RESUMO
Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early ß-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of ß-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in ß-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any ß-catenin transcriptional activity as measured by ß-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in ß-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.
Assuntos
Padronização Corporal , Peptídeos e Proteínas de Sinalização Intercelular , Transdução de Sinais , Proteínas de Xenopus , beta Catenina , Animais , Padronização Corporal/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , beta Catenina/metabolismo , beta Catenina/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Xenopus laevis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Gastrulação , Proteína Nodal/metabolismo , Proteína Nodal/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia , Organizadores Embrionários/metabolismo , GlicoproteínasRESUMO
BACKGROUND: The current treatment of osteogenesis imperfecta (OI) is imperfect. Our study thus delves into the potential of using Dickkopf-1 antisense (DKK1-AS) to treat OI. METHODS: We analysed serum DKK1 levels and their correlation with lumbar spine and hip T-scores in OI patients. Comparative analyses were conducted involving bone marrow stromal cells (BMSCs) and bone tissues from wild-type mice, untreated OI mice, and OI mice treated with DKK1-ASor DKK1-sense (DKK1-S). RESULTS: Significant inverse correlations were noted between serum DKK1 levels and lumbar spine (correlation coefficient = - 0.679, p = 0.043) as well as hip T-scores (correlation coefficient = - 0.689, p = 0.042) in OI patients. DKK1-AS improved bone mineral density (p = 0.002), trabecular bone volume/total volume fraction (p < 0.001), trabecular separation (p = 0.010), trabecular thickness (p = 0.001), trabecular number (p < 0.001), and cortical thickness (p < 0.001) in OI mice. DKK1-AS enhanced the transcription of collagen 1α1, osteocalcin, runx2, and osterix in BMSC from OI mice (all p < 0.001), resulting in a higher von Kossa-stained matrix area (p < 0.001) in ex vivo osteogenesis assays. DKK1-AS also reduced osteoclast numbers (p < 0.001), increased ß-catenin and T-cell factor 4 immunostaining reactivity (both p < 0.001), enhanced mineral apposition rate and bone formation rate per bone surface (both p < 0.001), and decreased osteoclast area (p < 0.001) in OI mice. DKK1-AS upregulated osteoprotegerin and downregulated nuclear factor-kappa B ligand transcription (both p < 0.001). Bone tissues from OI mice treated with DKK1-AS exhibited significantly higher breaking force compared to untreated OI mice (p < 0.001). CONCLUSIONS: Our study elucidates that DKK1-AS has the capability to enhance bone mechanical properties, restore the transcription of osteogenic genes, promote osteogenesis, and inhibit osteoclastogenesis in OI mice.
Assuntos
Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular , Osteogênese Imperfeita , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Osteogênese Imperfeita/metabolismo , Camundongos , Humanos , Feminino , Masculino , Densidade Óssea , Osteogênese , Células-Tronco Mesenquimais/metabolismoRESUMO
Osteogenesis imperfecta (OI) is a genetic disorder characterized by increased bone fragility largely caused by defects in structure, synthesis, or post-translational processing of type I collagen. Drugs currently used to improve skeletal health in OI were initially developed to treat osteoporosis and clinical trials are ongoing to study their effectiveness in OI adults. Additionally, novel bone-protective agents are in preclinical studies and various phases of OI clinical trials. This review summarizes current knowledge on available pharmacologic agents and current drug trials involving OI participants. A PubMed online database search of all study types published in the English language using the terms "osteogenesis imperfecta," "OI," and "brittle bone disease" was performed in August 2022. Articles screened were restricted to adults. A ClinicalTrials.gov database search of all studies involving "osteogenesis imperfecta" was performed in August 2023. Although clinical trial data are limited, bisphosphonates and teriparatide may be useful in improving bone mineral density. As of yet, no clinical trials are available that adequately evaluate the usefulness of current therapies in reducing fracture risk. Several therapeutics, including teriparatide, setrusumab, anti-TGF-ß antibodies, and allogeneic stem cells, are being studied in clinical trials. Preclinical studies involving Dickkopf-1 antagonists present promising data in non-OI bone disease, and could be useful in OI. Research is ongoing to improve therapeutic options for adults with OI and clinical trials involving gene-editing may be possible in the coming decade.
RESUMO
Vascular smooth muscle cells (VSMCs) are considered to be a crucial source of foam cells in atherosclerosis due to their low expression level of cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) intrinsically. While the definite regulatory mechanisms are complicated and have not yet been fully elucidated, we previously reported that Dickkopf-1 (DKK1) mediates endothelial cell (EC) dysfunction, thereby aggravating atherosclerosis. However, the role of smooth muscle cell (SMC) DKK1 in atherosclerosis and foam cell formation remains unknown. In this study, we established SMC-specific DKK1-knockout (DKK1SMKO ) mice by crossbreeding DKK1flox/flox mice with TAGLN-Cre mice. Then, DKK1SMKO mice were crossed with APOE-/- mice to generate DKK1SMKO /APOE-/- mice, which exhibited milder atherosclerotic burden and fewer SMC foam cells. In vitro loss- and gain-of-function studies of DKK1 in primary human aortic smooth muscle cells (HASMCs) have proven that DKK1 prevented oxidized lipid-induced ABCA1 upregulation and cholesterol efflux and promoted SMC foam cell formation. Mechanistically, RNA-sequencing (RNA-seq) analysis of HASMCs as well as chromatin immunoprecipitation (ChIP) experiments showed that DKK1 mediates the binding of transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) to the promoter of cytochrome P450 epoxygenase 4A11 (CYP4A11) to regulate its expression. In addition, CYP4A11 as well as its metabolite 20-HETE-promoted activation of transcription factor sterol regulatory element-binding protein 2 (SREBP2) mediated the DKK1 regulation of ABCA1 in SMC. Furthermore, HET0016, the antagonist of CYP4A11, has also shown an alleviating effect on atherosclerosis. In conclusion, our results demonstrate that DKK1 promotes SMC foam cell formation during atherosclerosis via a reduction in CYP4A11-20-HETE/SREBP2-mediated ABCA1 expression.
Assuntos
Aterosclerose , Células Espumosas , Humanos , Animais , Camundongos , Músculo Liso Vascular , Sistema Enzimático do Citocromo P-450 , Fatores de Transcrição , Aterosclerose/genética , Apolipoproteínas E/genética , Citocromo P-450 CYP4A , Transportador 1 de Cassete de Ligação de ATP/genéticaRESUMO
PURPOSE: We aim to detect serum DKK1 level of pediatric patients with OI and to analyze its relationship with the genotype and phenotype of OI patients. METHODS: A cohort of pediatric OI patients and age-matched healthy children were enrolled. Serum levels of DKK1 and bone turnover biomarkers were measured by enzyme-linked immunosorbent assay. Bone mineral density (BMD) was measured by Dual-energy X-ray absorptiometry. Pathogenic mutations of OI were detected by next-generation sequencing and confirmed by Sanger sequencing. RESULTS: A total of 62 OI children with mean age of 9.50 (4.86, 12.00) years and 29 healthy children were included in this study. The serum DKK1 concentration in OI children was significantly higher than that in healthy children [5.20 (4.54, 6.32) and 4.08 (3.59, 4.92) ng/mL, P < 0.001]. The serum DKK1 concentration in OI children was negatively correlated with height (r = - 0.282), height Z score (r = - 0.292), ALP concentration (r = - 0.304), lumbar BMD (r = - 0.276), BMD Z score of the lumbar spine and femoral neck (r = - 0.32; r = - 0.27) (all P < 0.05). No significant difference in serum DKK1 concentration was found between OI patients with and without vertebral compression fractures. In patients with spinal deformity (22/62), serum DKK1 concentration was positively correlated with SDI (r = 0.480, P < 0.05). No significant correlation was observed between serum DKK1 concentration and the annual incidence of peripheral fractures, genotype and types of collagen changes in OI children. CONCLUSION: The serum DKK1 level was not only significantly elevated in OI children, but also closely correlated to their skeletal phenotype, suggesting that DKK1 may become a new biomarker and a potential therapeutic target of OI.
Assuntos
Biomarcadores , Densidade Óssea , Peptídeos e Proteínas de Sinalização Intercelular , Osteogênese Imperfeita , Fenótipo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Feminino , Criança , Masculino , Osteogênese Imperfeita/sangue , Osteogênese Imperfeita/genética , Biomarcadores/sangue , Pré-Escolar , Adolescente , Estudos de Casos e Controles , Absorciometria de FótonRESUMO
Dickkopf-1 (DKK-1) may be involved in inflammatory response and secondary brain injury after acute brain injury. We gauged serum DKK-1 levels and further assessed its correlation with disease severity and investigated its predictive value for 90-day prognosis in patients with spontaneous intracerebral hemorrhage (sICH). Serum DKK-1 levels were measured in 128 sICH patients and 128 healthy controls. The severity of sICH was assessed using the Glasgow Coma Scale (GCS) scores and hematoma volumes. Poor prognosis was referred to as a Glasgow Outcome Scale (GOS) score of 1-3 at 90 days after stroke. Multivariate analysis was performed to identify associations of serum DKK-1 levels with disease severity, early neurological deterioration (END) and poor prognosis. Receiver operating characteristic curve (ROC) was built to investigate the prognostic predictive capability. The serum DKK-1 levels of patients were significantly higher than those of controls (median, 4.74 ng/mL versus 1.98 ng/mL; P < 0.001), and were independently correlated with hematoma volumes (ρ = 0.567, P < 0.001; t = 3.444, P = 0.001) and GCS score (ρ = -0.612, P < 0.001; t = -2.048, P = 0.043). Serum DKK-1 significantly differentiated patients at risk of END (area under ROC curve (AUC), 0.850; 95% confidence interval (CI), 0.777-0.907; P < 0.001) and poor prognosis (AUC, 0.830; 95% CI, 0.753-0.890; P < 0.001), which had similar prognostic ability, as compared to GCS scores and hematoma volumes. Subsequent Logistic regression model affirmed that GCS score, hematoma volume, and serum DKK-1 levels were independently associated with END and poor prognosis at 90 days after sICH. The models, which contained them, performed well using ROC curve analysis and calibration curve analysis. Serum DKK-1 levels are markedly associated with disease severity, END and 90-day poor prognosis in sICH. Hence, serum DKK-1 is presumed to be used as a potential prognostic biomarker of sICH.
Assuntos
Hemorragia Cerebral , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Hemorragia Cerebral/sangue , Hemorragia Cerebral/diagnóstico , Masculino , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Pessoa de Meia-Idade , Prognóstico , Idoso , Estudos Prospectivos , Escala de Coma de Glasgow , Índice de Gravidade de Doença , Curva ROC , Biomarcadores/sangue , Adulto , Estudos de Coortes , Idoso de 80 Anos ou maisRESUMO
Introduction: Lung cancer is one of the most prevalent cancers worldwide. Dickkopf-1 (DKK-1) and -2 (DKK-2) are important proteins for the regulated Wnt signalling pathway. Alternations in the Wnt pathway are associated with tumour progression. The aim of the study was to analyse the concentration of DKK-1 and DKK-2 in tumour and matched non-tumour (NT) samples of 65 patients with non-small cell lung cancer (NSCLC), including 3 subtypes: adenocarcinoma (AC), squamous cell carcinoma (SCC), and large cell carcinoma (LCC). Material and methods: The protein concentration was measured by enzyme-linked immunosorbent assay (ELISA) in homogenates. Results: The difference between the level of DKK-1 in tumour and NT specimens was not significant for the whole NSCLC group and SCC and LCC subtype, while in AC samples they were significantly higher (p = 0.028). The highest concentration of DKK-1 was found in the advanced NSCLC samples, with the T4 parameter as well as stage III. Significantly decreased DKK-2 concentrations were detected in all NSCLC subtypes (p < 0.05). Moreover, the DKK-2 level was higher in non-smokers than in smokers. The results indicate that concentrations of DKKs were different in relation to subtypes as well as clinical and socio-demographic parameters. The concentration of DKKs could be associated with the progression of NSCLC. Conclusions: We suggest that DKK-1 could play an oncogenic role in AC, while DKK-2 could be a tumour suppressor in all NSCLC subtypes. Dickkopf-1 and DKK-2 proteins could have differential roles in the Wnt signalling pathway, which is important in many cellular processes, such as proliferation and apoptosis.
RESUMO
A healthy skeleton depends on a continuous renewal and maintenance of the bone tissue. The process of bone remodeling is highly controlled and consists of a fine-tuned balance between bone formation and bone resorption. Biochemical markers of bone turnover are already in use for monitoring diseases and treatment involving the skeletal system, but novel biomarkers reflecting specific biological processes in bone and interacting tissues may prove useful for diagnostic, prognostic, and monitoring purposes. The Wnt-signaling pathway is one of the most important pathways controlling bone metabolism and consequently the action of inhibitors of the pathway such as sclerostin and Dickkopf-related protein 1 (DKK1) have crucial roles in controlling bone formation and resorption. Thus, they might be potential markers for clinical use as they reflect a number of physiological and pathophysiological events in bone and in the cross-talk with other tissues in the human body. This review focuses on the clinical utility of measurements of circulating sclerostin and DKK1 levels based on preanalytical and analytical considerations and on evidence obtained from published clinical studies. While accumulating evidence points to clear associations with a number of disease states for the two markers, and thus, the potential for especially sclerostin as a biochemical marker that may be used clinically, the lack of standardization or harmonization of the assays still hampers the clinical utility of the markers.
Assuntos
Doenças Ósseas , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Marcadores Genéticos , Proteínas Morfogenéticas Ósseas , Proteínas Adaptadoras de Transdução de Sinal , Biomarcadores , Densidade Óssea/fisiologiaRESUMO
BACKGROUND: Sorafenib improves the overall survival in patients with advanced hepatocellular carcinoma (HCC). Dickkopf-1 (DKK1) is commonly overexpressed in HCC. In this study, we investigated whether the inhibition of DKK1 enhances the anti-tumor efficacy of sorafenib in HCC. METHODS: HCC cells were treated with sorafenib and WAY-262611, which is an inhibitor of DKK1. Transgenic mouse models were also developed using hydrodynamic tail vein injection. Mice were orally administered with sorafenib (32 mg/kg), WAY-262611 (16 mg/kg), or sorafenib + WAY-262611 for 10 days. Mechanisms of sorafenib and WAY-262611 were explored via western blotting, immunostaining, and RNA sequencing. RESULTS: DKK1 was significantly overexpressed in patients with HCC than in the healthy controls and patients with liver diseases except HCC (all P < 0.05). Compared with sorafenib alone, sorafenib + WAY-262611 significantly inhibited the cell viability, invasion, migration, and colony formation by promoting apoptosis and altering the cell cycles in HCC cells (all P < 0.05). Moreover, sorafenib + WAY-262611 decreased the p110α, phospho-Akt (all P < 0.05), active ß-catenin (all P < 0.05) and phospho-GSK-3ß (Ser9) expression levels, while increasing the phospho-GSK-3ß (Tyr216) expression levels compared with those in the sorafenib alone in vitro and in vivo. In addition, sorafenib + WAY-262611 inhibited tumor progression by regulating cell proliferation and apoptosis, significantly better than sorafenib alone in mouse models. CONCLUSIONS: Our results indicate that DKK1 inhibition significantly enhances the anti-tumor efficacy of sorafenib by inhibiting the PI3K/Akt and Wnt/ß-catenin pathways via regulation of GSK3ß activity, suggesting a novel therapeutic strategy for HCC. Video Abstract.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/metabolismo , beta Catenina/metabolismo , Proliferação de Células , Linhagem Celular TumoralRESUMO
PURPOSE: Dickkopf-1 (DKK1) is a Wnt signaling modulator promoting tumor growth, metastasis, angiogenesis, and immunosuppression by regulating innate immunity. DKK1 is over-expressed in gynecologic cancers and is associated with shortened survival. DKN-01 is a humanized monoclonal antibody with DKK1 neutralizing activity that may provide clinical benefit to patients whose tumors have overexpression of DKK1 or Wnt genetic alterations. METHODS: We conducted an open-label, Phase 2 basket study with 2-stage design in patients with endometrial carcinoma (EC) and platinum-resistant/refractory epithelial ovarian cancer. DKN-01 was administered either as monotherapy or in combination with weekly paclitaxel at investigator's discretion. All patients underwent NGS testing prior to enrollment; tumor tissue was also tested for DKK1 expression by RNAscope pre-treatment and after cycle 1 if available. At least 50% of patients were required to have a Wnt signaling alteration either directly or tangentially. This publication reports results from the EC population overall and by DKK1-expression. RESULTS: DKN-01 monotherapy and in combination with paclitaxel was more effective in patients with high DKK1-expressing tumors compared to low-expressing tumors. DKN-01 monotherapy demonstrated an objective response rate [ORR] of 25.0% vs. 0%; disease control rate [DCR] of 62.5% vs. 6.7%; median progression-free survival [PFS] was 4.3 vs. 1.8 months, and overall survival [OS] was 11.0 vs. 8.2 months in DKK1-high vs DKK1-low patients. Similarly, DKN-01 in combination with paclitaxel demonstrated greater clinical activity in patients with DKK1-high tumors compared to DKK1-low tumors: DCR was 55% vs. 44%; median PFS was 5.4 vs. 1.8 months; and OS was 19.1 vs. 10.1 months. Wnt activating mutations correlated with higher DKK1 expression. DKN-01 was well tolerated as a monotherapy and in combination with paclitaxel. CONCLUSIONS: Collectively, data demonstrates promising clinical activity of a well-tolerated drug, DKN-01, in EC patients with high tumoral DKK1 expression which frequently corresponded to the presence of a Wnt activating mutation. Future development will focus on using DKN-01 in DKK1-high EC patients in combination with immunotherapy.
Assuntos
Antineoplásicos , Neoplasias do Endométrio , Neoplasias Ovarianas , Feminino , Humanos , Antineoplásicos/uso terapêutico , Paclitaxel , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/etiologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Anticorpos Monoclonais/uso terapêutico , Biomarcadores , Neoplasias Ovarianas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Peptídeos e Proteínas de Sinalização Intercelular/genéticaRESUMO
BACKGROUND AND AIMS: Dickkopf-1 (DKK1) is associated with poor prognosis in intrahepatic cholangiocarcinoma (iCCA), but the mechanisms behind this are unclear. Here, we show that DKK1 plays an immune regulatory role in vivo and inhibition reduces tumour growth. METHODS: Various in vivo GEMM mouse models and patient samples were utilized to assess the effects of tumour specific DKK1 overexpression in iCCA. DKK1-driven changes to the tumour immune microenvironment were characterized by immunostaining and gene expression analysis. DKK1 overexpressing and damage-induced models of iCCA were used to demonstrate the therapeutic efficacy of DKK1 inhibition in these contexts using the anti-DKK1 therapeutic, DKN-01. RESULTS: DKK1 overexpression in mouse models of iCCA drives an increase in chemokine and cytokine signalling, the recruitment of regulatory macrophages, and promotes the formation of a tolerogenic niche with higher numbers of regulatory T cells. We show a similar association of DKK1 with FOXP3 and regulatory T cells in patient tissue and gene expression data, demonstrating these effects are relevant to human iCCA. Finally, we demonstrate that inhibition of DKK1 with the monoclonal antibody mDKN-01 is effective at reducing tumour burden in two distinct mouse models of the disease. CONCLUSION: DKK1 promotes tumour immune evasion in iCCA through the recruitment of immune suppressive macrophages. Targeting DKK1 with a neutralizing antibody is effective at reducing tumour growth in vivo. As such, DKK1 targeted and immune modulatory therapies may be an effective strategy in iCCA patients with high DKK1 tumour expression or tolerogenic immune phenotypes.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Humanos , Camundongos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fenótipo , Microambiente TumoralRESUMO
BACKGROUND: Vascular calcification (VC) is a major predictor of cardiovascular diseases that represent the principal cause of mortality among type-2 diabetic patients. Accumulating data suggest the vital role of some microRNAs on vascular calcification as an epigenetic regulator. Thus, we assessed herein, the role of serum miR-433-3p in vascular calcification in type-2 diabetic patients. METHODS: Twenty healthy subjects (control group) and forty diabetic patients (20 without VC and 20 with VC) were involved in the study. miR-433-3p gene expression was measured. Runx2, Dickkopf-1 (DKK1), ß-catenin, Receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) levels in serum were assessed by ELISA technique. RESULTS: Diabetes patients had significantly lower levels of miR-433-3p expression in comparison to the control group, with the lowest levels being found in diabetic patients with VC. Furthermore, Runx2, ß-catenin, and RANKL levels were significantly increased with concomitant lower DKK1 and OPG levels detected in the two diabetic groups especially those with VC. CONCLUSION: Collectively, the study documented that down-regulation of miR-433-3p may contribute to the development of VC through activating WNT/ß-Catenin and RANKL/RANK/OPG signaling pathways.
Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Calcificação Vascular , Humanos , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , beta Catenina/genética , beta Catenina/metabolismo , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genéticaRESUMO
BACKGROUND AND AIMS: To study the correlation between the level of serum Dickkopf-1 (DKK1) and the degree of coronary artery stenosis in patients with coronary atherosclerotic heart disease. METHODS AND RESULTS: In 2018, general data and biochemical indexes of 311 patients who underwent coronary angiography were recorded. Before procedure, arterial blood was drawn and the concentrations of DKK1, retinol binding protein 4 (RBP4), plasminogen activator inhibitor (PAI-1) were measured. Based on coronary angiography results, subjects were divided into a coronary heart disease (CHD) group; and a non-coronary heart disease (non-CHD)group. The CHD group was divided into three subgroups: the low Gensini score; the middle Gensini score; and the high Gensini score subgroups. Compared with those of the non-CHD group, DKK1, RBP4 and PAI-1 of the CHD group were significantly higher, while the OC was lower. DKK1,RBP4 and PAI-1 levels of the middle and high Gensini subgroups were significantly higher, compared with that of the low Gensini subgroup. Differences between osteocalcin (OC), beta-isomerized C-terminal telopeptidase (ß-CTX), and 25(OH)2D3 of the three subgroups were not significant. Correlation between DKK1 and the inflammatory factors, RBP4 and PAI-1, was positive. Correlation between DKK1 and ß - CTX, 25(OH)2D3 and OC was not significant. DKK1 was a risk factor for CHD. The degree of coronary artery stenosis was related to DKK1 concentration. CONCLUSIONS: Serum DKK1 levels in coronary heart disease patients were significantly higher, and positively correlated with the degree of coronary artery stenosis. DKK1 level is an independent risk factor for coronary heart disease.
Assuntos
Aterosclerose , Doença da Artéria Coronariana , Estenose Coronária , Humanos , Inibidor 1 de Ativador de Plasminogênio , Estenose Coronária/diagnóstico por imagem , Angiografia Coronária , Fatores de Risco , Doença da Artéria Coronariana/diagnóstico por imagem , Proteínas Plasmáticas de Ligação ao Retinol , Peptídeos e Proteínas de Sinalização IntercelularRESUMO
BACKGROUND: Low bone mineral density (BMD) is prevalent in individuals with ß-thalassemia and is associated with increased circulating dickkopf-1 concentration. These data are limited in α-thalassemia. Therefore, we aimed to determine the prevalence of low BMD and the association between BMD and serum dickkopf-1 in adolescents with non-deletional hemoglobin H disease, a form of α-thalassemia whose severity is comparable to ß-thalassemia intermedia. METHODOLOGY: The lumbar spine and total body BMD were measured and converted into height-adjusted z-scores. Low BMD was defined as BMD z-score ≤ -2. Participant blood was drawn for measurement of dickkopf-1 and bone turnover marker concentrations. RESULTS: Thirty-seven participants with non-deletional hemoglobin H disease (59% female, mean age 14.6 ± 3.2 years, 86% Tanner stage ≥2, 95% regularly transfused, 16% taking prednisolone) were included. Over one year prior to the study, mean average pretransfusion hemoglobin, ferritin and 25-hydroxyvitamin D concentrations were 8.8 ± 1.0 g/dL, and 958 ± 513 and 26 ± 6 ng/mL, respectively. When participants taking prednisolone were excluded, the prevalence of low BMD at the lumbar spine and total body was 42% and 17%, respectively. BMD at both sites was correlated positively with body mass index z-score, and negatively with dickkopf-1 (all p-values <0.05). There were no correlations among dickkopf-1, 25-hydroxyvitamin D, osteocalcin and C-telopeptide of type-I collagen. Multiple regression analysis showed dickkopf-1 inversely associated with total body BMD z-score adjusting for sex, bone age, body mass index, pre-transfusion hemoglobin, 25-hydroxyvitamin D, history of delayed puberty, type of iron chelator and prednisolone use (p-valueâ¯=â¯0.009). CONCLUSIONS: We demonstrated a high prevalence of low BMD in adolescents with non-deletional hemoglobin H disease. Moreover, dickkopf-1 inversely associated with total body BMD suggesting it may serve as a bone biomarker in this patient population.
Assuntos
Doenças Ósseas Metabólicas , Talassemia alfa , Talassemia beta , Humanos , Feminino , Adolescente , Criança , Masculino , Densidade Óssea , Vértebras Lombares/diagnóstico por imagem , Hemoglobinas , PrednisolonaRESUMO
Psoriatic arthritis (PsA) is a chronic inflammatory disease, characterised by the pathological occurrence of two opposite phenomena-osteoresorption and osteogenesis. Dickkopf-related protein 1 (DKK1) which inhibits the Wingless protein (Wnt) signalling pathway has been shown to be a master regulator of bone remodeling in inflammatory rheumatic diseases. However, the exact relationship between DKK1 serum level and bone remodelling is not clear. The goal of this study is to review state-of-the-art knowledge on the association of serum DKK1 with a bone remodelling in PsA. The MEDLINE-PubMed, EMBASE, Scopus, Web of Science and DOAJ databases were searched for appropriate papers. The English terms: 'DKK1', 'Dickkopf-1' 'Dickkopf related protein 1', 'psoriatic arthritis' and 'PsA' were used for search purposes. Eight original articles and two reviews were identified up to August 2023. In four out of 8 discussed studies DKK1 serum level was higher in PsA patients than in healthy controls [Dalbeth, p < 0.01; Diani, p < 0.001; Chung, p < 0.01; Abd el Hamid, p < 0.001)], it was comparable in another (Daousiss, p = 0.430) and was lower in two (Fassio2017, p < 0.05; Fassio2019, p < 0.05). In one study, the comparative groups included patients with axial spondyloarthritis, where DKK1 serum levels were lower in PsA groups [Jadon, peripheral PsA, p = 0.01]. The true relative serum concentration of DKK1 in PsA, as well as its influence on osteogenesis and osteoresorption, is still equivocal. Further studies on this matter with consistent and stringent methodology are warranted.
RESUMO
Oncogenic human papillomavirus (HPV) types control the phenotype of cervical cancer cells through the sustained expression of the viral E6/E7 oncogenes. Here, we show that they strongly restrain expression of the putative tumor suppressor protein Dkk1 (Dickkopf-1) in HPV-positive cervical cancer cells through the restriction of p53 expression by the continuously expressed endogenous E6 oncoprotein. Moreover, our study reveals that compromised Dkk1 expression is linked to increased resistance of HPV-positive cervical cancer cells toward the proapoptotic activity of Cisplatin. Although Dkk1 can act as a Wnt antagonist, the antiapoptotic effect resulting from Dkk1 repression is not linked to an activation of this pathway. Rather, transcriptome and functional analyses uncover that Dkk1 repression leads to a strongly diminished stimulation of c-Jun N-terminal kinase (JNK) signaling which is required for efficient apoptosis induction by Cisplatin in cervical cancer cells. Further, we observed that Dkk1-depleted cervical cancer cells induce senescence under Cisplatin treatment instead of apoptosis, suggesting that Dkk1 levels can strongly influence the phenotypic response of these cells toward Cisplatin. Collectively, these results provide new insights into the virus/host cell crosstalk in cervical cancer cells by identifying Dkk1 as a cellular target which is maintained under strong negative control by the continuous expression of the HPV oncogenes. Moreover, they identify Dkk1 as a critical determinant for the sensitivity of cervical cancer cells toward Cisplatin, showing that Dkk1 repression leads to increased Cisplatin resistance by impairing proapoptotic JNK signaling.
Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Alphapapillomavirus/genética , Cisplatino/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Oncogênicas Virais/metabolismo , Oncogenes , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
Diabetic retinopathy (DR) is a key reason for legal blindness worldwide. Currently, it is urgently necessary to determine the etiology and pathological molecular mechanism of DR to search for resultful therapies. Dickkopf-1 (DKK1) is inhibitive for canonical Wnt signaling via negative feedback, and has been reported as a biomarker for DR. However, the related mechanisms are still unclear. In this work, our data showed that DKK1 was decreased in the vitreous tissues at an early stage of diabetes triggered by streptozotocin (STZ) injection in rats. We subsequently found that DKK1 intravitreal injection significantly ameliorated the physiological function of retina in STZ-challenged rats, accompanied by improved retinal structure. Surprisingly, our results indicated that DKK1 injection remarkably suppressed PANoptosis in retinal tissues of STZ-challenged rats with DR, as proved by ameliorated pyroptosis, apoptosis and necroptosis, which were mainly through the blockage of cleaved Gasdermin-D (GSDMD), Caspase-3 and receptor-interacting protein kinase-3 (RIPK3). Additionally, Wnt signaling including the expression of Wnt, ß-catenin and LDL receptor-related protein 5/6 (LRP5/6) was also highly prohibited in retina of DKK1-injected rats with DR. Furthermore, retinal neovascularization and acellular vessel in DR rats were also considerably abolished after DKK1 injection, accompanied by reduced expression levels of retinal vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9). More in vitro experiments showed that DKK1 treatment markedly repressed the proliferative and migratory ability of endothelial cells via inhibiting angiogenesis-related molecules. Together, all our results broaden the knowledge of the correlation between DKK1 and DR, and then provide a novel therapeutic strategy for the suppression of management of DR.
Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Retiniana , Animais , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Ratos , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Estreptozocina , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
OBJECTIVES: Dickkopf-1 (DKK1) is a secreted protein, known for suppressing the differentiation and activity of bone-building osteoblasts by acting as an inhibitor of Wnt-signalling. Soluble DKK1 (sDKK1) has been proposed as prognostic biomarker for a wide range of malignancies, however, clinical relevance of sDKK1 as potential blood-based marker for ovarian cancer is unknown. METHODS: sDKK1 levels were quantified in a cohort of 150 clinically documented ovarian cancer patients by a commercially available DKK1 ELISA (Biomedica, Vienna, Austria). RESULTS: Median sDKK1 level was significantly elevated at primary diagnosis of ovarian cancer compared to healthy controls (estimated difference (ED) of 7.75 ng/mL (95% CI: 3.01-12.30 ng/mL, p=0.001)). Higher levels of sDKK1 at diagnosis indicated an increased volume of intraoperative malignant ascites (ED 7.08 pmol/L, 95% CI: 1.46-13.05, p=0.02) and predicted suboptimal debulking surgery (ED 6.88 pmol/L, 95% CI: 1.73-11.87, p=0.01). sDKK1 did not correlate with CA125 and higher sDKK1 levels predicted a higher risk of recurrence and poor survival (PFS: HR=0.507, 95% CI: 0.317-0.809; p=0.004; OS: HR=0.561, 95% CI: 0.320-0.986; p=0.044). Prognostic relevance of sDKK1 was partly sustained in wtBRCA patients (PFS: HR=0.507, 95% CI: 0.317-0.809; p=0.004). CONCLUSIONS: This is the first study demonstrating the prognostic relevance of sDKK1 in ovarian cancer patients, including those with wtBRCA1/2 status. Our data encourage further evaluation of sDKK1 in ovarian cancer patients, possibly in terms of a therapy monitoring marker or a response predictor for sDKK1-directed targeted therapies.
Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Ascite , Biomarcadores Tumorais , Antígeno Ca-125 , Carcinoma Epitelial do Ovário , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Ovarianas/metabolismo , PrognósticoRESUMO
OBJECTIVE AND BACKGROUND: Both periodontitis and osteoporosis are associated with osteoclast-related bone resorption. Bone metabolism is regulated by wingless-type MMTV integration site family (WNT), and WNT/ß-catenin signals are controlled by physiological antagonists including dickkopf-1 (DKK-1) and sclerostin (SOST). This study examined the effects of periodontal and bisphosphonate (BP) treatment on the gingival crevicular fluid (GCF) sclerostin (SOST) and dickkopf-related protein-1 (DKK-1) levels in osteoporotic and systemically healthy postmenopausal women with and without periodontitis. MATERIALS AND METHODS: A total of 48 postmenopausal women were divided into 4 groups (n = 12) according to periodontal health and osteoporosis status, as follows: Group OP/P: subjects with both osteoporosis and periodontitis; Group P: systemically healthy subjects with periodontitis; Group OP: periodontally healthy subjects with osteoporosis; Group H: systemically and periodontally healthy controls. Clinical data and GCF SOST and DKK-1 levels of the participants were collected at baseline and at 6 and 12 months following the initiation of periodontal and/or BP treatment in the experimental groups. GCF SOST and DKK-1 data were obtained by ELISA. RESULTS: Clinical improvements were observed in all experimental groups. GCF SOST and DKK1 baseline levels varied significantly between groups due to periodontal disease (p < .001). Following treatment, significant increases in SOST and DKK-1 concentrations and significant decreases in total amounts of SOST were observed in both periodontitis groups (OP/P, P). However, while total amounts of DKK-1 decreased in Group OP/P, in Group P, these amounts had significantly increased at 12 months post-treatment (p < .05). At both 6 and 12 months post-treatment, SOST and DDK1 total amounts in Groups OP/P, OP, and H were similar (p > .05), whereas significant differences were observed between Groups H and P, indicating a deviation from periodontal health in Group P (p < .01). CONCLUSIONS: Significant changes in GCF SOST and DKK-1 levels were observed among women with osteoporosis who received both periodontal and BP treatment. A more detailed examination of how these treatment protocols can be combined may lead to new therapeutic approaches towards periodontal disease.
Assuntos
Osteoporose Pós-Menopausa , Periodontite , Difosfonatos/metabolismo , Difosfonatos/uso terapêutico , Feminino , Gengiva , Líquido do Sulco Gengival/metabolismo , Humanos , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/metabolismo , Periodontite/metabolismoRESUMO
Cancer stemness evinces interest owing to the resulting malignancy and poor prognosis. We previously demonstrated that hepatic stem cell-like hepatocellular carcinoma (HpSC-HCC) is associated with high vascular invasion and poor prognosis. Dickkopf-1 (DKK-1), a Wnt signaling regulator, is highly expressed in HpSC-HCC. Here, we assessed the diagnostic and prognostic potential of serum DKK-1. Its levels were significantly higher in 391 patients with HCC compared with 205 patients with chronic liver disease. Receiver operating characteristic curve analysis revealed the optimal cutoff value of DKK-1 to diagnose HCC and predict the 3-year survival as 262.2 and 365.9 pg/mL, respectively. HCC patients with high-serum DKK-1 levels showed poor prognosis. We evaluated the effects of anti-DKK-1 antibody treatment on tumor growth in vivo and of recombinant DKK-1 on cell proliferation, invasion, and angiogenesis in vitro. DKK-1 knockdown decreased cancer cell proliferation, migration, and invasion. DKK-1 supplementation promoted angiogenesis in vitro; this effect was abolished by an anti-DKK-1 antibody. Co-injection of the anti-DKK-1 antibody with Huh7 cells inhibited their growth in NOD/SCID mice. Thus, DKK-1 promotes proliferation, migration, and invasion of HCC cells and activates angiogenesis in vascular endothelial cells. DKK-1 is a prognostic biomarker for HCC and a functional molecule for targeted therapy.