar-driven, multifactorial, and dynamic characteristics. The clinical utility of restorations is improved by cleaning bacteria nearby and remineralizing marginal crevices. In this study, a novel multifunctional dental resin composite (DRC) composed of Sr-N-co-doped titanium dioxide (Sr-N-TiO2) nanoparticles and nano-hydroxyapatite (n-HA) reinforcing fillers with improved antibacterial and mineralization properties is proposed. The experimental results showed that the anatase-phase Sr-N-TiO2 nanoparticles were synthesized successfully. After this, the curing depth (CD) of the DRC was measured from 4.36 ± 0.18 mm to 5.10 ± 0.19 mm, which met the clinical treatment needs. The maximum antibacterial rate against Streptococcus mutans (S. mutans) was 98.96%, showing significant inhibition effects (p < 0.0001), which was experimentally verified to be derived from reactive oxygen species (ROS). Meanwhile, the resin exhibited excellent self-remineralization behavior in an SBF solution, and the molar ratio of Ca/P was close to that of HA. Moreover, the relative growth rate (RGR) of mouse fibroblast L929 indicated a high biocompatibility, with the cytotoxicity level being 0 or I. Therefore, our research provides a suitable approach for improving the antibacterial and mineralization properties of DRCs.


Assuntos
Cárie Dentária , Nanopartículas , Animais , Camundongos , Durapatita/farmacologia , Resinas Compostas/farmacologia , Antibacterianos/farmacologia , Teste de Materiais
5.
Odontology ; 108(4): 636-645, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32076884

RESUMO

The aim of this study was to investigate the cumulative effects of fruit juices and/or alcoholic beverages on wear track area of the restorative materials by simulating the oral environment in vitro. A microhybrid, a sub-microhybrid, a nanofill resin composite, and a giomer material were used. A daily exposure habits model was created to simulate consumption frequency of acidic and/or alcoholic beverages. Two-body wear tests were carried out using a reciprocating wear tester. ANOVA and Tukey's HSD tests were used for statistical analyses (p < 0.05). When considering experimental groups related to daily exposure habits, statistical difference was found between restorative materials in terms of wear track area (p < 0.01). Joint effect of rmaterial and exposure on wear track area was statistically significant (p < 0.01). Giomer was found to be more affected by acidic and alcoholic beverages. Microhybrid resin composites showed less wear than the other restorative materials. Cumulative effects of alcoholic beverages and fruit juice on wear track area of materials could be related to material's composition and frequency of consumption of acid or ethanol-containing beverages. Daily cumulative effect of acidic and alcoholic beverages was found to be stronger than only acidic fruit juice consumption in terms of wear track area. The plasticizing effect and the concentration of ethanol in the alcoholic beverages provided the basis for the increased wear track area on the restorative materials.


Assuntos
Resinas Compostas , Materiais Dentários , Bebidas , Hábitos , Teste de Materiais , Propriedades de Superfície
6.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353105

RESUMO

Oxidative stress (OS) is a redox homeostasis disorder that results in oxidation of cell components and thus disturbs cell metabolism. OS is induced by numerous internal as well as external factors. According to recent studies, dental treatment may also be one of them. The aim of our work was to assess the effect of dental treatment on the redox balance of the oral cavity. We reviewed literature available in PubMed, Medline, and Scopus databases, including the results from 2010 to 2020. Publications were searched according to the keywords: oxidative stress and dental monomers; oxidative stress and amalgam; oxidative stress and periodontitis, oxidative stress and braces, oxidative stress and titanium; oxidative stress and dental implants, oxidative stress and endodontics treatment, oxidative stress and dental treatment; and oxidative stress and dental composite. It was found that dental treatment with the use of composites, amalgams, glass-ionomers, materials for root canal filling/rinsing, orthodontic braces (made of various metal alloys), titanium implants, or whitening agents can disturb oral redox homeostasis by affecting the antioxidant barrier and increasing oxidative damage to salivary proteins, lipids, and DNA. Abnormal saliva secretion/composition was also observed in dental patients in the course of OS. It is suggested that the addition of antioxidants to dental materials or antioxidant therapy applied during dental treatment could protect the patient against harmful effects of OS in the oral cavity.


Assuntos
Materiais Dentários/uso terapêutico , Endodontia , Boca/efeitos dos fármacos , Ortodontia , Doenças Periodontais/tratamento farmacológico , Animais , Humanos , Oxirredução
7.
Molecules ; 25(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076515

RESUMO

Dental resin composites have been widely used in a variety of direct and indirect dental restorations due to their aesthetic properties compared to amalgams and similar metals. Despite the fact that dental resin composites can contribute similar mechanical properties, they are more likely to have microbial accumulations leading to secondary caries. Therefore, the effective and long-lasting antimicrobial properties of dental resin composites are of great significance to their clinical applications. The approaches of ascribing antimicrobial properties to the resin composites may be divided into two types: The filler-type and the resin-type. In this review, the resin-type approaches were highlighted. Focusing on the antimicrobial polymers used in dental resin composites, their chemical structures, mechanical properties, antimicrobial effectiveness, releasing profile, and biocompatibility were included, and challenges, as well as future perspectives, were also discussed.


Assuntos
Resinas Acrílicas/química , Anti-Infecciosos/química , Resinas Compostas/química , Polímeros/química , Resinas Acrílicas/síntese química , Anti-Infecciosos/síntese química , Resinas Compostas/uso terapêutico , Humanos , Microscopia Eletrônica de Varredura , Poliuretanos/química
8.
BMC Oral Health ; 20(1): 157, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487153

RESUMO

BACKGROUND: Three-dimensional (3D) printing is widely used in the fabrication of dental prostheses; however, the influence of dental materials used for 3D printing on temporary restoration of fibroblasts in tissues is unclear. Thus, the influence of different dental materials on fibroblasts were investigated. METHODS: Digital light processing (DLP) type 3D printing was used. Specimens in the control group were fabricated by mixing liquid and powder self-curing resin restoration materials. The temporary resin materials used were Model, Castable, Clear-SG, Tray, and Temporary, and the self-curing resin materials used were Lang dental, Alike, Milky blue, TOKVSO CUREFAST, and UniFast III. Fibroblast cells were cultured on each specimen and subsequently post-treated for analysis. Morphology of the adhered cells were observed using a confocal laser scanning microscope (CLSM) and a scanning electron microscope (SEM). RESULTS: CLSM and SEM cell imaging revealed that the 3D printed material group presented better cell adhesion with well-distributed filopodia compared to that in the conventional resin material group. Cell proliferation was significantly higher in the 3D printing materials. CONCLUSION: Superior cytocompatibility of the specimens fabricated through 3D printing and polishing process was demonstrated with the proof of better cell adhesion and higher cell proliferation.


Assuntos
Resinas Compostas , Materiais Dentários , Impressão Tridimensional , Fibroblastos , Humanos , Teste de Materiais , Propriedades de Superfície
9.
J Contemp Dent Pract ; 21(7): 781-786, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33020363

RESUMO

AIM: This study aimed to assess the microleakage of a self-adhesive composite compared to conventional composites in class V cavities. MATERIALS AND METHODS: In this in vitro experimental study, standard class V cavities were prepared in the buccal surface of 204 extracted teeth and randomly divided into six groups for restoration with (A) Vertiseflow (Kerr) self-adhesive composite, (B) acid etching (Kerr) + Vertiseflow, (C) acid etching + Optibond FL (Kerr) + Vertiseflow, (D) Er,Cr:YSGG laser + Vertiseflow, (E) acid etching + Optibond FL + Premise Flowable (Kerr), and (F) acid etching + Optibond FL + Z250 (3M). The teeth in each group were then randomly divided into two subgroups of with and without thermocycling (10,000 cycles between 5°C and 55°C). The microleakage was then determined at the enamel and dentin margins under a stereomicroscope using the dye penetration method. Data were analyzed using the Kruskal-Wallis test (α = 0.05). RESULTS: No significant difference was noted in occlusal margin microleakage of no thermocycling groups, but acid etching + Vertiseflow showed the highest microleakage. At the gingival margin, the difference between acid etching + bonding agent + Z250 and laser + Vertiseflow was significant (p = 0.004). In thermocycling groups, the difference in the microleakage at the occlusal margin of Vertiseflow with that of acid etching + bonding agent + Premise (p = 0.002), acid etching + bonding agent + Vertiseflow (p = 0.009), and acid etching + bonding agent + Z250 (p = 0.037) groups was significant. The difference in the microleakage at the dentin margin was also significant among the groups (p < 0.05). The highest and the lowest microleakages were noted in laser + Vertiseflow and acid etching + bonding agent + Vertiseflow groups, respectively. CONCLUSION: Surface preparation with etching and adhesive application results in lower microleakage in class V cavities. But laser irradiation and the use of self-adhesive composite increase the microleakage. CLINICAL SIGNIFICANCE: It seems that self-adhesive composites cannot provide acceptable marginal integrity without any surface treatment.


Assuntos
Infiltração Dentária , Cimentos de Resina , Resinas Compostas , Cimentos Dentários , Restauração Dentária Permanente , Humanos
10.
Odontology ; 104(3): 257-70, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27540733

RESUMO

Composite restorations are widely used worldwide, but the polymerization shrinkage is their main disadvantage that may lead to clinical failures and adverse consequences. This review reports, currently available in vitro techniques and methods used for assessing the polymerization shrinkage. The focus lies on recent methods employing three-dimensional micro-CT data for the evaluation of polymerization shrinkage: volumetric measurement and the shrinkage vector evaluation through tracing particles before and after polymerization. Original research articles reporting in vitro shrinkage measurements and shrinkage stresses were included in electronic and hand-search. Earlier methods are easier, faster and less expensive. The procedures of scanning the samples in the micro-CT and performing the shrinkage vector evaluation are time consuming and complicated. Moreover, the respective software is not commercially available and the various methods for shrinkage vector evaluation are based on different mathematical principles. Nevertheless, these methods provide clinically relevant information and give insight into the internal shrinkage behavior of composite applied in cavities and how boundary conditions affect the shrinkage vectors. The traditional methods give comparative information on polymerization shrinkage of resin composites, whereas using three-dimensional micro-CT data for volumetric shrinkage measurement and the shrinkage vector evaluation is a highly accurate method. The methods employing micro-CT data give the researchers knowledge related to the application method and the boundary conditions of restorations for visualizing the shrinkage effects that could not be seen otherwise. Consequently, this knowledge can be transferred to the clinical situation to optimize the material manipulation and application techniques for improved outcomes.


Assuntos
Resinas Acrílicas/química , Resinas Compostas/química , Poliuretanos/química , Microtomografia por Raio-X , Falha de Restauração Dentária , Restauração Dentária Permanente , Análise do Estresse Dentário , Teste de Materiais , Polimerização
11.
Int J Mol Sci ; 17(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916947

RESUMO

With the aim of reducing human exposure to Bisphenol A (BPA) derivatives in dentistry, a fluorinated dimethacrylate monomer was synthesized to replace 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl)-phenyl]propane (Bis-GMA) as the base monomer of dental resin. After mixing with reactive diluent triethyleneglycol dimethacrylate (TEGDMA), fluorinated dimethacrylate (FDMA)/TEGDMA was prepared and compared with Bis-GMA/TEGDMA in physicochemical properties, such as double bond conversion (DC), volumetric shrinkage (VS), water sorption (WS) and solubility (WSL), flexural strength (FS) and modulus (FM). The results showed that, when compared with Bis-GMA based resin, FDMA-based resin had several advantages, such as higher DC, lower VS, lower WS, and higher FS after water immersion. All of these revealed that FDMA had potential to be used as a substitute for Bis-GMA. Of course, many more studies, such as biocompatibility testing, should be undertaken to prove whether FDMA could be applied in clinic.


Assuntos
Materiais Biocompatíveis/química , Materiais Dentários/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Resinas Sintéticas/química , Compostos Benzidrílicos/química , Compostos Benzidrílicos/uso terapêutico , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/uso terapêutico , Resinas Compostas/síntese química , Resinas Compostas/química , Materiais Dentários/síntese química , Materiais Dentários/uso terapêutico , Halogenação , Humanos , Fenóis/química , Fenóis/uso terapêutico , Polietilenoglicóis/síntese química , Ácidos Polimetacrílicos/síntese química , Resinas Sintéticas/síntese química , Resinas Sintéticas/uso terapêutico , Solubilidade , Água/química
12.
Acta Odontol Scand ; 72(8): 597-606, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24490640

RESUMO

OBJECTIVE: The aim of this study was to measure dimensional changes due to hygroscopic expansion and the bioactivity of two experimental methacrylate-based dental adhesives either incorporating Bioglass 45S5 (3-E&RA/BG) or MTA (3-E&RA/WMTA). MATERIALS AND METHODS: 3-E&RA/BG, 3-E&RA/WMTA and a control filler-free resin blend (3-E&RA) were formulated from commercially available monomers. Water sorption (WS) and solubility (SL) behaviour were evaluated by weighing material disks at noted intervals; the relationship between degree of hydration and the glass transition temperature (Tg) was investigated by using differential scanning calorimetry (DSC). In vitro apatite-forming ability as a function of soaking time in phosphate-containing solutions was also determined. Kruskal-Wallis analysis of variance (ANOVA) was used to evaluate differences between groups for maximum WS, SL, net water uptake and the percentage change in Tg values. Post-ANOVA pair-wise comparisons were conducted using Mann-Whitney-U tests. RESULTS: 3-E&RA/BG and 3-E&RA/WMTA exhibited values of maximum WS and net water uptake that were significantly higher when compared to 3-E&RA. However, no statistically significant differences were observed in terms of SL between all the adhesives. The addition of the Bioglass 45S5 and MTA to the 3-E&RA showed no reduction of the Tg after 60 days of storage in deionized water. ATR Fourier Transform Infrared Spectroscopy (ATR-FTIR) of the filled resin disks soaked in DPBS for 60 days showed the presence of carbonate ions in different chemical phases. CONCLUSION: Dentine bonding agents comprising calcium-silicates are not inert materials in a simulated oral environment and apatite formation may occur in the intra-oral conditions. CLINICAL SIGNIFICANCE: A bioactive dental material which forms apatite on the surface would have several benefits including closure of gaps forming at the resin-dentine interface and potentially better bond strength over time (less degradation of bond).


Assuntos
Compostos de Alumínio/química , Apatitas/química , Compostos de Cálcio/química , Cerâmica/química , Vidro/química , Óxidos/química , Cimentos de Resina/química , Silicatos/química , Absorção Fisico-Química , Adsorção , Benzoatos/química , Bis-Fenol A-Glicidil Metacrilato/química , Varredura Diferencial de Calorimetria , Adesivos Dentinários/química , Combinação de Medicamentos , Humanos , Teste de Materiais , Metacrilatos/química , Fosfatos/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Fatores de Tempo , Temperatura de Transição , Água/química , Molhabilidade
13.
J Mech Behav Biomed Mater ; 157: 106609, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38833782

RESUMO

The current study enhances the performance of solid-network triply periodic minimal surface (TPMS) cellular materials through using cell size grading along with the Taguchi method. Cell size grading is a novel technique used to control the size of pores and the surface area without changing the relative density. In this context, experimental compression testing was conducted on six distinct geometries of cell size graded TPMS structures (Diamond, Fischer-Koch S, Gyroid, IWP, Primitive, and Schoen-F-RD) manufactured with dental resin using a masked stereolithography (MSLA) printer. The findings indicated that mean total energy absorption was greater for smaller initial cell sizes (4 and 6 mm) compared to larger sizes (12 mm). Consistent patterns were also observed with respect to final cell sizes. Upon examination of the stress-strain relationships between D and I-WP, it is evident that D exhibits a higher initial peak stress point. However, subsequent to a significant decline, it exhibits a tremendous degree of volatility before recovering. Conversely, I-WP demonstrated greater stability throughout the experiments, with a notably greater maximum stress effect. A significant influence was observed from the initial cell size on stress, with larger sizes leading to a reduction in absorbed energy. The acquired results serve as an essential basis for the identification of optimized designs that may be implemented to enhance the structures' durability.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Materiais Biocompatíveis/química , Estresse Mecânico , Propriedades de Superfície , Porosidade , Tamanho Celular , Fenômenos Mecânicos
14.
Sci Rep ; 14(1): 7794, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565625

RESUMO

In this study, a commercial dental resin was reinforced by SiO2 nanoparticles (NPs) with different concentrations to enhance its mechanical functionality. The material characterization and finite element analysis (FEA) have been performed to evaluate the mechanical properties. Wedge indentation and 3-point bending tests were conducted to assess the mechanical behavior of the prepared nanocomposites. The results revealed that the optimal content of NPs was achieved at 1% SiO2, resulting in a 35% increase in the indentation reaction force. Therefore, the sample containing 1% SiO2 NPs was considered for further tests. The morphology of selected sample was examined using field emission scanning electron microscopy (FE-SEM), revealing the homogeneous dispersion of SiO2 NPs with minimal agglomeration. X-ray diffraction (XRD) was employed to investigate the crystalline structure of the selected sample, indicating no change in the dental resin state upon adding SiO2 NPs. In the second part of the study, a novel approach called iterative FEA, supported by the experiment wedge indentation test, was used to determine the mechanical properties of the 1% SiO2-dental resin. Subsequently, the accurately determined material properties were assigned to a dental crown model to virtually investigate its behavior under oblique loading. The virtual test results demonstrated that most microcracks initiated from the top of the crown and extended through its thickness.


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Resinas Compostas/química , Análise de Elementos Finitos , Nanopartículas/química , Fenômenos Mecânicos , Teste de Materiais
15.
J Dent Sci ; 19(1): 357-363, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303871

RESUMO

Background/purpose: Current 3D-printing technology has been widely used for creating dental resin restorations. This study aimed to evaluate the effect of light intensity, time, and energy post-curing on the surface color of 3D-printed resin crowns. However, the influences of post-curing parameters on the restoration after printing still need to be explored. Therefore, this project investigates the effect of post-cure conditions on resin color. Materials and methods: Specimens from single-crown (SC) and pontic (PO) specimens underwent post-curing at various light intensities (105, 210, 420, 630, and 860 mW/cm2) for 5, 10, and 15 min. Specimens were observed at three predetermined points and measured using a commercial spectrophotometer that utilizes the CIE Lab∗ color space. Subsequently, samples were analyzed for color differences (ΔE). Results: ΔE color differences in evaluated samples were influenced by the light intensity, time, and energy post-curing. SC samples showed a significant color difference (P < 0.05), with the lowest value at 5 min of 16 (860 mW/cm2), while 10 and 15 min had a difference of 4 (210 mW/cm2). PO samples exhibited a significant decrease in the color difference (P < 0.05) at 5 and 10 min of 16 (860 mW/cm2), and at 15 min of 12 (630 mW/cm2). Conclusion: The results of this study indicate that exposing a resin crown to a high light intensity results in color stability and allows shorter post-curing times.

16.
J Dent ; 142: 104860, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281618

RESUMO

INTRODUCTION: This study create a dental composite by hybirding polyhedral oligo-sesquioxide nano monomers and bioactive glass BG 45S5. METHODS: Make an experimental composite resin material with a 60 % filler content overall by substituting 20 % of the filler with BG 45S5. The experimental resins are grouped and named P0, P2, P4, P6 and P8 based on the reactive nanomonomer methacrylic acid-based multifaceted oligomeric sesquisiloxane (POSS) added by 2 %-8 % in the resin matrix portion of each group. Utilize a universal testing machine to analyze and compare the mechanical properties of these, then perform Fourier infrared spectrum analysis, double bond conversion analysis, and scanning electron microscope analysis. Based on this, after soaking the experimental materials artificial saliva solution or lactic acid solution for a while, the pH changes of the solution, the release of Ca2+ and PO43- ions, and the precipitation of apatite on the resin material's surface were tested and analyzed. Cell viability tests were used to assess sample cell viability and quantify the cytotoxicity of biological cells. The independent sample t-test was used to examine the group comparisons, and a difference was considered statistically significant at P<0.05. RESULTS: Outstanding mechanical and the double bond conversion are demonstrated by the nanocomposites when the POSS concentration hits 4 wt%. Agglomeration will cause the performance to deteriorate if the concentration beyond this threshold. In the P4 group, the double bond conversion, CS, and FS rose by a large margin, respectively, in comparison to the blank control group P0. Thankfully, the data demonstrate that adding POSS increases adhesive ability when compared to the blank group P0, however, there is no discernible difference between the other experimental groups. The acid neutralization capacity of the P4 group is essentially the same as that of the control group (P0). Ca2+ and PO43- ions are released in significant amounts following treatment with lactic acid solution, although this tendency is clearly less pronounced in artificial saliva. SEM and EDX data indicate that when the experimental resin is soaked in lactic acid solution and artificial saliva, apatite precipitation will happen on its surface. The results of the cell viability test indicated that there was no statistically significant difference between the experimental groups, and the viability of the cells increased after 24hours and 48 hours. CONCLUSIONS: POSS was included into the composite resin along with 20% bioactive glass as a filler. When the proportion of POSS is less than 4%, the indices of composite resin materials rise in a dose-dependent way. When this value is surpassed, performance begins to deteriorate. The inclusion of POSS has no influence on the biological activity of the composites, which means that the hybrid composite resin is capable of acid neutralization, ion release, and apatite precipitation. CLINICAL SIGNIFICANCE: The experimental composite resin can be used as an intelligent material in clinical treatment. It has the clinical application potential of preventing demineralization of tooth hard tissue, promoting remineralization, and improving edge sealing through apatite precipitation.


Assuntos
Cimentos Dentários , Vidro , Saliva Artificial , Teste de Materiais , Vidro/química , Resinas Compostas/química , Materiais Dentários , Ácido Láctico , Apatitas , Íons , Propriedades de Superfície
17.
J Funct Biomater ; 15(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38921538

RESUMO

Resin-based dental composites, commonly used in dentistry, offer several advantages including minimally invasive application, esthetically pleasing appearance, and good physical and mechanical properties. However, these dental composites can be susceptible to microcracks due to various factors in the complex oral environment. These microcracks can potentially lead to clinical restoration failure. Conventional materials and methods are inadequate for detecting and repairing these microcracks in situ. Consequently, incorporating self-healing properties into dental composites has become a necessity. Recent years have witnessed rapid advancements in self-healing polymer materials, drawing inspiration from biological bionics. Microcapsule-based self-healing dental composites (SHDCs) represent some of the most prevalent types of self-healing materials utilized in this domain. In this article, we undertake a comprehensive review of the most recent literature, highlighting key insights and findings related to microcapsule-based SHDCs. Our discussion centers particularly on the preparation techniques, application methods, and the promising future of self-healing microcapsules in the field of dentistry.

18.
Restor Dent Endod ; 49(1): e7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38449498

RESUMO

Objectives: This study aimed to evaluate the impact of substrate color and interface distance on the color adjustment of 2 single-shade composites, Vittra APS Unique and Charisma Diamond One. Materials and Methods: Dual disc-shaped specimens were created using Vittra APS Unique or Charisma Diamond One as the center composite, surrounded by shaded composites (A1 or A3). Color measurements were taken with a spectrophotometer against a gray background, recording the color coordinates in the CIELAB color space. Illumination with a light-correcting device and image acquisition using a polarizing filter-equipped cell phone were performed on specimens over the same background. Image processing software was used to measure the color coordinates in the center and periphery of the inner composite and in the outer composite. The color data were then converted to CIELAB coordinates and adjusted using data from the spectrophotometer. Color differences (ΔE00) between the center/periphery of single-shade and outer composites were calculated, along with color changes in single-shade composites caused by different outer composites. Color differences for the inner composites surrounded by A1 and A3 were also calculated. Data were analyzed using repeated-measures analysis of variance (α = 0.05). Results: The results showed that color discrepancies were lowest near the interface and when the outer composite was whiter (A1). Additionally, Charisma Diamond One exhibited better color adjustment ability than Vittra APS Unique. Conclusions: Color discrepancies between the investigated single-shade composites diminished towards the interface with the surrounding composite, particularly when the latter exhibited a lighter shade.

19.
J Funct Biomater ; 15(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667557

RESUMO

This study explored the chemical and antibacterial properties of a dental resin loaded with gold nanoshells (AuNPs) in conjunction with photothermal therapy (PTT) as a novel method against Streptococcus mutans (S. mutans) to prevent secondary caries. First, a 20-h minimum inhibitory concentration (MIC) assay was performed on solutions of AuNPs with planktonic S. mutans under an LED device and laser at 660 nm. Next, resin blends containing 0, 1 × 1010, or 2 × 1010 AuNPs/mL were fabricated, and the degree of conversion (DC) was measured using an FTIR spectroscopy. Lastly, a colony forming unit (CFU) count was performed following 24 h growth of S. mutans on 6 mm diameter resin disks with different light treatments of an LED device and a laser at 660 nm. The MIC results only showed a reduction in S. mutans at AuNP concentrations less than 3.12 µg/mL under a laser illumination level of 95.5 J/cm2 compared to the dark treatment (p < 0.010 for each). CFU and DC results showed no significant dependence on any light treatment studied. The AuNPs expressed antibacterial effects following PPT against planktonic S. mutans but not in a polymerized dental adhesive resin. Future studies should focus on different shapes, structure, and concentrations of AuNPs loaded in a resin blend.

20.
J Mech Behav Biomed Mater ; 157: 106608, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38833781

RESUMO

This study assessed the monotonic and fatigue flexural strength (FS), elastic modulus (E), and surface characteristics of a 3D printed zirconia-containing resin composite compared to subtractive and conventional layering methods. Specimens, including discs (n = 15; Ø = 15 mm × 1.2 mm) and bars (n = 15; 14 × 4 × 1.2 mm), were prepared and categorized into three groups: 3D printing (3D printing - PriZma 3D Bio Crown, Makertech), Subtractive (Lava Ultimate blocks, 3M), and Layering (Filtek Z350 XT, 3M). Monotonic tests were performed on the discs using a piston-on-three-balls setup, while fatigue tests employed similar parameters with a frequency of 10 Hz, initial stress at 20 MPa, and stress increments every 5000 cycles. The E was determined through three-point-bending test using bars. Surface roughness, fractographic, and topographic analyses were conducted. Statistical analyses included One-way ANOVA for monotonic FS and roughness, Kruskal-Wallis for E, and Kaplan-Meier with post-hoc Mantel-Cox and Weibull analysis for fatigue strength. Results revealed higher monotonic strength in the Subtractive group compared to 3D printing (p = 0.02) and Layering (p = 0.04), while 3D Printing and Layering exhibited similarities (p = 0.88). Fatigue data indicated significant differences across all groups (3D Printing < Layering < Subtractive; p = 0.00 and p = 0.04, respectively). Mechanical reliability was comparable across groups. 3D printing and Subtractive demonstrated similar E, both surpassing Layering. Moreover, 3D printing exhibited higher surface roughness than Subtractive and Layering (p < 0.05). Fractographic analysis indicated that fractures initiated at surface defects located in the area subjected to tensile stress concentration. A porous surface was observed in the 3D Printing group and a more compact surface in Subtractive and Layering methods. This study distinguishes the unique properties of 3D printed resin when compared to conventional layering and subtractive methods for resin-based materials. 3D printed shows comparable monotonic strength to layering but lags behind in fatigue strength, with subtractive resin demonstrating superior performance. Both 3D printed and subtractive exhibit similar elastic moduli, surpassing layering. However, 3D printed resin displays higher surface roughness compared to subtractive and layering methods. The study suggests a need for improvement in the mechanical performance of 3D printed material.


Assuntos
Teste de Materiais , Fenômenos Mecânicos , Impressão Tridimensional , Propriedades de Superfície , Zircônio , Zircônio/química , Estresse Mecânico , Módulo de Elasticidade , Testes Mecânicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa