Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Ecotoxicol Environ Saf ; 274: 116214, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489907

RESUMO

OBJECTIVE: Deltamethrin (DLM) is a commonly used insecticide, which is harmful to many organs. Here, we explored the effects of chronic low-dose DLM residues on colon tissue and its potential mechanism. METHODS: The mice were given long-term low-dose DLM by intragastric administration, and the body weights and disease activity index (DAI) scores of the mice were regularly recorded. The colon tissues were then collected for hematoxylin-eosin, immunofluorescence and immunohistochemistry staining. Besides, the RNA sequencing was performed to explore the potential mechanism. RESULTS: Our results showed that long-term exposure to low-dose DLM could cause inflammation in mice colon tissue, manifested as weight loss, increased DAI score, increased apoptosis of colonic epithelial cells, and increased infiltration of inflammatory cells. However, we observed that after long-term exposure to DLM and withdrawal for a period of time, although apoptosis was restored, the recovery of colon inflammation was not ideal. Subsequently, we performed RNA sequencing and found that long-term DLM exposure could lead to the senescence of some cells in mice colon tissue. The results of staining of cellular senescence markers in colon tissue showed that the level of cellular senescence in the DLM group was significantly increased, and the p53 signalling related to senescence was also significantly activated, indicating that cellular senescence played a key role in DLM-induced colitis. We further treated mice with quercetin (QUE) after long-term DLM exposure, and found that QUE could indeed alleviate DLM-induced colitis. In addition, we observed that long-term accumulation of DLM could aggravate DSS-induced colitis in mice, and QUE treatment could reverse this scenario. CONCLUSION: Continuous intake of DLM caused chronic colitis in mice, and the inflammation persisted even after discontinuation of DLM intake. This was attributed to the induction of cellular senescence in colon tissue. Treatment with QUE alleviated DLM-induced colitis by reducing cellular senescence. Long-term DLM exposure also aggravated DSS-induced colitis, which could be mitigated by QUE treatment.


Assuntos
Colite , Nitrilas , Piretrinas , Camundongos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/induzido quimicamente , Senescência Celular , Camundongos Endogâmicos C57BL
2.
Pharmacol Res ; 197: 106948, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806602

RESUMO

The most recent and promising therapeutic strategies for inflammatory bowel disease (IBD) have engaged biologics targeting single effector components involved in major steps of the immune-inflammatory processes, such as tumor necrosis factor, interleukins or integrins. Nevertheless, these molecules have not yet met expectations regarding efficacy and safety, resulting in a significant percentage of refractory or relapsing patients. Thus, novel treatment options are urgently needed. The minor isoform of the complement inhibitor C4b-binding protein, C4BP(ß-), has been shown to confer a robust anti-inflammatory and immunomodulatory phenotype over inflammatory myeloid cells. Here we show that C4BP(ß-)-mediated immunomodulation can significantly attenuate the histopathological traits and preserve the intestinal epithelial integrity in dextran sulfate sodium (DSS)-induced murine colitis. C4BP(ß-) downregulated inflammatory transcripts, notably those related to neutrophil activity, mitigated circulating inflammatory effector cytokines and chemokines such as CXCL13, key in generating ectopic lymphoid structures, and, overall, prevented inflammatory immune cell infiltration in the colon of colitic mice. PRP6-HO7, a recombinant curtailed analogue with only immunomodulatory activity, achieved a similar outcome as C4BP(ß-), indicating that the therapeutic effect is not due to the complement inhibitory activity. Furthermore, both C4BP(ß-) and PRP6-HO7 significantly reduced, with comparable efficacy, the intrinsic and TLR-induced inflammatory markers in myeloid cells from both ulcerative colitis and Crohn's disease patients, regardless of their medication. Thus, the pleiotropic anti-inflammatory and immunomodulatory activity of PRP6-HO7, able to "reprogram" myeloid cells from the complex inflammatory bowel environment and to restore immune homeostasis, might constitute a promising therapeutic option for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Imunomodulação , Inflamação , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Células Mieloides
3.
Immunopharmacol Immunotoxicol ; 44(1): 110-118, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34898349

RESUMO

BACKGROUND: Ulcerative colitis (UC) is dramatically increasing worldwide, cannot be thoroughly cured, and reduces patients' quality of life. Excessive activation of macrophages and over-production of cytokines play an important role in the pathogenesis of UC. Therefore, for its treatment, inhibiting macrophages' hyperactivation would be effective to develop new treatment approaches. Ginsenosides, extracted from ginseng, show an anti-inflammatory effect on the immunologic process. Our study used ginsenosides Rd monomer (GRd) to intervene in DSS-induced colitis mouse models and tested the immunological effect of macrophages. METHOD: We observed body weights, weights of colons, colonic lengths, and inflammatory scores, as well as histological changes of DSS/DSS-GRd mice. We also isolated intestinal and peritoneal macrophages, performed qRT-PCR and ELISA to detect cytokines production by macrophages, and screened possible involved pathways by Western blotting. RESULTS: Administering 20 mg/Kg GRd to DSS mice for 7-14 days reduced colonic inflammation. Moreover, both in vivo and in vitro, levels of TNF-α, IFN-γ, IL-6, IL-12/23p40, and IL-17A were all inhibited by GRd at 14 days in intestinal macrophages, and 20 µmol/L GRd at 12 h in peritoneal macrophages, respectively, but longer time made no more benefit. Western blotting showed GRd could decrease expression of pJNK, p-p38, pIκBα, and P65 in nuclear. CONCLUSIONS: Our data indicate that GRd could down-regulate cytokines production in macrophages and alleviate DSS-colitis in mice, which may be related to NF-κB and P38MAPK pathways. These results suggest that GRd has an anti-inflammatory effect on experimental colitis and may have potential efficacy in the treatment of UC alone or in combination.


Assuntos
Colite Ulcerativa , Colite , Ginsenosídeos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Ginsenosídeos/efeitos adversos , Ginsenosídeos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Qualidade de Vida , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(12): 1637-1645, 2022 Dec 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36748373

RESUMO

OBJECTIVES: Ulcerative colitis (UC) is a chronic, relapsing inflammation of the colon. Impaired epithelial repair is an important biological features of UC. Accelerating intestinal epithelial repair to achieve endoscopic mucosal healing has become a key goal in UC. Yes-associated protein (YAP) is a key transcriptional coactivator that regulates organ size, tissue growth and tumorigenesis. Growing studies have focused on the role of YAP in intestinal epithelial regeneration. This study explore the molecular mechanism for the role YAP in modulating colonic epithelial proliferation, repair, and the development of colitis associated cancer. METHODS: We constructed the acute colitis mouse model through successive 5 days of 3% dextran sulfate sodium salt (DSS) induction. Then YAP-overexpressed mouse model was constructed by intraperitoneal injection the YAP overexpressed and negative control lentivirus into DSS mice. On the 5th day of DSS induction and the 5th day of normal drinking water after removing DSS (5+5 d), the mice were killed by spinal dislocation. The colon was taken to measure the length, and the bowel 1-2 cm near the anal canal was selected for immunohistochemical and Western blotting. We used YAP over-expressed colonic epithelial cells and small interfering signal transducer and activator of transcription 3 (STAT3) RNA to probe the regulation of YAP on STAT3, using cell counting kit-8 and scratch assays to explore the role of YAP on colonic epithelial cell proliferation. Finally, we conducted co-immunoprecipitation to test the relationship between YAP and STAT3. RESULTS: After DSS treatment, the expression of YAP was dramatically diminished in crypts. Compared with the empty control mice, overexpression of YAP drastically accelerated epithelial regeneration after DSS induced colitis, presenting with more intact of structural integrity in intestinal epithelium and a reduction in the number of inflammatory cells in the mucosa. Further Western blotting, functional experiment and co-immunoprecipitation analyses showed that the expression of YAP in nucleus was significantly increased by 2 h post DSS cessation, accompanied with up-regulated total protein levels of STAT3 and phosphorylated-STAT3 (p-STAT3). Overexpression of YAP enhanced the expression of STAT3, p-STAT3, and their transcriptional targets including c-Myc and Cyclin D1. In addition, it promoted the proliferation and the "wound healing" of colonic cells. However, these effects were reversed when silencing STAT3 on YAP-overexpressed FHC cells. Moreover, protein immunoprecipitation indicated that YAP could directly interact with STAT3 in the nucleus, up-regulatvng the expressvon of STAT3. Finally, during the process of CAC, overexpression of YAP mutant caused the down-regulated expression of STAT3 and inhibited the development and progress of CAC. CONCLUSIONS: YAP activates STAT3 signaling in regulation of epithelial cell proliferation and promotes mucosal regeneration after DSS induced colitis, which may serve as a potential therapeutic target in UC. However, persistent and excessive YAP activation may promote CAC development.


Assuntos
Colite , Fator de Transcrição STAT3 , Proteínas de Sinalização YAP , Animais , Camundongos , Proliferação de Células , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas de Sinalização YAP/metabolismo
5.
J Pharmacol Sci ; 142(4): 148-156, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32033881

RESUMO

Qing Dai/Indigo Naturalis (QD) has been shown to ameliorate ulcerative colitis (UC) in clinical trials; however, its mechanism remains elusive. This study investigates the effects of QD on murine dextran sulfate sodium salt-induced colitis. Oral administration of QD protected the animals from colitis as manifested by weight loss, diarrhea, and rectal bleeding. QD was distinguishingly more effective than 5-aminosalicylate. Focused microarray analysis of genes expressed in the distal colon suggested that QD influences the inflammatory pathway. Anti-inflammatory activity of QD was confirmed by the suppression of nitric oxide (NO) production in response to interleukin-1ß in cultured hepatocytes. Some of the constituents in QD, such as tryptanthrin (TRYP) and indigo, suppressed NO production. TRYP maintained body weight but did not inhibit bleeding. Indigo, on the other hand, partially ameliorated bleeding, but did not maintain body weight. The combination of TRYP and indigo did not show additive ameliorating activity. The methanol extract of QD showed an anti-colitis activity like that of TRYP. In contrast, the methanol-insoluble QD fraction moderately ameliorated diarrhea and bleeding. Combining these two fractions resulted in full anti-colitis activity. Further clarification of the active constituents will help in the discovery of a safe and potent prescription for UC.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Camundongos Endogâmicos C57BL
6.
BMC Cancer ; 19(1): 428, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072353

RESUMO

BACKGROUND: Colorectal cancer remains the second leading cause of cancer death in the United States, and increased risk in patients with ulcerative colitis (a subset of inflammatory bowel disease) has motivated studies into early markers of dysplasia. The development of clinically translatable multiphoton imaging systems has allowed for the potential of in vivo label-free imaging of epithelial crypt structures via autofluorescence and/or second harmonic generation (SHG). SHG has been used to investigate collagen structures in various types of cancer, though the changes that colorectal epithelial collagen structures undergo during tumor development, specifically colitis-associated tumors, have not been fully investigated. METHODS: This study used two murine models, using A/J mice, one for spontaneous carcinoma and one for colitis-associated carcinoma, to investigate and quantify SHG image features that could potentially inform future study designs of endoscopic multiphoton imaging systems. The spontaneous tumor model comprised a series of six weekly injections of azoxymethane (AOM model). The colitis-associated tumor model comprised a single injection of AOM, followed by cycles of drinking water with dissolved dextran sodium sulfate salt (AOM-DSS model). SHG images of freshly resected murine colon were acquired with a multiphoton imaging system, and image features, such as crypt size, shape and distribution, were quantified using an automated algorithm. RESULTS: The comparison of quantified features of crypt morphology demonstrated the ability of our quantitative image feature algorithms to detect differences between spontaneous (AOM model) and colitis-associated (AOM-DSS model) murine colorectal tissue specimens. There were statistically significant differences in the mean and standard deviation of nearest neighbor (distance between crypts) and circularity between the Control cohort, AOM and AOM-DSS cohorts. We also saw significance between AOM and AOM-DSS cohorts when calculating nearest neighbor in images acquired at fixed depths. CONCLUSION: The results provide insight into the ability of SHG imaging to yield relevant data about the crypt microstructure in colorectal epithelium, specifically the potential to distinguish between spontaneous and colitis-associated murine models using quantification of crypt shape and distribution, informing future design of translational multiphoton imaging systems and protocols.


Assuntos
Colite/patologia , Colo/patologia , Neoplasias do Colo/diagnóstico por imagem , Mucosa Intestinal/patologia , Microscopia de Geração do Segundo Harmônico , Animais , Colite/induzido quimicamente , Colite/diagnóstico por imagem , Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Progressão da Doença , Humanos , Mucosa Intestinal/diagnóstico por imagem , Camundongos
7.
Bull Exp Biol Med ; 165(4): 576-580, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30121917

RESUMO

We studied the effect of intravenous administration of biomedical cell product (bone marrow mesenchymal stem cells and media conditioned by these cells) on histological picture of the small intestine in mice with DSS-induced inflammation. It was shown that biomedical cell product promoted recovery of the intestinal mucosa in DSS-induced inflammation.


Assuntos
Sulfato de Dextrana/toxicidade , Inflamação/induzido quimicamente , Inflamação/terapia , Intestino Delgado/imunologia , Intestino Delgado/patologia , Células-Tronco Mesenquimais/fisiologia , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Dig Dis Sci ; 62(12): 3370-3384, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28965192

RESUMO

BACKGROUND: Diet is suggested to participate in the etiology of inflammatory bowel diseases (IBD). Repeated exposure to Maillard reaction products (MRPs), molecules resulting from reduction reactions between amino acids and sugars during food heating, has been reported to be either potentially detrimental or beneficial to health. AIMS: The aim of this study is to determine the effect of repeated oral ingestion of N ε-carboxymethyllysine (CML), an advanced MRP, on the onset of two models of experimental IBD and on the gut microbiota composition of mice. METHODS: Mice received either saline (control) or N ε-carboxymethyllysine daily for 21 days. For the last week of treatment, each group was split into subgroups, receiving dextran sulfate sodium salt (DSS) or trinitrobenzenesulfonic acid (TNBS) to induce colitis. Intensity of inflammation was quantified, and cecal microbiota characterized by bacterial 16S ribosomal RNA (rRNA) amplicon sequencing. RESULTS: Daily oral administration of N ε-carboxymethyllysine did not induce intestinal inflammation and had limited impact on gut microbiota composition (Bacteroidaceae increase, Lachnospiraceae decrease). DSS and TNBS administration resulted in expected moderate experimental colitis with a shift of Bacteroidetes/Firmicutes ratio and a significant Proteobacteria increase but with distinct profiles: different Proteobacteria taxa for DSS, but mainly Enterobacteriaceae for TNBS. While N ε-carboxymethyllysine exposure failed to prevent the inflammatory response, it allowed maintenance of healthy gut microbiota profiles in mice treated with DSS (but not TNBS). CONCLUSIONS: Repeated oral exposure to CML limits dysbiosis in experimental colitis. IBD patients may modulate their microbiota profile by regulating the level and type of dietary MRP consumption.


Assuntos
Colite/microbiologia , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Produtos Finais de Glicação Avançada/uso terapêutico , Lisina/análogos & derivados , Administração Oral , Animais , Colite/complicações , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Disbiose/etiologia , Ingestão de Alimentos/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Lisina/farmacologia , Lisina/uso terapêutico , Masculino , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/efeitos dos fármacos
9.
Gastroenterology ; 145(4): 842-52.e2, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23856509

RESUMO

BACKGROUND & AIMS: Altered levels and functions of microRNAs (miRs) have been associated with inflammatory bowel diseases (IBDs), although little is known about their roles in pediatric IBD. We investigated whether colonic mucosal miRs are altered in children with ulcerative colitis (UC). METHODS: We used a library of 316 miRs to identify those that regulate phosphorylation of signal transducer and activator of transcription 3 (STAT3) in NCM460 human colonocytes incubated with interleukin-6. Levels of miR-124 were measured by real-time polymerase chain reaction analysis of colon biopsies from pediatric and adult patients with UC and patients without IBD (controls), and of HCT-116 colonocytes incubated with 5-aza-2'-deoxycytidine (5-AZA). Methylation of the MIR124 promoter was measured by quantitative methylation-specific polymerase chain reaction. RESULTS: Levels of phosphorylated STAT3 and the genes it regulates (encoding vascular endothelial growth factor (VEGF), BCL2, BCLXL, and matrix metallopeptidase 9 [MMP9]) were increased in pediatric patients with UC compared with control tissues. Overexpression of miR-124, let-7, miR-125, miR-26, or miR-101 reduced STAT3 phosphorylation by ≥ 75% in NCM460 cells; miR-124 had the greatest effect. miR-124 was down-regulated specifically in colon tissues from pediatric patients with UC and directly targeted STAT3 messenger RNA (mRNA). Levels of miR-124 were decreased, whereas levels of STAT3 phosphorylation increased in colon tissues from pediatric patients with active UC compared with those with inactive disease. In addition, levels of miR-124 and STAT3 were inversely correlated in mice with experimental colitis. Down-regulation of miR-124 in tissues from children with UC was attributed to hypermethylation of its promoter region. Incubation of HCT-116 colonocytes with 5-AZA up-regulated miR-124 and reduced levels of STAT3 mRNA. CONCLUSIONS: miR-124 appears to regulate the expression of STAT3. Reduced levels of miR-124 in colon tissues of children with active UC appear to increase expression and activity of STAT3, which could promote inflammation and the pathogenesis of UC in children.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , MicroRNAs/fisiologia , Fator de Transcrição STAT3/genética , Regiões 3' não Traduzidas , Adolescente , Animais , Linhagem Celular Tumoral , Criança , Pré-Escolar , Metilação de DNA , Regulação para Baixo , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA Mensageiro/análise
10.
Front Mol Biosci ; 9: 1004746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339717

RESUMO

Detecting RNA/RNA interactions in the context of a given cellular system is crucial to gain insights into the molecular mechanisms that stand beneath each specific RNA molecule. When it comes to non-protein coding RNA (ncRNAs), and especially to long noncoding RNAs (lncRNAs), the reliability of the RNA purification is dramatically dependent on their abundance. Exogenous methods, in which lncRNAs are in vitro transcribed and incubated with protein extracts or overexpressed by cell transfection, have been extensively used to overcome the problem of abundance. However, although useful to study the contribution of single RNA sub-modules to RNA/protein interactions, these exogenous practices might fail in revealing biologically meaningful contacts occurring in vivo and risk to generate non-physiological artifacts. Therefore, endogenous methods must be preferred, especially for the initial identification of partners specifically interacting with elected RNAs. Here, we apply an endogenous RNA pull-down to lncMN2-203, a neuron-specific lncRNA contributing to the robustness of motor neurons specification, through the interaction with miRNA-466i-5p. We show that both the yield of lncMN2-203 recovery and the specificity of its interaction with the miRNA dramatically increase in the presence of Dextran Sulfate Sodium (DSS) salt. This new set-up may represent a powerful means for improving the study of RNA-RNA interactions of biological significance, especially for those lncRNAs whose role as microRNA (miRNA) sponges or regulators of mRNA stability was demonstrated.

11.
Front Cell Dev Biol ; 9: 777218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858992

RESUMO

Objective: This study aimed to analyze the changes in intestinal flora and metabolites in the intestinal contents of mice with inflammatory bowel disease (IBD) to preliminarily clarify the mechanism of action of Schistosoma soluble egg antigen (SEA) on IBD, thus, laying a research foundation for the subsequent treatment of IBD. Methods: A total of 40 Institute of Cancer Research (ICR) mice were divided into four groups: control, SEA 50 µg, dextran sulfate sodium salt (DSS), and SEA 50 µg + DSS. The overall state of the animals was observed continuously during modeling. The colonic length was measured after 10 days of modeling. The degree of colonic inflammation was observed by hematoxylin and eosin staining. 16srRNA and liquid chromatography-mass spectrometry sequencing techniques were used to determine the abundance of bacteria and metabolites in the intestinal contents of mice in the DSS and SEA 50 µg + DSS groups, and the differences were further analyzed. Results: After SEA intervention, the disease activity index score of mice with IBD decreased and the colon shortening was reduced. Microscopically, the lymphocyte aggregation, glandular atrophy, goblet cell disappearance, and colonic inflammation were less in the SEA 50 µg + DSS group than in the DSS group (p < 0.0001). After SEA intervention, the abundance of beneficial bacteria prevotellaceae_UCG-001 was upregulated, while the abundance of the harmful bacteria Helicobacter, Lachnoclostridium, and Enterococcus was downregulated in the intestinal tract of mice with IBD. The intestinal metabolite analysis showed that SEA intervention decreased the intestinal contents of glycerophospholipids (lysophosphatidylcholine, lysophosphatidylethanolamine, phatidylcholine, and phatidylethanolamine) and carboxylic acids (L-alloisoleucine and L-glutamate), whereas increased bile acids and their derivatives (3B,7A,12a-trihydroxy-5A-cholanoic acid and 3A,4B, 12a-trihydroxy-5b-cholanoic acid). Combined microbiota-metabolite analysis revealed a correlation between these differential microbiota and differential metabolites. At the same time, the changes in the contents of metabolites and differential metabolites in the two groups also correlated with the abundance of the gut microbiome. Conclusions: The study showed that SEA reduced DSS-induced inflammation in IBD and improved the symptoms of IBD in mice through the combined regulation of intestinal flora and intestinal metabolism. It suggested a potential possibility for the use of SEA in treating and regulating intestinal flora and metabolism in patients with IBD.

12.
Acta Pharm Sin B ; 11(9): 2798-2818, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589398

RESUMO

Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.

13.
Int J Pharm ; 558: 143-156, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30641177

RESUMO

The development of novel antibiotic systems is needed to address the methicillin-resistant Staphylococcus aureus (MRSA) infections. The aim of the study was to explore the novel nanoplex delivery method for vancomycin (VCM) against MRSA using dextran sulfate sodium salt (DXT) as a polyelectrolyte complexing agent. Nanoplexes were formulated by the self-assembling amphiphile polyelectrolyte complexation method and characterized. The size, polydispersity index (PDI), and zeta potential (ZP) of the optimized VCM nanoplexes were 84.6 ±â€¯4.248 nm, 0.449 ±â€¯0.024 and -33.0 ±â€¯4.87 mV respectively, with 90.4 ±â€¯0.77% complexation efficiency (CE %) and 62.3 ±â€¯0.23% drug loading. The in vitro (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)tetrazolium (MTT) studies of the nanoplexes were found to be non-toxic against different mammalian cell lines tested and may confirm its biosafety. While the in vitro drug release studies demonstrated sustained slower release. The in silico study confirmed the spontaneous interaction of VCM with DXT in the presence of sodium chloride. A 6.24-fold enhancement was observed for VCM nanoplexes via in vitro antibacterial studies. Flow-cytometric analysis showed effective cell killing of 67% from VCM nanoplexes compared to 32.98% from the bare vancomycin at the minimum inhibitory concentration (MIC) of 1.25 µg/mL. The in vivo studies using BALB/c mouse skin infection model revealed that nanoplexes reduced MRSA burden by 2.3-folds compared to bare VCM. The novel nanoplexes have potential to be a promising delivery system to combat MRSA infections for improved treatment of bacterial infections.


Assuntos
Antibacterianos/administração & dosagem , Sulfato de Dextrana/administração & dosagem , Portadores de Fármacos/administração & dosagem , Staphylococcus aureus Resistente à Meticilina , Nanoestruturas/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/administração & dosagem , Animais , Antibacterianos/química , Linhagem Celular , Sulfato de Dextrana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Nanoestruturas/química , Vancomicina/química
14.
Nutr Res ; 48: 26-32, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29246278

RESUMO

Links between food and inflammatory bowel diseases (IBDs) are often suggested, but the role of food processing has not been extensively studied. Heat treatment is known to cause the loss of nutrients and the appearance of neoformed compounds such as Maillard reaction products. Their involvement in gut inflammation is equivocal, as some may have proinflammatory effects, whereas other seem to be protective. As IBDs are associated with the recruitment of immune cells, including mast cells, we raised the hypothesis that dietary Maillard reaction products generated through heat treatment of food may limit the colitic response and its associated recruitment of mast cells. An experimental model of colitis was used in mice submitted to mildly and highly heated rodent food. Adult male mice were divided in 3 groups and received nonheated, mildly heated, or highly heated chow during 21 days. In the last week of the study, each group was split into 2 subgroups, submitted or not (controls) to dextran sulfate sodium (DSS) colitis. Weight variations, macroscopic lesions, colonic myeloperoxidase activity, and mucosal mast cell number were evaluated at the end of the experiment. Only highly heated chow significantly prevented DSS-induced weight loss, myeloperoxidase activity, and mast cell number increase in the colonic mucosa of DSS-colitic mice. We suggest that Maillard reaction products from highly heated food may limit the occurrence of inflammatory phases in IBD patients.


Assuntos
Colite/tratamento farmacológico , Produtos Finais de Glicação Avançada/farmacologia , Inflamação/tratamento farmacológico , Mastócitos/efeitos dos fármacos , Animais , Contagem de Células , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Colo/enzimologia , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Mastócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Redução de Peso
15.
Artigo em Inglês | WPRIM | ID: wpr-971346

RESUMO

OBJECTIVES@#Ulcerative colitis (UC) is a chronic, relapsing inflammation of the colon. Impaired epithelial repair is an important biological features of UC. Accelerating intestinal epithelial repair to achieve endoscopic mucosal healing has become a key goal in UC. Yes-associated protein (YAP) is a key transcriptional coactivator that regulates organ size, tissue growth and tumorigenesis. Growing studies have focused on the role of YAP in intestinal epithelial regeneration. This study explore the molecular mechanism for the role YAP in modulating colonic epithelial proliferation, repair, and the development of colitis associated cancer.@*METHODS@#We constructed the acute colitis mouse model through successive 5 days of 3% dextran sulfate sodium salt (DSS) induction. Then YAP-overexpressed mouse model was constructed by intraperitoneal injection the YAP overexpressed and negative control lentivirus into DSS mice. On the 5th day of DSS induction and the 5th day of normal drinking water after removing DSS (5+5 d), the mice were killed by spinal dislocation. The colon was taken to measure the length, and the bowel 1-2 cm near the anal canal was selected for immunohistochemical and Western blotting. We used YAP over-expressed colonic epithelial cells and small interfering signal transducer and activator of transcription 3 (STAT3) RNA to probe the regulation of YAP on STAT3, using cell counting kit-8 and scratch assays to explore the role of YAP on colonic epithelial cell proliferation. Finally, we conducted co-immunoprecipitation to test the relationship between YAP and STAT3.@*RESULTS@#After DSS treatment, the expression of YAP was dramatically diminished in crypts. Compared with the empty control mice, overexpression of YAP drastically accelerated epithelial regeneration after DSS induced colitis, presenting with more intact of structural integrity in intestinal epithelium and a reduction in the number of inflammatory cells in the mucosa. Further Western blotting, functional experiment and co-immunoprecipitation analyses showed that the expression of YAP in nucleus was significantly increased by 2 h post DSS cessation, accompanied with up-regulated total protein levels of STAT3 and phosphorylated-STAT3 (p-STAT3). Overexpression of YAP enhanced the expression of STAT3, p-STAT3, and their transcriptional targets including c-Myc and Cyclin D1. In addition, it promoted the proliferation and the "wound healing" of colonic cells. However, these effects were reversed when silencing STAT3 on YAP-overexpressed FHC cells. Moreover, protein immunoprecipitation indicated that YAP could directly interact with STAT3 in the nucleus, up-regulatvng the expressvon of STAT3. Finally, during the process of CAC, overexpression of YAP mutant caused the down-regulated expression of STAT3 and inhibited the development and progress of CAC.@*CONCLUSIONS@#YAP activates STAT3 signaling in regulation of epithelial cell proliferation and promotes mucosal regeneration after DSS induced colitis, which may serve as a potential therapeutic target in UC. However, persistent and excessive YAP activation may promote CAC development.


Assuntos
Animais , Camundongos , Proliferação de Células , Colite/tratamento farmacológico , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa