Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Mass Spectrom Rev ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056172

RESUMO

This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization-mass spectrometry (DESI-MS). Related ambient ionization techniques are discussed in comparison to DESI-MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano-DESI currently exceed those of DESI-MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI-MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI-MS is justified.

2.
J Biol Chem ; 299(3): 102902, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642178

RESUMO

The programmed cell death protein-1 (PD-1) is highly expressed on the surface of antigen-specific exhausted T cells and, upon interaction with its ligand PD-L1, can result in inhibition of the immune response. Anti-PD-1 treatment has been shown to extend survival and result in durable responses in several cancers, yet only a subset of patients benefit from this therapy. Despite the implication of metabolic alteration following cancer immunotherapy, mechanistic associations between antitumor responses and metabolic changes remain unclear. Here, we used desorption electrospray ionization mass spectrometry imaging to examine the lipid profiles of tumor tissue from three syngeneic murine models with varying treatment sensitivity at the baseline and at three time points post-anti-PD-1 therapy. These imaging experiments revealed specific alterations in the lipid profiles associated with the degree of response to treatment and allowed us to identify a significant increase of long-chain polyunsaturated lipids within responsive tumors following anti-PD-1 therapy. Immunofluorescence imaging of tumor tissues also demonstrated that the altered lipid profile associated with treatment response is localized to dense regions of tumor immune infiltrates. Overall, these results indicate that effective anti-PD-1 therapy modulates lipid metabolism in tumor immune infiltrates, and we thereby propose that further investigation of the related immune-metabolic pathways may be useful for better understanding success and failure of anti-PD-1 therapy.


Assuntos
Anticorpos Monoclonais , Antígeno B7-H1 , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Imunoterapia , Lipídeos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Linfócitos T/metabolismo , Microambiente Tumoral
3.
J Neurochem ; 168(7): 1175-1178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372595

RESUMO

Alzheimer's disease (AD) affects one in eight individuals over 65 and poses an immense societal challenge. AD pathology is characterized by the formation of beta-amyloid plaques and Tau tangles in the brain. While some disease-modifying treatments targeting beta-amyloid are emerging, the exact chain of events underlying the pathogenesis of this disease remains unclear. Brain lipids have long been implicated in AD pathology, though their role in AD pathogenesis remains not fully resolved. Significant advancements in mass spectrometry imaging (MSI) allow to detail spatial lipid regulations in biological tissues at the low um scale. In this issue, Huang et al. resolve spatial lipid patterns in human AD brain and genetic mouse models using desorption electrospray ionization (DESI)-based MSI integrated with other spatial techniques such as imaging mass cytometry of correlative protein signatures. Those spatial multiomics experiments identify plaque-associated lipid regulations that are dependent on progressing plaque pathology in both mouse models and the human brain. Of those lipid species, particularly pro-inflammatory lysophospholipids have been implicated in AD pathology through their interaction with both aggregating Aß and microglial activation through lipid sensing surface receptors. Together, this study provides further insight into how brain lipid homeostasis is linked to progressing AD pathology, and thereby highlights the potential of MSI-based spatial lipidomics as an emerging spatial biology technology for biomedical research.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Metabolismo dos Lipídeos , Lipídeos/análise , Placa Amiloide/patologia , Placa Amiloide/metabolismo
4.
Mass Spectrom Rev ; 42(2): 751-778, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34642958

RESUMO

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is one of the least specimen destructive ambient ionization mass spectrometry tissue imaging methods. It enables rapid simultaneous mapping, measurement, and identification of hundreds of molecules from an unmodified tissue sample. Over the years, since its first introduction as an imaging technique in 2005, DESI-MSI has been extensively developed as a tool for separating tissue regions of various histopathologic classes for diagnostic applications. Recently, DESI-MSI has also emerged as a versatile technique that enables drug discovery and can guide the efficient development of drug delivery systems. For example, it has been increasingly employed for uncovering unique patterns of in vivo drug distribution, the discovery of potentially treatable biochemical pathways, revealing novel druggable targets, predicting therapeutic sensitivity of diseased tissues, and identifying early tissue response to pharmacological treatment. These and other recent advances in implementing DESI-MSI as the tool for the development of novel therapies are highlighted in this review.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Descoberta de Drogas , Sistemas de Liberação de Medicamentos , Diagnóstico por Imagem
5.
J Pathol ; 261(2): 125-138, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555360

RESUMO

Due to limited biopsy samples, ~20% of DCIS lesions confirmed by biopsy are upgraded to invasive ductal carcinoma (IDC) upon surgical resection. Avoiding underestimation of IDC when diagnosing DCIS has become an urgent challenge in an era discouraging overtreatment of DCIS. In this study, the metabolic profiles of 284 fresh frozen breast samples, including tumor tissues and adjacent benign tissues (ABTs) and distant surrounding tissues (DSTs), were analyzed using desorption electrospray ionization-mass spectrometry (DESI-MS) imaging. Metabolomics analysis using DESI-MS data revealed significant differences in metabolite levels, including small-molecule antioxidants, long-chain polyunsaturated fatty acids (PUFAs) and phospholipids between pure DCIS and IDC. However, the metabolic profile in DCIS with invasive carcinoma components clearly shifts to be closer to adjacent IDC components. For instance, DCIS with invasive carcinoma components showed lower levels of antioxidants and higher levels of free fatty acids compared to pure DCIS. Furthermore, the accumulation of long-chain PUFAs and the phosphatidylinositols (PIs) containing PUFA residues may also be associated with the progression of DCIS. These distinctive metabolic characteristics may offer valuable indications for investigating the malignant potential of DCIS. By combining DESI-MS data with machine learning (ML) methods, various breast lesions were discriminated. Importantly, the pure DCIS components were successfully distinguished from the DCIS components in samples with invasion in postoperative specimens by a Lasso prediction model, achieving an AUC value of 0.851. In addition, pixel-level prediction based on DESI-MS data enabled automatic visualization of tissue properties across whole tissue sections. Summarily, DESI-MS imaging on histopathological sections can provide abundant metabolic information about breast lesions. By analyzing the spatial metabolic characteristics in tissue sections, this technology has the potential to facilitate accurate diagnosis and individualized treatment of DCIS by inferring the presence of IDC components surrounding DCIS lesions. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/patologia , Antioxidantes , Espectrometria de Massas , Neoplasias da Mama/diagnóstico por imagem
6.
Environ Sci Technol ; 58(31): 13986-13994, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38992920

RESUMO

Previous studies have highlighted the toxicity of pharmaceuticals and personal care products (PPCPs) in plants, yet understanding their spatial distribution within plant tissues and specific toxic effects remains limited. This study investigates the spatial-specific toxic effects of carbamazepine (CBZ), a prevalent PPCP, in plants. Utilizing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), CBZ and its transformation products were observed predominantly at the leaf edges, with 2.3-fold higher concentrations than inner regions, which was confirmed by LC-MS. Transcriptomic and metabolic analyses revealed significant differences in gene expression and metabolite levels between the inner and outer leaf regions, emphasizing the spatial location's role in CBZ response. Notably, photosynthesis-related genes were markedly downregulated, and photosynthetic efficiency was reduced at leaf edges. Additionally, elevated oxidative stress at leaf edges was indicated by higher antioxidant enzyme activity, cell membrane impairment, and increased free fatty acids. Given the increased oxidative stress at the leaf margins, the study suggests using in situ Raman spectroscopy for early detection of CBZ-induced damage by monitoring reactive oxygen species levels. These findings provide crucial insights into the spatial toxicological mechanisms of CBZ in plants, forming a basis for future spatial toxicology research of PPCPs.


Assuntos
Carbamazepina , Carbamazepina/toxicidade , Folhas de Planta/efeitos dos fármacos , Estresse Oxidativo , Multiômica
7.
Anal Bioanal Chem ; 416(1): 125-139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872415

RESUMO

In situ separation and visualization of synthetic and naturally occurring isomers from heterogeneous plant tissues, especially when they share similar molecular structures, are a challenging task. In this study, we combined the ion mobility separation with desorption electrospray ionization mass spectrometry imaging (DESI-IM-MSI) to achieve a direct separation and visualization of two synthetic auxin derivatives, auxinole and its structural isomer 4pTb-MeIAA, as well as endogenous auxins from Arabidopsis samples. Distinct distribution of these synthetic isomers and endogenous auxins in Arabidopsis primary roots and hypocotyls was achieved in the same imaging analysis from both individually treated and cotreated samples. We also observed putative metabolites of synthetic auxin derivatives, i.e. auxinole amino acid conjugates and hydrolysed 4pTb-MeIAA product - 4pTb-IAA, based on their unique drifting ion intensity patterns. Furthermore, DESI-IM-MSI-revealed abundance of endogenous auxins and synthetic isomers was validated by liquid chromatography-mass spectrometry (LC-MS). Our results demonstrate that DESI-IM-MSI could be used as a robust technique for detecting endogenous and exogenous isomers and provide a spatiotemporal evaluation of hormonomics profiles in plants.


Assuntos
Arabidopsis , Espectrometria de Massas por Ionização por Electrospray/métodos , Ácidos Indolacéticos/análise , Isomerismo , Estrutura Molecular
8.
Anal Bioanal Chem ; 416(8): 1883-1906, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367042

RESUMO

In this paper, we establish an in situ visualization analysis method to image the spatial distribution of metabolites in different parts (sclerotium, coremium) and different microregions of Cordyceps cicadae (C. cicadae) to achieve the in situ visual characterization of tissues for a variety of metabolites such as nucleosides, amino acids, polysaccharides, organic acids, fatty acids, and so on. The study included LC-MS chemical composition identification, preparation of C. cicadae tissue sections, DEDI-MSI analysis, DESI combined with Q-TOF/MS to obtain high-resolution imaging of mass-to-charge ratio and space, imaging of C. cicadae in positive-negative ion mode with a spatial resolution of 100 µm, and localizing and identifying its chemical compositions based on its precise mass. A total of 62 compounds were identified; nucleosides were mainly distributed in the coremium, L-threonine and DL-isoleucine, and other essential amino acids; peptides were mainly distributed in the sclerotium of C. cicadae; and the rest of the amino acids did not have a clear pattern; sugars and sugar alcohols were mainly distributed in the coremium of C. cicadae; organic acids and fatty acids were distributed in the nucleus of C. cicadae more than in the sclerotium, and the mass spectrometry imaging method is established in the research. The mass spectrometry imaging method established in this study is simple and fast and can visualize and analyse the spatial distribution of metabolites of C. cicadae, which is of great significance in characterizing the metabolic network of C. cicadae, and provides support for the quality evaluation of C. cicadae and the study of the temporal and spatial metabolic network of chemical compounds.


Assuntos
Cordyceps , Distribuição Tecidual , Espectrometria de Massas , Cordyceps/química , Cordyceps/metabolismo , Nucleosídeos/química , Ácidos Graxos/metabolismo , Aminoácidos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
J Proteome Res ; 22(1): 36-46, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36564034

RESUMO

Fatty aldehydes (FALs) are involved in various biological processes, and their abnormal metabolism is related to the occurrence and development of neurological diseases. Because of their low ionization efficiency, methods for in situ detection and mass spectrometry imaging (MSI) analysis of FALs remain underreported. On-tissue chemical tagging of hardly ionizable target analytes with easily ionized moieties can improve ionization efficiency and detection sensitivity in MSI experiments. In this study, an on-tissue chemical derivatization-air-flow-assisted desorption electrospray ionization-MSI method was developed to visualize FALs in the rat brain. The method showed high sensitivity and specificity, allowing the use of in situ high-resolution MS3 to identify FALs. The methodology was applied to investigate the region-specific distribution of FALs in the brains of control and diabetic encephalopathy (DE) rats. In DE rats, FALs were found to be significantly enriched in various brain regions, especially in the cerebral cortex, hippocampus, and amygdala. Thus, increased FAL levels and oxidative stress occurred in a region-dependent manner, which may contribute to cognitive function deficits in DE. In summary, we provide a novel method for the in situ detection of FALs in biological tissues as well as new insights into the potential pathogenesis of DE.


Assuntos
Diabetes Mellitus , Espectrometria de Massas por Ionização por Electrospray , Ratos , Animais , Espectrometria de Massas por Ionização por Electrospray/métodos , Aldeídos , Encéfalo/diagnóstico por imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
10.
Trends Analyt Chem ; 1692023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045023

RESUMO

Imaging mass spectrometry (IMS) allows for the untargeted mapping of biomolecules directly from tissue sections. This technology is increasingly integrated into biomedical and clinical research environments to supplement traditional microscopy and provide molecular context for tissue imaging. IMS has widespread clinical applicability in the fields of oncology, dermatology, microbiology, and others. This review summarizes the two most widely employed IMS technologies, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI), and covers technological advancements, including efforts to increase spatial resolution, specificity, and throughput. We also highlight recent biomedical applications of IMS, primarily focusing on disease diagnosis, classification, and subtyping.

11.
Anal Bioanal Chem ; 415(18): 4125-4145, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37329466

RESUMO

The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.


Assuntos
Microscopia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Lasers
12.
Isr J Chem ; 63(7-8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37829547

RESUMO

It is argued that each of the three key steps in drug discovery, (i) reaction screening to find successful routes to desired drug candidates, (ii) scale up of the synthesis to produce amounts adequate for testing, and (iii) bioactivity assessment of the candidate compounds, can all be performed using mass spectrometry (MS) in a sequential fashion. The particular ionization method of choice, desorption electrospray ionization (DESI), is both an analytical technique and a procedure for small-scale synthesis. It is also highly compatible with automation, providing for high throughput in both synthesis and analysis. Moreover, because accelerated reactions take place in the secondary DESI microdroplets generated from individual reaction mixtures, this allows either online analysis by MS or collection of the synthetic products by droplet deposition. DESI also has the unique advantage, amongst spray-based MS ionization methods, that complex buffered biological solutions can be analyzed directly, without concern for capillary blockage. Here, all these capabilities are illustrated, the unique chemistry at droplet interfaces is presented, and the possible future implementation of DESI-MS based drug discovery is discussed.

13.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239813

RESUMO

The development of desorption/ionization (DI) mass spectrometric (MS) assays for drug quantification in tissue sections and their validation according to regulatory guidelines would enable their universalization for applications in (clinical) pharmacology. Recently, new enhancements in desorption electrospray ionization (DESI) have highlighted the reliability of this ion source for the development of targeted quantification methods that meet requirements for method validation. However, it is necessary to consider subtle parameters leading to the success of such method developments, such as the morphology of desorption spots, the analytical time, and sample surface, to cite but a few. Here, we provide additional experimental data highlighting an additional important parameter, based on the unique advantage of DESI-MS on continuous extraction during analysis. We demonstrate that considering desorption kinetics during DESI analyses would largely help (i) reducing analytical time during profiling analyses, (ii) verifying solvent-based drug extraction using the selected sample preparation method for profiling and imaging modes, and (iii) predicting the feasibility of imaging assays using samples in a given expected concentration range of the targeted drug. These observations will likely serve as precious guidance for the development of validated DESI-profiling and imaging methods in the future.


Assuntos
Diagnóstico por Imagem , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Reprodutibilidade dos Testes , Cinética
14.
Angew Chem Int Ed Engl ; 62(9): e202216969, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36622964

RESUMO

We present immunoassay-based desorption electrospray ionization mass spectrometry imaging (immuno-DESI-MSI) to visualize functional macromolecules such as drug targets and cascade signaling factors. A set of boronic acid mass tags (BMTs) were synthesized to label antibodies as MSI probes. The boronic ester bond is employed to cross-link the BMT with the galactosamine-modified antibody. The BMT can be released from its tethered antibody by ultrafast cleavage of the boronic ester bond caused by the acidic condition of sprayed DESI microdroplets containing water. The fluorescent moiety enables the BMT to work in both optical and MS imaging modes. The positively charged quaternary ammonium group enhances the ionization efficiency. The introduction of the boron element also makes mass tags readily identified because of its unique isotope pattern. Immuno-DESI-MSI provides an appealing strategy to spatially map macromolecules beyond what can be observed by conventional DESI-MSI, provided antibodies are available to the targeted molecules of interest.


Assuntos
Diagnóstico por Imagem , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
Angew Chem Int Ed Engl ; 62(6): e202215556, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478519

RESUMO

Lysophosphatidylcholine acyltransferase-1 (LPCAT1) plays a critical role in the remodeling of phosphatidylcholines (PCs) in cellular lipidome. However, evidence is scarce regarding its sn-selectivity, viz. the preference of assembling acyl-Coenzyme A (CoA) at the C1 or C2-hydroxyl on a glycerol backbone because of difficulty to quantify the thus-formed PC sn-isomers. We have established a multiplexed assay to measure both sn- and acyl-chain selectivity of LPCAT1 toward a mixture of acyl-CoAs by integrating isomer-resolving tandem mass spectrometry. Our findings reveal that LPCAT1 shows exclusive sn-1 specificity regardless of the identity of acyl-CoAs. We further confirm that elevated PC 18 : 1/16:0 relative to its sn-isomer results from an increased expression of LPCAT1 in human hepatocellular carcinoma (HCC) tissue as compared to normal liver tissue. MS imaging via desorption electrospray ionization of PC 18 : 1/16:0 thus enables visualization of HCC margins in human liver tissue at a molecular level.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Fosfatidilcolinas/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem
16.
Electrophoresis ; 43(1-2): 74-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591317

RESUMO

Electrospray ionization (ESI) and desorption electrospray ionization (DESI) are common soft ionization method of mass spectrometry (MS). However, recent studies revealed that some chemical reactions can be induced or greatly accelerated in the sprayed microdroplets compared to the same reaction in the bulk. These open a new area in using microdroplet MS to explore new chemistry and develop new applications. This minireview will introduce microdroplet chemistries and explore various microdroplet techniques most of which are ESI- or DESI-based extensions by incorporating transfer tube, supersonic nebulizing gas, droplet fusion, spray extraction, laser irradiation, or laser ablation for online/offline MS analysis. Potential applications associated with new techniques, including real-time reaction monitoring, high-throughput reaction screening, protein identification, and protein characterization, are also described. Future outlook, such as coupling microdroplet MS with separation techniques, is proposed and discussed.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Proteínas
17.
Macromol Rapid Commun ; 43(21): e2200412, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803899

RESUMO

The use of sequence-defined polymers is an interesting emerging solution for materials identification and traceability. Indeed, a very large amount of identification sequences can be created using a limited alphabet of coded monomers. However, in all reported studies, sequence-defined taggants are usually included in a host material by noncovalent adsorption or entrapment, which may lead to leakage, aggregation, or degradation. To avoid these problems, sequence-defined polymers are covalently attached in the present work to the mesh of model materials, namely acrylamide hydrogels. To do so, sequence-coded polyurethanes containing a disulfide linker and a terminal methacrylamide moiety are synthesized by stepwise solid-phase synthesis. These methacrylamide macromonomers are afterward copolymerized with acrylamide and bisacrylamide in order to achieve cross-linked hydrogels containing covalently-bound polyurethane taggants. It is shown herein that these taggants can be selectively detached from the hydrogel mesh by reactive desorption electrospray ionization. Using dithiothreitol the disulfide linker that links the taggant to the gel can be selectively cleaved. Ultimately, the released taggants can be decoded by tandem mass spectrometry.


Assuntos
Acrilamidas , Polímeros , Dissulfetos/química , Hidrogéis/química , Poliuretanos , Acrilamida , Espectrometria de Massas por Ionização por Electrospray/métodos
18.
Proc Natl Acad Sci U S A ; 116(49): 24408-24412, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740593

RESUMO

The gold standard for cystic fibrosis (CF) diagnosis is the determination of chloride concentration in sweat. Current testing methodology takes up to 3 h to complete and has recognized shortcomings on its diagnostic accuracy. We present an alternative method for the identification of CF by combining desorption electrospray ionization mass spectrometry and a machine-learning algorithm based on gradient boosted decision trees to analyze perspiration samples. This process takes as little as 2 min, and we determined its accuracy to be 98 ± 2% by cross-validation on analyzing 277 perspiration samples. With the introduction of statistical bootstrap, our method can provide a confidence estimate of our prediction, which helps diagnosis decision-making. We also identified important peaks by the feature selection algorithm and assigned the chemical structure of the metabolites by high-resolution and/or tandem mass spectrometry. We inspected the correlation between mild and severe CFTR gene mutation types and lipid profiles, suggesting a possible way to realize personalized medicine with this noninvasive, fast, and accurate method.


Assuntos
Algoritmos , Cloretos/análise , Fibrose Cística/diagnóstico , Espectrometria de Massas por Ionização por Electrospray/estatística & dados numéricos , Suor/química , Estudos de Casos e Controles , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Lipídeos/análise , Lipídeos/química , Lipídeos/genética , Aprendizado de Máquina , Mutação , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/estatística & dados numéricos
19.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364409

RESUMO

Nanospray desorption electrospray ionization (nano-DESI) is one of the ambient desorption ionization methods for mass spectrometry (MS), and it utilizes a steady-state liquid junction formed between two microcapillaries to directly extract analytes from sample surfaces with minimal sample damage. In this study, we employed nano-DESI MS to perform a metabolite fingerprinting analysis directly from a Hypericum leaf surface. Moreover, we investigated whether changes in metabolite fingerprints with time can be related to metabolite distribution according to depth. From a raw Hypericum leaf, the mass spectral fingerprints of key metabolites, including flavonoids and prenylated phloroglucinols, were successfully obtained using ethanol as a nano-DESI solvent, and the changes in their intensities were observed with time via full mass scan experiments. In addition, the differential extraction patterns of the obtained mass spectral fingerprints were clearly visualized over time through selected ion monitoring and pseudo-selected reaction monitoring experiments. To examine the correlation between the time-dependent changes in the metabolite fingerprints and depth-wise metabolite distribution, we performed a nano-DESI MS analysis against leaves whose surface layers were removed multiple times by forming polymeric gum Arabic films on their surfaces, followed by detaching. The preliminary results showed that the changes in the metabolite fingerprints according to the number of peelings showed a similar pattern with those obtained from the raw leaves over time.


Assuntos
Plantas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Solventes , Folhas de Planta
20.
Molecules ; 27(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35566120

RESUMO

Ambient ionization mass spectrometry (AIMS) is both labor and time saving and has been proven to be useful for the rapid delineation of trace organic and biological compounds with minimal sample pretreatment. Herein, an analytical platform of probe sampling combined with a thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) and multivariate statistical analysis was developed to rapidly differentiate bacterial species based on the differences in their lipid profiles. For comparison, protein fingerprinting was also performed with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) to distinguish these bacterial species. Ten bacterial species, including five Gram-negative and five Gram-positive bacteria, were cultured, and the lipids in the colonies were characterized with TD-ESI/MS. As sample pretreatment was unnecessary, the analysis of the lipids in a bacterial colony growing on a Petri dish was completed within 1 min. The TD-ESI/MS results were further performed by principal component analysis (PCA) and hierarchical cluster analysis (HCA) to assist the classification of the bacteria, and a low relative standard deviation (5.2%) of the total ion current was obtained from repeated analyses of the lipids in a single bacterial colony. The PCA and HCA results indicated that different bacterial species were successfully distinguished by the differences in their lipid profiles as validated by the differences in their protein profiles recorded from the MALDI-TOF analysis. In addition, real-time monitoring of the changes in the specific lipids of a colony with growth time was also achieved with probe sampling and TD-ESI/MS. The developed analytical platform is promising as a useful diagnostic tool by which to rapidly distinguish bacterial species in clinical practice.


Assuntos
Bactérias , Espectrometria de Massas por Ionização por Electrospray , Lipídeos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa