Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(4): e2311732121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232289

RESUMO

Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.

2.
Proc Natl Acad Sci U S A ; 121(5): e2316914121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252828

RESUMO

High-performance sodium storage at low temperature is urgent with the increasingly stringent demand for energy storage systems. However, the aggravated capacity loss is induced by the sluggish interfacial kinetics, which originates from the interfacial Na+ desolvation. Herein, all-fluorinated anions with ultrahigh electron donicity, trifluoroacetate (TFA-), are introduced into the diglyme (G2)-based electrolyte for the anion-reinforced solvates in a wide temperature range. The unique solvation structure with TFA- anions and decreased G2 molecules occupying the inner sheath accelerates desolvation of Na+ to exhibit decreased desolvation energy from 4.16 to 3.49 kJ mol-1 and 24.74 to 16.55 kJ mol-1 beyond and below -20 °C, respectively, compared with that in 1.0 M NaPF6-G2. These enable the cell of Na||Na3V2(PO4)3 to deliver 60.2% of its room-temperature capacity and high capacity retention of 99.2% after 100 cycles at -40 °C. This work highlights regulation of solvation chemistry for highly stable sodium-ion batteries at low temperature.

3.
Proc Natl Acad Sci U S A ; 119(40): e2210203119, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161916

RESUMO

Hard carbon is regarded as the most promising anode material for sodium-ion (Na-ion) batteries, owing to its advantages of high abundance, low cost, and low operating potential. However, the rate capability and cycle life span of hard carbon anodes are far from satisfactory, severely hindering its industrial applications. Here, we demonstrate that the desolvation process defines the Na-ion diffusion kinetics and the formation of a solid electrolyte interface (SEI). The 3A zeolite molecular sieve film on the hard carbon is proposed to develop a step-by-step desolvation pathway that effectively reduces the high activation energy of the direct desolvation process. Moreover, step-by-step desolvation yields a thin and inorganic-dominated SEI with a lower activation energy for Na+ transport. As a result, it contributes to greatly improved power density and cycling stability for both ester and ether electrolytes. When the above insights are applied, the hard carbon anode achieves the longest life span and minimum capacity fading rate at all evaluated current densities. Moreover, with the increase in current densities, an improved plateau capacity ratio is observed. This step-by-step desolvation strategy comprehensively enhances various properties of hard carbon anodes, which provides the possibility of building practical Na-ion batteries with high power density, high energy density, and durability.

4.
Nano Lett ; 24(19): 5714-5721, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695488

RESUMO

The structure of solvated Li+ has a significant influence on the electrolyte/electrode interphase (EEI) components and desolvation energy barrier, which are two key factors in determining the Li+ diffusion kinetics in lithium metal batteries. Herein, the "solvent activity" concept is proposed to quantitatively describe the correlation between the electrolyte elements and the structure of solvated Li+. Through fitting the correlation of the electrode potential and solvent concentration, we suggest a "low-activity-solvent" electrolyte (LASE) system for deriving a stable inorganic-rich EEI. Nano LiF particles, as a model, were used to capture free solvent molecules for the formation of a LASE system. This advanced LASE not only exhibits outstanding antidendrite growth behavior but also delivers an impressive performance in Li/LiNi0.8Co0.1Mn0.1O2 cells (a capacity of 169 mAh g-1 after 250 cycles at 0.5 C).

5.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856230

RESUMO

Lithium metal batteries utilizing lithium metal as the anode can achieve a greater energy density. However, it remains challenging to improve low-temperature performance and fast-charging features. Herein, we introduce an electrolyte solvation chemistry strategy to regulate the properties of ethylene carbonate (EC)-based electrolytes through intermolecular interactions, utilizing weakly solvated fluoroethylene carbonate (FEC) to replace EC, and incorporating the low-melting-point solvent 1,2-difluorobenzene (2FB) as a diluent. We identified that the intermolecular interaction between 2FB and solvent can facilitate Li+ desolvation and lower the freezing point of the electrolyte effectively. The resulting electrolyte enables the LiNi0.8Co0.1Mn0.1O2||Li cell to operate at -30 °C for more than 100 cycles while delivering a high capacity of 154 mAh g-1 at 5.0C. We present a solvation structure and interfacial model to analyze the behavior of the formulated electrolyte composition, establishing a relationship with cell performance and also providing insights for the electrolyte design under extreme conditions.

6.
Nano Lett ; 24(26): 8055-8062, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904262

RESUMO

The unstable solid electrolyte interface (SEI) formed by uncontrollable electrolyte degradation, which leads to dendrite growth and Coulombic efficiency decay, hinders the development of Li metal anodes. A controllable desolvation process is essential for the formation of stable SEI and improved lithium metal deposition behavior. Here, we show a functional artificial interface protective layer comprised of chondroitin sulfate-reduced graphene oxide (CrG), on which polar functional groups are distributed to effectively reduce the energy barrier for desolvation of Li+ and effectively alienate solvent molecules to avoid solvent involvement in SEI formation, thus promoting the formation of a LiF-rich SEI. Consequently, stable Coulombic efficiencies of 98.4% were achieved after 500 cycles in a Li//Cu cell. Moreover, the LiFePO4 full cells achieve steady circulation (470 cycles at 80%, 1 C) with a negative/positive electrode capacity ratio of 2.87. Our multifunctional artificial interface protective layer provides a new way to advance Li metal batteries.

7.
Small ; 20(6): e2304723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797197

RESUMO

Aqueous Zn-ion batteries are the ideal candidate for large-scale energy storage systems owing to their high safety and low cost. However, the uncontrolled deposition and parasitic reaction of Zn metal anode hinder their commercial application. Here, the 2D metal-organic-framework (MOF) nanoflakes covered on the surface of Zn are proposed to enable dendrite-free for long lifespan Zn metal batteries. The MOF can facilitate the desolvation process to accelerate reaction kinetic due to its special channel structure. The abundant zincopilicity sites of MOF can realize the homogenous Zn2+ deposition. Consequently, their synergetic effect makes the MOF protected Zn anode good electrochemical performance with a long cycle life of 1400 h at 1 mA cm-2 and a high depth of discharge of 30 mAh cm-2 (DOD ≈ 54%) continued for over 700 h. This work provides a novel strategy for high-performance rechargeable Zn-ion batteries.

8.
Small ; 20(26): e2311203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233210

RESUMO

Designing a cost-effective and multifunctional separator that ensures dendrite-free and stable Zn metal anode remains a significant challenge. Herein, a multifunctional cellulose-based separator is presented consisting of industrial waste-fly ash particles and cellulose nanofiber using a facile solution-coating method. The resulting fly ash-cellulose (FACNF) separators enable a high ion conductivity (5.76 mS cm-1) and low desolvation energy barrier of hydrated Zn2+. These features facilitate fast ion transfer kinetics and inhibit water-induced side reactions. Furthermore, experimental results and theoretical simulations confirm that the presence of fly ash particles in FACNF separators effectively accommodate the preferential deposition of Zn(002) planes, due to the weak chemical affinity between Zn(002) plane and fly ash, to mitigate dendrite formation and growth. Consequently, the utilization of FACNF separators causes an impressive cycling performance in both Zn||Zn symmetric cells (1600 h at 2 mA cm-2/1 mAh cm-2) and Zn||(NH4)2V10O25 (NVO) full cells (4000 cycles with the capacity retention of 92.1% at 5 A g-1). Furthermore, the assembled pouch cells can steadily support digital thermometer over two months without generating gas and volume expansion. This work provides new insights for achieving crystallographic uniformity in Zn anodes and realizing cost-effective and long-lasting aqueous zinc-ion batteries (AZIBs).

9.
Small ; 20(30): e2311587, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38385836

RESUMO

Magnesium ion batteries (MIBs) are expected to be the promising candidates in the post-lithium-ion era with high safety, low cost and almost dendrite-free nature. However, the sluggish diffusion kinetics and strong solvation capability of the strongly polarized Mg2+ are seriously limiting the specific capacity and lifespan of MIBs. In this work, catalytic desolvation is introduced into MIBs for the first time by modifying vanadium pentoxide (V2O5) with molybdenum disulfide quantum dots (MQDs), and it is demonstrated via density function theory (DFT) calculations that MQDs can effectively lower the desolvation energy barrier of Mg2+, and therefore catalyze the dissociation of Mg2+-1,2-Dimethoxyethane (Mg2+-DME) bonds and release free electrolyte cations, finally contributing to a fast diffusion kinetics within the cathode. Meanwhile, the local interlayer expansion can also increase the layer spacing of V2O5 and speed up the magnesiation/demagnesiation kinetics. Benefiting from the structural configuration, MIBs exhibit superb reversible capacity (≈300 mAh g-1 at 50 mA g-1) and unparalleled cycling stability (15 000 cycles at 2 A g-1 with a capacity of ≈70 mAh g-1). This approach based on catalytic reactions to regulate the desolvation behavior of the whole interface provides a new idea and reference for the development of high-performance MIBs.

10.
Small ; : e2404879, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101287

RESUMO

Traditional ethylene carbonate (EC)-based electrolytes constrain the applications of silicon carbon (Si-C) anodes under fast-charging and low-temperature conditions due to sluggish Li+ migration kinetics and unstable solid electrolyte interphase (SEI). Herein, inspired by the efficient water purification and soil stabilization of aquatic plants, a stable SEI with a 3D desolvation interface is designed with gel polymer electrolyte (GPE), accelerating Li+ desolvation and migration at the interface and within stable SEI. As demonstrated by theoretical simulations and experiment results, the resulting poly(1,3-dioxolane) (PDOL), prepared by in situ ring-opening polymerization of 1,3-dioxolane (DOL), creates a 3D desolvation area, improving the Li+ desolvation at the interface and yielding an amorphous GPE with a high Li+ ionic conductivity (5.73 mS cm-1). Furthermore, more anions participate in the solvated structure, forming an anion-derived stable SEI and improving Li+ transport through SEI. Consequently, the Si-C anode achieves excellent rate performance with GPE at room temperature (RT) and low temperature (-40 °C). The pouch full cell coupled with LiFePO4 cathode obtains 97.42 mAh g-1 after 500 cycles at 5 C/5 C. This innovatively designed 3D desolvation interface and SEI represent significant breakthroughs for developing fast-charging and low-temperature batteries.

11.
Small ; 20(35): e2401713, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693076

RESUMO

Aqueous zinc-based energy storage devices possess superior safety, cost-effectiveness, and high energy density; however, dendritic growth and side reactions on the zinc electrode curtail their widespread applications. In this study, these issues are mitigated by introducing a polyimide (PI) nanofabric interfacial layer onto the zinc substrate. Simulations reveal that the PI nanofabric promotes a pre-desolvation process, effectively desolvating hydrated zinc ions from Zn(H2O)6 2+ to Zn(H2O)4 2+ before approaching the zinc surface. The exposed zinc ion in Zn(H2O)4 2+ provides an accelerated charge transfer process and reduces the activation energy for zinc deposition from 40 to 21 kJ mol-1. The PI nanofabric also acts as a protective barrier, reducing side reactions at the electrode. As a result, the PI-Zn symmetric cell exhibits remarkable cycling stability over 1200 h, maintaining a dendrite-free morphology and minimal byproduct formation. Moreover, the cell exhibits high stability and low voltage hysteresis even under high current densities (20 mA cm-2, 10 mAh cm-2) thanks to the 3D porous structure of PI nanofabric. When integrated into full cells, the PI-Zn||AC hybrid zinc-ion capacitor and PI-Zn||MnVOH@SWCNT zinc-ion battery achieve impressive lifespans of 15000 and 600 cycles with outstanding capacitance retention. This approach paves a novel avenue for high-performance zinc metal electrodes.

12.
Chemistry ; 30(54): e202401935, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39042471

RESUMO

Low temperature has been a major challenge for lithium-ion batteries (LIBs) to maintain satisfied electrochemical performance, and the main reason is the deactivation of electrolyte with the decreasing temperature. To address this point, in present work, we develop a low-temperature resistant electrolyte which includes ethyl acetate (EA) and fluoroethylene carbonate (FEC) as solvent and lithium difluoro(oxalato)borate (LiDFOB) as the primary lithium salt. Due to the preferential decomposition of LiDFOB and FEC, a solid electrolyte interface rich in LiF is formed on the lithium metal anodes (LMAs) and lithium cobalt oxide (LCO) cathodes, contributing to higher stability and rapid desolvation of Li+ ions. The batteries with the optimized electrolyte can undergo cycling tests at -40 °C, with a capacity retention of 83.9 % after 200 cycles. Furthermore, the optimized electrolyte exhibits excellent compatibility with both LCO cathodes and graphite (Gr) anodes, enabling a Gr/LCO battery to maintain a capacity retention of 90.3 % after multiple cycles at -25 °C. This work proposes a cost-effective electrolyte that can activate potential LIBs in practical scenarios, especially in low-temperature environments.

13.
Chemistry ; 30(18): e202303715, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38158380

RESUMO

Post-translational modifications of lysine in histones, as methylation and acetylation, have well established functions in epigenetics and are emerging as important actors in broader biological regulation. Currently, the detection of acetylated lysine (Kac) in water solution as free amino acid or protein residue remains challenging. Acetylated lysine is a neutral amino acid, and the lack of ion-dipole interactions causes the decrease in binding affinity displayed by synthetic molecular receptors with respect to the other lysine modifications. Here, we report molecular modeling calculations and 1H NMR experiments to investigate the binding properties of two different calix[4]pyrrole receptors towards Kac. Computational analyses reveal that tetra-aryl-extended calix[4]pyrrole (1) preferentially binds the cis-Kac conformer over the trans one due to steric considerations and more favorable interactions. Experimental 1H NMR titration experiments confirm the formation of a 1 : 1 complex between receptor 1 and cis-Kac, with a Ka exceeding 103 M-1. Conversely, the super-aryl-extended calix[4]pyrrole 2 is less efficient in binding Kac, due to unfavorable solvation/desolvation effects, as proven by 1H NMR experiments. Moreover, receptor 1 showed a higher affinity for Kac over other lysine modifications, such as methylated lysines.


Assuntos
Lisina , Pirróis , Lisina/química , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Modelos Moleculares , Acetilação
14.
J Dairy Sci ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389302

RESUMO

pH-shifting method, as an eco-friendly approach, is a promising alternative to desolvation method, yet systematic comparison of their property is still lacking. In this study, bovine serum albumin-galangin nanoparticles (BSA-GA NPs) were designed for alleviating ROS-mediated macrophage inflammation by the 2 separate methods. Compared with the desolvation method, BSA exhibited a higher loading capacity for GA under the pH-shifting method, which was attributed to the exposure of the binding site leading to enhanced affinity for GA and a more compact particle structure. Further analyses evidenced that the electron arrangement and crystal structure of GA changed with different methods. The content of random coil of BSA was elevated after pH-shifting method. Besides, the smaller size rendered the pH-shifting treated BSA-GA NPs easier to be taken up by macrophages, while the enhanced specific surface area conferred excellent ROS scavenging and anti-inflammatory performances. This study may provide new insights into the choice of loading methods.

15.
Nano Lett ; 23(23): 11091-11098, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967168

RESUMO

Gelatin nanoparticles (GNPs) have been widely studied for a plethora of biomedical applications, but their formation mechanism remains poorly understood, which precludes precise control over their physicochemical properties. This leads to time-consuming parameter adjustments without a fundamental grasp of the underlying mechanism. Here, we analyze and visualize in a time-resolved manner the mechanism by which GNPs are formed during desolvation of gelatin as a function of gelatin molecular weight and type of desolvating agent. Through various analytical and imaging techniques, we unveil a multistage process that is initiated by the formation of primary particles that are ∼18 nm in diameter (wet state). These primary particles subsequently assemble into colloidally stable GNPs with a raspberry-like structure and a hydrodynamic diameter of ∼300 nm. Our results create a basic understanding of the formation mechanism of gelatin nanoparticles, which opens new opportunities for precisely tuning their physicochemical and biofunctional properties.

16.
Nano Lett ; 23(11): 5061-5069, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37212508

RESUMO

Lithium dendrite and side reactions are two major challenges for lithium metal anode. Here, the highly lithophilic triazine ring in the hydrogen-bonded organic framework is recommended to accelerate the desolvation process of lithium ions. Among them, the formation of Li-N bonds between lithium ions and the triazine ring in CAM reduces the diffusion energy barrier of Li+ crossing the SEI interface and the desolvation energy barrier of Li+ exiting from the solvent sheath so that the rapid and homogeneous deposition of lithium-ion can be achieved. Meanwhile, the lithium-ion migration coefficient can be as high as 0.70. CAM separator is used to assemble lithium metal batteries with nickel-rich cathodes (NCM 622). When N/P = 8 and 5, the capacity retention rates of Li-NCM 622 full cell are 78.2% and 80.5% after 200 and 110 cycles, respectively, and the Coulomb efficiency can be maintained at 99.5%, showing excellent cycle stability.

17.
Angew Chem Int Ed Engl ; 63(17): e202400254, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38441399

RESUMO

Acting as a passive protective layer, solid-electrolyte interphase (SEI) plays a crucial role in maintaining the stability of the Li-metal anode. Derived from the reductive decomposition of electrolytes (e.g., anion and solvent), the SEI construction presents as an interfacial process accompanied by the dynamic de-solvation process during Li-metal plating. However, typical electrolyte engineering and related SEI modification strategies always ignore the dynamic evolution of electrolyte configuration at the Li/electrolyte interface, which essentially determines the SEI architecture. Herein, by employing advanced electrochemical in situ FT-IR and MRI technologies, we directly visualize the dynamic variations of solvation environments involving Li+-solvent/anion. Remarkably, a weakened Li+-solvent interaction and anion-lean interfacial electrolyte configuration have been synchronously revealed, which is difficult for the fabrication of anion-derived SEI layer. Moreover, as a simple electrochemical regulation strategy, pulse protocol was introduced to effectively restore the interfacial anion concentration, resulting in an enhanced LiF-rich SEI layer and improved Li-metal plating/stripping reversibility.

18.
Angew Chem Int Ed Engl ; 63(21): e202402301, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38482741

RESUMO

Li+ de-solvation at solid-electrolyte interphase (SEI)-electrolyte interface stands as a pivotal step that imposes limitations on the fast-charging capability and low-temperature performance of lithium-ion batteries (LIBs). Unraveling the contributions of key constituents in the SEI that facilitate Li+ de-solvation and deciphering their mechanisms, as a design principle for the interfacial structure of anode materials, is still a challenge. Herein, we conducted a systematic exploration of the influence exerted by various inorganic components (Li2CO3, LiF, Li3PO4) found in the SEI on their role in promoting the Li+ de-solvation. The findings highlight that Li3PO4-enriched SEI effectively reduces the de-solvation energy due to its ability to attenuate the Li+-solvent interaction, thereby expediting the de-solvation process. Building on this, we engineer Li3PO4 interphase on graphite (LPO-Gr) anode via a simple solid-phase coating, facilitating the Li+ de-solvation and building an inorganic-rich SEI, resulting in accelerated Li+ transport crossing the electrode interfaces and interphases. Full cells using the LPO-Gr anode can replenish its 80 % capacity in 6.5 minutes, while still retaining 70 % of the room temperature capacity even at -20 °C. Our strategy establishes connection between the de-solvation characteristics of the SEI components and the interfacial structure design of anode materials for high performance LIBs.

19.
Angew Chem Int Ed Engl ; : e202416271, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258459

RESUMO

To construct an efficient regulating layer for Zn anodes that can simultaneously address the issues of dendritic growth and side reactions is highly demanded for stable zinc metal batteries (ZMBs). Herein, we fabricate a hydrogen-bonded organic framework (HOF) enriched with zincophilic sites as a multifunctional layer to regulate Zn anodes with controlled spatial ion flux and stable interfacial chemistry (MA-BTA@Zn). The framework with abundant H-bonds helps capture H2O and remove the solvated shells on [Zn(H2O)6]2+, leading to suppressed side reactions. The HOF layer also helps form electrolyte-philic surfaces and expose Zn (002) crystal planes which benefit for rapid conduction and uniform deposition of Zn2+, and weakened sides reactions. Additionally, the electrochemically active zincophilic sites (C=O, -NH2 and triazine groups) favor the targeted guidance and penetration of Zn2+ and provide advantageous sites for uniform Zn deposition. High Young's modulus of the HOF layer further contributes to a high interfacial flexibility and stability against Zn plating-associated stress. The MA-BTA@Zn symmetric cells thereby obtain a substantially extended battery life over 1000 h at 4 mA cm-2. The MA-BTA@Zn||Cu half-cell demonstrates a highly reversible Zn stripping/plating process over 1500 cycles with impressive average Coulombic efficiency (CE) of 99.5% at 10 mA cm-2.

20.
Angew Chem Int Ed Engl ; 63(17): e202400619, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38403860

RESUMO

The unstable interface between Li metal and ethylene carbonate (EC)-based electrolytes triggers continuous side reactions and uncontrolled dendrite growth, significantly impacting the lifespan of Li metal batteries (LMBs). Herein, a bipolar polymeric protective layer (BPPL) is developed using cyanoethyl (-CH2CH2C≡N) and hydroxyl (-OH) polar groups, aiming to prevent EC-induced corrosion and facilitating rapid, uniform Li+ ion transport. Hydrogen-bonding interactions between -OH and EC facilitates the Li+ desolvation process and effectively traps free EC molecules, thereby eliminating parasitic reactions. Meanwhile, the -CH2CH2C≡N group anchors TFSI- anions through ion-dipole interactions, enhancing Li+ transport and eliminating concentration polarization, ultimately suppressing the growth of Li dendrite. This BPPL enabling Li|Li cell stable cycling over 750 cycles at 10 mA cm-2 for 2 mAh cm-2. The Li|LiNi0.8Mn0.1Co0.1O2 and Li|LiFePO4 full cells display superior electrochemical performance. The BPPL provides a practical strategy to enhanced stability and performance in LMBs application.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa