Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 430(2): 113720, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479052

RESUMO

BACKGROUND: Hyperglycemia-induced vascular endothelial cell dysfunction is a major factor contributing to diabetic lower extremity ischemia. We intend to investigate the role of Dusp2 in hyperglycemia-induced vascular endothelial cell dysfunction and related mechanisms. METHODS: The human umbilical vein endothelial cells (HUVECs) were treated with high glucose (HG) as the cell model. Streptozotocin injection was performed to induce diabetes and femoral artery ligation was to induce hind limb ischemia in mice. The levels of Dusp2, p-p38 MAPK, E2F4, and p38 MAPK were evaluated by Western blot or quantitative real-time PCR. The laser Doppler perfusion imaging was conducted to measure blood flow recovery. The cell counting kit-8, transwell, and tube formation assay were performed to evaluate cell proliferation, migration, and angiogenesis, respectively. CD31 immunohistochemical staining was carried out to detect the capillary density of gastrocnemius. The dual-luciferase reporter gene assay and Chromatin immunoprecipitation assay were executed to explore the interaction between E2F4 and Dusp2. RESULTS: Dusp2 was highly expressed in HG-induced HUVECs and diabetic lower extremity ischemia model mice. Interference with Dusp2 promoted cell proliferation, migration, and angiogenesis, as well as alleviated mouse diabetic hindlimb ischemia. Dusp2 knockdown up-regulated p-p38 MAPK levels. We verified the binding between E2F4 and Dusp2. Overexpressing E2F4 suppressed Dusp2 levels and promoted cell proliferation, migration, and angiogenesis, co-overexpression of Dusp2 reversed the results. CONCLUSIONS: Overexpressing E2F4 promotes endothelial cell proliferation, migration, and angiogenesis by inhibiting Dusp2 expression and activating p38 MAPK to alleviate vascular endothelial cell dysfunction under HG stimulation.


Assuntos
Hiperglicemia , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Camundongos , Células Cultivadas , Glucose/farmacologia , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hiperglicemia/metabolismo , Isquemia/genética , Neovascularização Fisiológica , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Acta Pharmacol Sin ; 44(6): 1161-1174, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36509902

RESUMO

Gliflozins are known as SGLT2 inhibitors, which are used to treat diabetic patients by inhibiting glucose reabsorption in kidney proximal tubules. Recent studies show that gliflozins may exert other effects independent of SGLT2 pathways. In this study we investigated their effects on skeletal muscle cell viability and paracrine function, which were crucial for promoting revascularization in diabetic hindlimb ischemia (HLI). We showed that treatment with empagliflozin (0.1-40 µM) dose-dependently increased high glucose (25 mM)-impaired viability of skeletal muscle C2C12 cells. Canagliflozin, dapagliflozin, ertugliflozin, ipragliflozin and tofogliflozin exerted similar protective effects on skeletal muscle cells cultured under the hyperglycemic condition. Transcriptomic analysis revealed an enrichment of pathways related to ferroptosis in empagliflozin-treated C2C12 cells. We further demonstrated that empagliflozin and other gliflozins (10 µM) restored GPX4 expression in high glucose-treated C2C12 cells, thereby suppressing ferroptosis and promoting cell viability. Empagliflozin (10 µM) also markedly enhanced the proliferation and migration of blood vessel-forming cells by promoting paracrine function of skeletal muscle C2C12 cells. In diabetic HLI mice, injection of empagliflozin into the gastrocnemius muscle of the left hindlimb (10 mg/kg, every 3 days for 21 days) significantly enhanced revascularization and blood perfusion recovery. Collectively, these results reveal a novel effect of empagliflozin, a clinical hypoglycemic gliflozin drug, in inhibiting ferroptosis and enhancing skeletal muscle cell survival and paracrine function under hyperglycemic condition via restoring the expression of GPX4. This study highlights the potential of intramuscular injection of empagliflozin for treating diabetic HLI.


Assuntos
Diabetes Mellitus , Ferroptose , Hiperglicemia , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Glucose/metabolismo , Isquemia/tratamento farmacológico , Membro Posterior
3.
Adv Clin Exp Med ; 31(11): 1215-1229, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36047895

RESUMO

BACKGROUND: Diabetes mellitus (DM) often causes stenosis and occlusion of hindlimb blood vessels, which are also the main cause for hindlimb ischemia in elderly people. OBJECTIVES: To investigate the therapeutic effect of endothelial progenitor cell (EPC) transplantation on diabetic hindlimb ischemia. MATERIAL AND METHODS: Endothelial progenitor cells were separated, labeled with PKH-26 and transplanted into rat models (107 cells/100 g). Dichlorodihydrofluorescein diacetate (DCFH-DA) was used to detect any oxidative stress. Streptozotocin (STZ) was injected to establish a diabetic rat model and hindlimb ischemia model was established via operation. Western blotting was used to detect total ß-catenin (T-ß-catenin) and non-phospho-ß-catenin (NP-ß-catenin) levels. The malondialdehyde (MDA), superoxide dismutase (SOD), Wnt3a, Wnt5a and Wnt7a levels were detected using enzyme-linked immunosorbent assay (ELISA). Oxidative stress was measured using DCFH-DA and dihydroethidium (DHE). The endothelial biomarker CD31 was observed to highlight vessels, and PKH-26 to trace migration/adhesion of EPCs. RESULTS: Endothelial progenitor cells were successfully isolated and identified, and diabetic hindlimb ischemic rat models were created. Tempol remarkably improved blood flow in diabetic hindlimb ischemic rats compared to DM+EPCs rats at 14 days (p < 0.001) and 28 days post-operation (p < 0.001). High oxidative stress was observed in diabetic hindlimb ischemic rats. Tempol significantly inhibited oxidative stress levels in diabetic hindlimb ischemic rats. Furthermore, Tempol significantly promoted angiogenesis in diabetic hindlimb ischemic rats compared to DM+EPCs rats. The ß-catenin inhibitor, XAV (DM+EPCs+Tempol+XAV group), significantly suppressed blood flow recovery and angiogenesis in diabetic hindlimb ischemic rats when compared to the DM+EPCs+Tempol group at 14 days (p = 0.026) and 28 days (p < 0.001). The XAV remarkably reduced T-ß-catenin (p < 0.001) and N-ß-catenin (p = 0.030) levels in Tempol-treated diabetic hindlimb ischemic rats, as compared to the DM+EPCs+Tempol group. The Wnt5a participated in the pathology of diabetic hindlimb ischemia. CONCLUSIONS: There are high oxidative stress levels in both EPCs in high-glucose environments and diabetic hindlimb ischemia, which can lead to limited blood flow recovery. The high oxidative stress caused the inhibition of Wnt/ß-catenin signaling pathway, leading to limited blood flow recovery in diabetic hindlimb ischemia. At the same time, Wnt5a participated in the EPC-mediated blood flow recovery.


Assuntos
Diabetes Mellitus , Células Progenitoras Endoteliais , Animais , Ratos , beta Catenina/metabolismo , Diabetes Mellitus/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Membro Posterior/irrigação sanguínea , Isquemia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Estresse Oxidativo , Via de Sinalização Wnt
4.
Front Pharmacol ; 10: 909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474865

RESUMO

As one of the most severe manifestations of diabetes, vascular complications are the main causes of diabetes-related morbidity and mortality. Hyperglycemia induces systemic abnormalities, including impaired angiogenesis, causing diabetic patients to be highly susceptible in suffering hindlimb ischemia (HLI). Despite its severe prognosis, there is currently no effective treatment for diabetic HLI. Skeletal muscle cells secrete multiple angiogenic factors, hence, recently are reported to be critical for angiogenesis; however, hyperglycemia disrupted the paracrine function in skeletal muscle cells, leading to the impaired angiogenesis potential observed in diabetic patients. The present study showed that tyrosol, a phenylethanoid compound, suppresses accumulation of intracellular reactive oxygen species (ROS) caused by hyperglycemia, most plausibly by promoting heme oxygenase-1 (HO-1) expression in skeletal muscle cells. Consequently, tyrosol exerts cytoprotective function against hyperglycemia-induced oxidative stress in skeletal muscle cells, increases their proliferation vigorously, and simultaneously suppresses apoptosis. Furthermore, tyrosol grossly increases the secretion of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from skeletal muscle cells. This leads to enhanced proliferation and migration capabilities of vascular endothelial and smooth muscle cells, two types of cells that are responsible in forming blood vessels, through cell-cell communication. Finally, in vivo experiment using the diabetic HLI mouse model showed that tyrosol injection into the gastrocnemius muscle of the ischemic hindlimb significantly enhances the formation of functional blood vessels and subsequently leads to significant recovery of blood perfusion. Overall, our findings highlight the potential of the pharmacological application of tyrosol as a small molecule drug for therapeutic angiogenesis in diabetic HLI patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa