Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurooncol ; 152(2): 233-243, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33517558

RESUMO

PURPOSE: Depatux-m is an antibody drug conjugate (ADC) that targets and inhibits growth of cancer cells overexpressing the epidermal growth factor receptor (EGFR) or the 2-7 deletion mutant (EGFRvIII) in tumor models in vitro and in vivo. Treatment of patients suffering from relapsed/refractory glioblastoma (GBM) with a combination of depatux-m and temozolomide (TMZ) tended to increase overall survival. As a first step to understand the nature of the interaction between the two drugs, we investigated whether the interaction was synergistic, additive or antagonistic. METHODS: The efficacy of ADCs, antibodies, TMZ and radiation was tested in xenograft models of GBM, U-87MG and U-87MG EGFRvIII. Both models express EGFR. U-87MG EGFRvIII was transduced to express EGFRvIII. Changes in tumor volume, biomarkers of cell death and apoptosis after treatment were used to measure efficacy of the various treatments. Synergism of depatux-m and TMZ was verified in three-dimensional cultures of U-87MG and U-87MG EGFRvIII by the method of Chou and Talalay. RESULTS: Combined with TMZ and radiotherapy (RT), depatux-m inhibited xenograft growth of U-87MG and U-87MG EGFRvIII more than either treatment with depatux-m or TMZ + RT. Durability of the response to depatux-m + TMZ + RT or depatux-m + TMZ was more pronounced in U-87MG EGFRvIII than in U-87MG. Efficacy of depatux-m + TMZ was synergistic in U-87MG EGFRvIII and additive in U-87MG. CONCLUSION: Adding depatux-m enhances the efficacy of standard of care therapy in preclinical models of GBM. Durability of response to depatux-m + TMZ in vivo and synergy of the drug-drug interaction correlates with the amount of antigen expressed by the tumor cells.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas , Glioblastoma , Temozolomida/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Neurooncol ; 144(1): 205-210, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31273577

RESUMO

PURPOSE: Epidermal growth factor receptor (EGFR) amplification has been reported to occur in ~ 50% of glioblastomas (GBMs). We are conducting several global studies that require central testing for EGFR amplification during screening, representing an opportunity to confirm the frequency of amplification in GBM in a large cohort and to evaluate whether EGFR amplification differs by region of the world. METHODS: EGFR amplification was measured by fluorescence in situ hybridization during screening for therapeutic trials of an EGFR antibody-drug conjugate: two Phase 2/3 global trials (INTELLANCE-1, INTELLANCE-2), and a Japanese Phase 1/2 trial (INTELLANCE-J). We evaluated the proportion of tumor tissue samples harboring EGFR amplification among those tested and differences in amplification frequency by geography. RESULTS: EGFR was amplified in 54% of 3150 informative cases screened for INTELLANCE-1 and -2, consistent with historic controls, but was significantly lower in patients from Asia versus the rest of the world (35% vs. 56%, P < 0.0030). The independent INTELLANCE-J trial validated this finding (33% amplified of 153 informative cases). CONCLUSIONS: EGFR amplification occurs less frequently in patients from Asia than elsewhere. Further study is required to understand biological differences to optimize treatment in glioblastoma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Amplificação de Genes , Glioblastoma/genética , Programas de Rastreamento/normas , Seleção de Pacientes , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Método Duplo-Cego , Receptores ErbB/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Prognóstico
3.
Cancer ; 124(10): 2174-2183, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29533458

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) alterations are associated with multiple cancers. Current EGFR-directed therapies have led to increased efficacy but are associated with specific side effects. The antibody-drug conjugate depatuxizumab mafodotin (depatux-m) targets EGFR with a monoclonal antibody linked to a cytotoxin, and is highly tumor-specific. METHODS: This phase 1/2 study evaluated the safety, pharmacokinetics, and efficacy of depatux-m in patients who had advanced solid tumors with known wild-type EGFR overexpression, amplification, or mutated EGFR variant III. A 3 + 3 dose escalation was used, and 2 dosing schedules were evaluated. Depatux-m also was manufactured under an alternate process to reduce the drug load and improve the safety profile, and it was tested at the maximum tolerated dose (MTD). In another cohort, prolonged infusion time of depatux-m was evaluated; and a cohort with confirmed EGFR amplification also was evaluated at the MTD. RESULTS: Fifty-six patients were treated. The MTD and the recommended phase 2 dose for depatux-m was 3.0 mg/kg. Common adverse events (AEs) were blurred vision (48%) and fatigue (41%). A majority of patients (66%) experienced 1 or more ocular AEs. Grade 3 or 4 AEs were observed in 43% of patients. One patient with EGFR-amplified, triple-negative breast cancer had a partial response. Stable disease was observed in 23% of patients. Pharmacokinetics revealed that depatux-m exposures were approximately dose-proportional. CONCLUSIONS: Depatux-m resulted in infrequent nonocular AEs but increased ocular AEs. Patient follow-up confirmed that ocular AEs were reversible. Lowering the drug-antibody ratio did not decrease the number of ocular AEs. A partial response in 1 patient with EGFR-amplified disease provides the opportunity to study depatux-m in diseases with a high incidence of EGFR amplification. Cancer 2018;124:2174-83. © 2018 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Fadiga/epidemiologia , Imunoconjugados/administração & dosagem , Neoplasias/tratamento farmacológico , Transtornos da Visão/epidemiologia , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , Relação Dose-Resposta a Droga , Esquema de Medicação , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fadiga/induzido quimicamente , Feminino , Seguimentos , Amplificação de Genes , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Infusões Intravenosas , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Resultado do Tratamento , Transtornos da Visão/induzido quimicamente
4.
Neurooncol Adv ; 4(1): vdac130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071925

RESUMO

Background: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood-brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM. Methods: The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated in vitro and in vivo. CED was performed in nontumor and tumor-bearing mice. Immunostaining was used to evaluate ADC distribution, pharmacodynamic effects, and normal cell toxicity. Results: Dose-finding studies in orthotopic GBM6 identified single infusion of 2 µg Ser-T and 60 µg Depatux-M as safe and effective associated with extended survival prolongation (>300 days and 95 days, respectively). However, with serial infusions every 21 days, four Ser-T doses controlled tumor growth but was associated with lethal toxicity approximately 7 days after the final infusion. Limiting dosing to two infusions in GBM108 provided profound median survival extension of over 200 days. In contrast, four Depatux-M CED doses were well tolerated and significantly extended survival in both GBM6 (158 days) and GBM108 (310 days). In a toxicity analysis, Ser-T resulted in a profound loss in NeuN+ cells and markedly elevated GFAP staining, while Depatux-M was associated only with modest elevation in GFAP staining. Conclusion: CED of Depatux-M is well tolerated and results in extended survival in orthotopic GBM PDXs. In contrast, CED of Ser-T was associated with a much narrower therapeutic window.

5.
Neuro Oncol ; 23(12): 2042-2053, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050676

RESUMO

BACKGROUND: Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS: PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS: Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS: Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoconjugados , Preparações Farmacêuticas , Anticorpos Monoclonais Humanizados , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Humanos
6.
Cancers (Basel) ; 13(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204877

RESUMO

BACKGROUND: Depatuxizumab Mafodotin (Depatux-M; ABT-414) is an antibody-drug conjugate consisting of a specific antibody against activated EGFR and a cytotoxic agent with antimicrotubule activity. The INTELLANCE 2/EORTC 1410 phase 2 trial produced interesting results for the combination regimen of Depatux-M and temozolomide in EGFR-amplified glioblastoma patients at first recurrence. For the first time worldwide, our work investigated the clinical outcome and safety of this combination in a real-life population. MATERIALS AND METHODS: Patients were enrolled from seven AINO (Italian Association of Neuro-Oncology) Institutions. The major inclusion criteria were: histologically confirmed diagnosis of glioblastoma, EGFR-amplified, one or more prior systemic therapies and ECOG PS ≤ 2. According to the original schedule, patients received Depatux-M 1.25 mg/kg every 2 weeks combined with temozolomide. The primary endpoints of the study were overall survival and safety. RESULTS: A total of 36 patients were enrolled. The median age was 57 years, ECOG PS was 0-1 in 28 patients (88%), MGMT methylated status was found in 22 (64%), 15 patients (42%) received the combined treatment as second-line therapy. The median OS was 8.04 months (95% CI, 5.3-10.7), the 12 month-OS was 37%. On univariate and multivariate analyses, the MGMT methylation status was the only factor resulting significantly associated with survival. Grade 3 ocular toxicity occurred in 11% of patients; no grade 4 ocular toxicity was reported. No death was considered to be drug-related. CONCLUSIONS: The study reported the first "real world" experience of Depatux-M plus temozolomide in recurrent glioblastoma patients. Encouraging clinical benefits were demonstrated, even though most patients were treated beyond second-line therapy. Overall, the results are close to those reported in the previous phase 2 trial. Toxicity was moderate and manageable.

7.
Neuro Oncol ; 22(5): 684-693, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31747009

RESUMO

BACKGROUND: Depatuxizumab mafodotin (Depatux-M) is a tumor-specific antibody-drug conjugate consisting of an antibody (ABT-806) directed against activated epidermal growth factor receptor (EGFR) and the toxin monomethylauristatin-F. We investigated Depatux-M in combination with temozolomide or as a single agent in a randomized controlled phase II trial in recurrent EGFR amplified glioblastoma. METHODS: Eligible were patients with centrally confirmed EGFR amplified glioblastoma at first recurrence after chemo-irradiation with temozolomide. Patients were randomized to either Depatux-M 1.25 mg/kg every 2 weeks intravenously, or this treatment combined with temozolomide 150-200 mg/m2 day 1-5 every 4 weeks, or either lomustine or temozolomide. The primary endpoint of the study was overall survival. RESULTS: Two hundred sixty patients were randomized. In the primary efficacy analysis with 199 events (median follow-up 15.0 mo), the hazard ratio (HR) for the combination arm compared with the control arm was 0.71 (95% CI = 0.50, 1.02; P = 0.062). The efficacy of Depatux-M monotherapy was comparable to that of the control arm (HR = 1.04, 95% CI = 0.73, 1.48; P = 0.83). The most frequent toxicity in Depatux-M treated patients was a reversible corneal epitheliopathy, occurring as grades 3-4 adverse events in 25-30% of patients. In the long-term follow-up analysis with median follow-up of 28.7 months, the HR for the comparison of the combination arm versus the control arm was 0.66 (95% CI = 0.48, 0.93). CONCLUSION: This trial suggests a possible role for the use of Depatux-M in combination with temozolomide in EGFR amplified recurrent glioblastoma, especially in patients relapsing well after the end of first-line adjuvant temozolomide treatment. (NCT02343406).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Anticorpos Monoclonais Humanizados , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/genética , Glioblastoma/tratamento farmacológico , Humanos , Lomustina/uso terapêutico , Temozolomida/uso terapêutico
8.
Neurooncol Adv ; 2(1): vdz051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642719

RESUMO

BACKGROUND: The randomized phase II INTELLANCE-2/EORTC_1410 trial on EGFR-amplified recurrent glioblastomas showed a trend towards improved overall survival when patients were treated with depatux-m plus temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research on material derived from this clinical trial to identify patients that benefit from this treatment. METHODS: Targeted DNA-sequencing and whole transcriptome analysis was performed on clinical trial samples. High-throughput, high-content imaging analysis was done to understand the molecular mechanism underlying the survival benefit. RESULTS: We first define the tumor genomic landscape in this well-annotated patient population. We find that tumors harboring EGFR single-nucleotide variations (SNVs) have improved outcome in the depatux-m + TMZ combination arm. Such SNVs are common to the extracellular domain of the receptor and functionally result in a receptor that is hypersensitive to low-affinity EGFR ligands. These hypersensitizing SNVs and the ligand-independent EGFRvIII variant are inversely correlated, indicating two distinct modes of evolution to increase EGFR signaling in glioblastomas. Ligand hypersensitivity can explain the therapeutic efficacy of depatux-m as increased ligand-induced activation will result in increased exposure of the epitope to the antibody-drug conjugate. We also identified tumors harboring mutations sensitive to "classical" EGFR tyrosine-kinase inhibitors, providing a potential alternative treatment strategy. CONCLUSIONS: These data can help guide treatment for recurrent glioblastoma patients and increase our understanding into the molecular mechanisms underlying EGFR signaling in these tumors.

9.
J Clin Pharmacol ; 59(9): 1225-1235, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30990907

RESUMO

Depatuxizumab mafodotin (depatux-m) is an antibody-drug conjugate (ADC) designed for the treatment of tumors expressing epidermal growth factor receptor (EGFR), consisting of a veneered "humanized" recombinant IgG1κ antibody that has binding properties specific to a unique epitope of human EGFR with noncleavable maleimido-caproyl linkers each attached to a potent antimitotic cytotoxin, monomethyl auristatin F. We aimed to describe the development and comparison of 2 population pharmacokinetic modeling approaches. Data from 2 phase 1 studies enrolling patients with glioblastoma multiforme or advanced solid tumors were included in the analysis. Patients in these studies received doses of depatux-m ranging from 0.5 to 4.0 mg/kg as monotherapy, in combination with temozolomide, or radiation plus temozolomide depending on the study and/or arm. First, an integrated ADC model to simultaneously describe the concentration-time data for ADC, total antibody, and cys-mafodotin was built using a 2-compartment model for ADC for each drug-to-antibody ratio. Then, 3 individual models were developed for ADC, total antibody, and cys-mafodotin separately using 2-compartment models for ADC and total antibody and a 1-compartment model for cys-mafodotin. Visual predictive checks suggested accurate model fitting across a range of concentrations. The analysis showed that both an integrated complex ADC model and the individual models that have shorter computational time would result in similar outcomes.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Glioblastoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptores ErbB/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Masculino , Pessoa de Meia-Idade , Temozolomida/farmacocinética , Temozolomida/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa