Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sensors (Basel) ; 24(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065828

RESUMO

This study aimed to investigate the interrelationships between key harmful emission components, nitrogen oxides (NOx), and particulate numbers (PNs) in diesel engine exhaust and the control actuators of diesel engines. This research involved conducting a series of experiments under fixed parameters within an engine brake laboratory environment to elucidate these correlations. The objectives of this study were to conduct a comprehensive review of the relevant emissions technology literature and a comparative assessment of particle measurement methods based on dilution ratios and develop innovative aerosol preparation principles tailored to condensation particle measurement. Additionally, this research involved designing and implementing an aerosol preparation unit based on the newly developed principles, along with the creation of test cell control programs using the AVL PUMA Open TST editor interface and Visual Basic. Furthermore, this study was concerned with conducting evaluations of fixed-parameter engine dynamometer tests to explore the functional relationships between the emission of 10/23 nm particles, NOx emissions, common rail pressure variations, and exhaust gas recirculation levels. This study aimed to enhance the understanding of diesel engine emissions dynamics and contribute valuable insights for developing more efficient and environmentally friendly engine control strategies.

2.
J Environ Sci (China) ; 123: 15-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521980

RESUMO

Diesel vehicles have caused serious environmental problems in China. Hence, the Chinese government has launched serious actions against air pollution and imposed more stringent regulations on diesel vehicle emissions in the latest China VI standard. To fulfill this stringent legislation, two major technical routes, including the exhaust gas recirculation (EGR) and high-efficiency selective catalytic reduction (SCR) routes, have been developed for diesel engines. Moreover, complicated aftertreatment technologies have also been developed, including use of a diesel oxidation catalyst (DOC) for controlling carbon monoxide (CO) and hydrocarbon (HC) emissions, diesel particulate filter (DPF) for particle mass (PM) emission control, SCR for the control of NOx emission, and an ammonia slip catalyst (ASC) for the control of unreacted NH3. Due to the stringent requirements of the China VI standard, the aftertreatment system needs to be more deeply integrated with the engine system. In the future, aftertreatment technologies will need further upgrades to fulfill the requirements of the near-zero emission target for diesel vehicles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Emissões de Veículos/prevenção & controle , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Catálise , China , Gasolina , Material Particulado/análise , Veículos Automotores
3.
Environ Sci Technol ; 56(11): 6968-6977, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34704747

RESUMO

Buses constitute a significant source of air pollutant emissions in cities. In this study, we present real-world NOx emissions from 97 diesel-hybrid buses measured using on-board diagnostic systems over 44 months and 6.35 million km in London. Each bus had previously been retrofitted with a selective catalytic reduction (SCR) aftertreatment system to reduce emissions of nitrogen oxides (NOx). On average, parallel hybrid (PH) and series hybrid (SH) buses emitted 3.80 g of NOx/km [standard deviation (SD) of 1.02] and 2.37 g of NOx/km (SD of 0.51), respectively. The SCR systems reduced engine-out emissions by 79.8% (SD of 5.0) and 87.2% (SD of 2.9) for the PHs and SHs, respectively. Lower ambient temperatures (0-10 °C) increased NOx emissions of the PHs by 24.2% but decreased NOx emissions of the SHs by 27.9% compared to values found at more moderate temperatures (10-20 °C). To improve emissions inventories, we provide new distance-based NOx emissions factors for different ranges of ambient temperature. During the COVID-19 pandemic, the emissions benefits of reduced congestion were largely offset by more frequent route layovers leading to lower SCR temperatures and effectiveness. This study shows that continuous in-service measurements enable quantification of real-world vehicle emissions over a wide range of operations that complements conventional testing approaches.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Gasolina , Humanos , Londres , Veículos Automotores , Pandemias , Emissões de Veículos/análise
4.
Environ Sci Technol ; 55(15): 10569-10577, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34264064

RESUMO

Despite substantial evidence of marked exposure to and ill-health effects from diesel exhaust (DE) emissions among occupational population (e.g., miners, truck drivers, and taxi drivers), it is less understood to what extent non-occupational population was exposed to DE among various combustion sources, largely due to the lack of biomarkers that would indicate specific exposure to DE. We evaluated whether urinary amino-polycyclic aromatic hydrocarbons (APAHs), such as major metabolites of DE-specific nitrated PAHs, can be used as DE exposure biomarkers in residential settings. We measured five urinary APAHs in 177 urine samples from 98 UK residents, 89 (91%) of them were London residents, and estimated their residential proximity to various traffic indicators (e.g., the road type, road length, traffic flow, and traffic volume). Participants living within 100 m of major roads exhibited increased levels of all five APAHs, among which 2-amino-fluorene (2-AFLU) reached statistical significance (p < 0.05). We estimated that a 10 m increase in the length of nearby major roads (<100 m) was associated with a 4.4% (95% CI of 1.1 to 7.6%) increase in 2-AFLU levels. Levels of 2-AFLU were significantly associated with the traffic flow of nearby buses and heavy-duty vehicles but not motorbikes, taxis, or coaches. We did not observe a significant association between distance to major roads or the sum of the major road length within 100 m with the other four biomarker concentrations. These results suggest the use of urinary 2-AFLU as a biomarker of DE exposure in urban residents.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Biomarcadores , Monitoramento Ambiental , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , População Urbana , Emissões de Veículos/análise
5.
Environ Sci Technol ; 55(20): 13657-13665, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34591445

RESUMO

This work evaluated the nitrogen oxide (NOx) emissions of 277 heavy-duty diesel vehicles (HDDVs) from three portable emission measurement system testing programs. HDDVs in these programs were properly maintained before emission testing, so the malfunction indicator lamp (MIL) was not illuminated. NOx emissions of some HDDVs were significantly higher than the certification standard even during hot operations where exhaust temperature was ideal for selective catalytic reduction to reduce NOx. For engines certified to the 0.20 g/bhp-hr NOx standard, hot operation NOx emissions increased with engine age at 0.081 ± 0.016 g/bhp-hr per year. The correlation between emissions and mileage was weak because six trucks showed extraordinarily high apparent emission increase rates reaching several multiples of the standard within the first 15,000 miles of operation. The overall annual increase in NOx emissions for the HDDVs in this study was two-thirds of what was observed in real-world emissions for HDDVs at the Caldecott Tunnel over the past decade. The vehicles at the Caldecott Tunnel would include those without proper maintenance, and the inclusion of these vehicles possibly explains the difference in the rate of emission increase. The results suggest that HDDVs need robust strategies to better control in-use NOx emissions.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Catálise , Gasolina/análise , Veículos Automotores , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise
6.
J Environ Sci (China) ; 46: 28-37, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27521933

RESUMO

A total of 15 light-duty diesel vehicles (LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons (HC) and nitrogen oxides (NOx) at different speeds, chemical species profiles and ozone formation potential (OFP) of volatile organic compounds (VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOx had been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOx emissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%-45.2%, followed by aromatics and alkenes. The most abundant species were propene, ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity (MIR) method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%-91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and 1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Alcanos/análise , Alcenos/análise , Derivados de Benzeno/análise , China , Cidades , Hidrocarbonetos/análise , Óxidos de Nitrogênio/análise , Tolueno/análogos & derivados , Tolueno/análise , Compostos Orgânicos Voláteis/análise
7.
Sci Total Environ ; 917: 170378, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280581

RESUMO

Reducing the differences between real-world and certificated NOx emission levels is an important element of in-use emission surveillance programs. Therefore, investigating the characteristics of the vehicles which have much higher NOx emissions (i.e., high-emitters) and determining a reasonable cut-off point to identify high-emitters with a low false detection rate is important. In this study, six diesel trucks were tested under different aftertreatment conditions. The results showed that the discrepancies of fuel-specific NOx emissions between vehicles with functioning and tampered selective catalytic reduction (SCR) systems occur mainly from medium- to high-speed modes. This is because the SCR systems were at low conversion efficiencies when the exhaust temperature was low, including cold-start and urban creep conditions. By using binary classification, we selected fuel-specific NOx cut-off points for high-emitters from China V and China VI diesel trucks. The false detection rate of high-emitters can decrease by 33 % and 95 %, if only NOx emissions from medium- to high-speed modes were used for the chosen cut-off points, respectively. This work highlights the importance of in-use emission compliance programs. It also suggests that high-emitters can be more accurately identified at medium- to high-speed modes if using instantaneous emission data.

8.
J Hazard Mater ; 465: 133073, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039816

RESUMO

Some in-use China IV and China V heavy-duty diesel vehicles (HDDVs) with selective catalytic reduction (SCR) systems probably fail to mitigate nitrogen oxide (NOX) emissions as expected. Meanwhile, these SCR-equipped HDDVs might emit excessive ammonia (NH3). To better understand the NOX and NH3 emissions from typical HDDVs in China, seventeen in-use vehicles with various emission-control technologies were tested by using laboratory chassis dynamometers. The results indicated that individual NOX and NH3 emissions from HDDV fleets widely varied owing to differences in aftertreatment performance. China V and VI HDDVs with effectively functioning SCRs could substantially control their NOX emissions to be below the corresponding emission limits (i.e., 4.0 and 0.69 g/kWh for China V and China VI vehicles, respectively) but with a potential risk of high NH3 emissions caused by diesel exhaust fluid (DEF) overdosing. Furthermore, higher vehicle speed and payload resulted in lower NOX emissions and possibly higher NH3 emissions from HDDVs with effectively functioning SCRs, while higher NOX emissions from tampered- and non-SCR HDDVs. NOX emissions from China VI HDDVs were more sensitive to cold starts compared to China V and earlier vehicles, but there was no significant discrepancy in NH3 emissions between cold- and hot-start tests.

9.
J Hazard Mater ; 479: 135716, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236543

RESUMO

Condensable particulate matter (CPM) and filterable particulate matter (FPM) emitted from industrial sources have been well studied, but their emissions from vehicles have not yet been covered. This study explores the emission characteristics of CPM and FPM from typical diesel vehicles under various driving conditions. The emission factors (EFs) of CPMs under driving conditions were 5.4-10.4 times higher than those of FPMs, while CPMs EFs under transient driving conditions were about 2.5 times higher than those under steady driving conditions. CPM and FPM are mainly composed of organic matter accounting for 53.3 %-92.9 %, while the intermediate and semi-volatile organic compounds dominate the organic matter accounting for 86.3 %-98.6 %. Similar to industrial sources, alkanes are the predominant organic species emitted by diesel vehicles, comprising 42.0 %-64.0 % of the detected organic components. Inorganic CPM is primarily composed of NH4+ , representing 84.9 %-87.6 % of the total, in contrast to industrial sources where SO42- and Cl- dominate. Interestingly, the air pollution control devices installed on diesel vehicles under steady driving conditions perform better in removing organic CPM and producing higher inorganic CPM emissions than those under transient driving conditions. These findings will enhance the comprehensive understanding of particulate matter emitted from diesel vehicles and provide a scientific foundation for the development of related control technologies.

10.
Sci Total Environ ; 954: 176598, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349205

RESUMO

The issue of air pollution from transportation sources remains a major concern, particularly the emissions from heavy-duty diesel vehicles, which pose serious threats to ecosystems and human health. China VI emission standards mandate On-Board Diagnostics (OBD) systems in heavy-duty diesel vehicles for real-time data transmission, yet the current data quality, especially concerning crucial parameters like NOx output, remains inadequate for effective regulation. To address this, a novel approach integrating Multimodal Feature Fusion with Particle Swarm Optimization (OBD-PSOMFF) is proposed. This network employs Long Short-Term Memory (LSTM) networks to extract features from OBD indicators, capturing temporal dependencies. PSO optimizes feature weights, enhancing prediction accuracy. Testing on 23 heavy-duty vehicles demonstrates significant improvements in predicting NOx and CO2 mass emission rates, with mean squared errors reduced by 65.205 % and 70.936 % respectively compared to basic LSTM models. This innovative multimodal fusion method offers a robust framework for emission prediction, crucial for effective vehicle emission regulation and environmental preservation.

11.
Environ Sci Pollut Res Int ; 30(60): 126072-126087, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010542

RESUMO

With the continuous promotion of urbanization in China, the economic level of small and medium-sized cities has been further improved. The transportation industry is crucial in promoting urban-rural integration and construction. Still, motor vehicle emissions also bring air pollution problems to cities, with heavy-duty diesel vehicle emissions severely impacting the urban environment. This study used a bottom-up approach to analyze the spatial emission characteristics of heavy-duty diesel vehicles under different road types in Kunming, a typical medium-sized city in China. A high-resolution emission inventory (1 km × 1 km) of heavy-duty diesel vehicles was developed using the vehicle emission inventory model (VEIN) and ArcGIS, and the vehicle emission standards were determined by the Weibull survival rate curve. The VEIN emission model was optimized using a velocity correction curve. The results showed that heavy-duty vehicles had a more significant impact on the emissions during the morning and evening peak hours, with low emission levels during the day and high emission levels at night and early morning. The total daily emissions of carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and particulate matter (PM10 and PM2.5) from heavy-duty diesel vehicles in Motorway, Trunk, Primary, Secondary, and Tertiary were 14.44 tons, 5.26 tons, 4.78 tons, 7.02 tons, and 3.83 tons, respectively. China III heavy-duty diesel vehicles mainly contributed to CO, HC, NOx, and PM emissions. This study can be used as an essential reference for controlling the exhaust emissions of HDDVs in Kunming.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental/métodos , Material Particulado/análise , Veículos Automotores , Óxidos de Nitrogênio/análise , Hidrocarbonetos
12.
Sci Total Environ ; 812: 152539, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952078

RESUMO

A comprehensive emission inventory of the transport sector through fuel-based emission factors (EFs) was developed for the first time in Nepal. This study estimates air pollutants emission from diesel vehicles between the years 1989 and 2018 based on national statistical data, average vehicle kilometers travelled, fuel mileage, and measurement-based EFs for each vehicle category during idle and moving conditions. The consumption of diesel by vehicle category was also estimated and total consumption was compared with national sales data. The Monte Carlo was used to estimate uncertainties. Nationally, total diesel consumption was estimated as 892,770 kL (85-115%) in 2017/18, 13.4 times higher than 1989/90. Ratnoze1 and Microaeth were used to conduct the tail pipe emission measurements. The fuel-based EFs of CO2, CO, BC, and PM2.5 were calculated through the carbon mass balance method. Of all diesel vehicles measured (n = 29) during idling, the average EFs were estimated as CO2 2600 (99-101%), CO 33.3 (44-156%), BC 0.6 (25-101%), and PM2.5 5.2 (0-235%) in unit of g L-1. For moving conditions (n = 5), the average EFs were estimated to be CO2 2476 (90-110%), CO 97.3 (0-232%), BC 1.7 (46-110%), and PM2.5 20.7 (0-255%), all in g L-1. Multiplying fuel consumption by EFs, national air pollutant emissions were estimated as 2214 (90-110%) to 2781(85-115%) for CO2, 27.7 (42-158%) to 88.8 (0-232%) for CO, 0.51 (23-177%) to 3.55 (46-110%) for BC and 3.42 (0-236%) to 23.47 (0-255%) for PM2.5 in 2017/18 in unit of Gg. This paper recommends revising national vehicle mass emission standards based on the findings of this study and including and enhancing sustainable low-carbon transport through amendment of transport policy.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Carbono , Gasolina/análise , Veículos Automotores , Nepal , Emissões de Veículos/análise
13.
J Hazard Mater ; 424(Pt B): 127372, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655875

RESUMO

The plume-chasing method has shown great advantages in measuring on-road emission factors (EFs) compared with regulatory methods like dynamometer and portable emission measurement systems (PEMS). In this study, a new on-board measurement system incorporating ultrasonic anemometers and solid-state Lidar was developed to investigate the uncertainties of on-road emission factors measured by plume-chasing method due to variables such as on-road wind velocity, chasing speed, chasing distance, and turbulent kinetic energy (TKE). A series of PEMS-chasing experiments for heavy-duty diesel vehicles (HDDVs) were conducted on both highways and local roadways in Beijing, China. Our analysis demonstrated that the differences in EF estimations between concurrent plume-chasing and PEMS measurement decreased with increasing chasing speed as a result of greater vehicle-induced TKE in the wake between HDDV and the mobile platform, whereas the effect of chasing distance on EF estimations appeared insignificant within the tested distance range (12-22 m). In the case of strong crosswinds, overprediction of chasing-based EFs was observed due to convective plume mixing from surrounding vehicular sources. The findings of this study contribute greatly to interpret emission factors measured by the plume-chasing method, and also calls for a future study to develop real-time EF correction algorithms for large-scale mobile chasing measurements.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Veículos Automotores , Incerteza , Emissões de Veículos/análise
14.
Sci Total Environ ; 822: 153583, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35114249

RESUMO

This manuscript contains an assessment of tailpipe emissions and secondary aerosol formation from two in-use heavy-duty diesel vehicles (HDDVs) with different aftertreatment systems when operated with ultra-low sulfur diesel (ULSD) and hydrogenated vegetable oil (HVO) operated on a chassis dynamometer. Secondary aerosol formation was characterized from the HDDVs' diluted exhaust collected and photochemically aged in a 30 m3 mobile atmospheric chamber. Primary nitrogen oxide (NOx) and particulate matter (PM) emissions were reduced for both vehicles operating on HVO compared to ULSD. For the vehicles with no selective catalytic reduction (SCR) system, secondary aerosol production was ~2 times higher for ULSD compared to HVO. The composition of primary aerosol was exclusively organic for the vehicle with no SCR system regardless of fuel type. The composition of secondary aerosol with HVO was primarily organic for the vehicle equipped with diesel particulate filter (DPF)/SCR system; however, when the same vehicle was tested with ULSD, the composition was ~20% organic (80% ammonium nitrate). The results reported here revealed that the in-use vehicle with no-SCR had a non-functioning DPF leading to dramatic increases in secondary aerosol formation when compared to the DPF/SCR vehicle. The high-resolution mass spectra analysis showed that the POA of HVO combustion contained relatively lower portion of CH class compounds (or higher CHO class compounds) compared to ULSD under the similar conditions, which can be rationalized by the higher cetane number of HVO. Substantial growth of oxidized organic aerosol (such as m/z 44 peak) were observed after 5 h of photochemical oxidation, consistent with aged organic aerosols present in the atmosphere. The C4H9+ fragment at m/z 57 peak was used as a tracer to calculate evolution of secondary organic aerosol formation.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Gasolina/análise , Veículos Automotores , Material Particulado/análise , Óleos de Plantas/análise , Emissões de Veículos/análise
15.
J Hazard Mater ; 434: 128855, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429757

RESUMO

The lifetime and efficiency of diesel particulate filters (DPFs) strongly depend on the proper and periodic cleaning and servicing. Unfortunately, in some cases, inappropriate methods are applied to clean the DPFs, e.g., using air compressors without proper disposal procedures which can have negative impacts on human health, the environment, and DPF's efficiency. However, there is no information available about the properties of this kind of PM. This research is therefore presented to explore the physicochemical and toxicity properties of aged PM trapped in a DPF (using compressed air for PM sampling) employing STEM, SEM, EDS, Organic Carbon Analyzer, TGA/DSC, and Raman Spectrometer for investigating the physicochemical properties, and assays of cell viability, cellular reactive oxygen species (ROS), interleukin-6, and tumor necrosis factor-alpha (TNF-α) for investigating the toxicity properties. Also, analyses from fresh PM samples from the diesel vehicle at two engine speeds are presented. It is found that at a certain/fixed PM number/mass for all three samples tested, the PM from DPF compared with the fresh PM can have both positive (particularly having the lowest water-soluble total carbon ratio) and negative impacts on human health (particularly having the highest cell death rate of 13.4%, ROS, and TNF-α) and the environment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carbono/análise , Poeira/análise , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/análise , Fator de Necrose Tumoral alfa , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
16.
Heliyon ; 7(7): e07527, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34337177

RESUMO

Despite the improvement in technologies for the production of alternative fuels (AFs), and the needs for using more AFs for motor vehicles for the reductions in air pollution and greenhouse gases, the number of alternative fuel vehicles (AFVs) in the global transportation sector has not been increasing significantly (there are even small drops for adapting some AFs through the projections) in recent years and even in the near future with projections to 2050. And gasoline and diesel fuels will remain as the main energy sources for motor vehicles. After reviewing the latest advantages and disadvantages of AFVs, including flexible-fuel, gas, electric, hybrid electric, and fuel cell electric vehicles, it is found that the higher price of AFVs, compared to that of gasoline and diesel vehicles, might be one of the main barriers for their wider adoption. But on the other hand, there is the "chicken and egg" problem. Because people mostly do not select AFVs due to their higher price and sometimes their less infrastructure availability compared to those of gasoline and diesel vehicles, however, governments and AFVs manufacturers claim that the insignificant demand volume and less interest by people to purchase them, is one of the main reasons for a higher price and less infrastructure availability of AFVs. So, what should we do for adopting AFVs? This review shows that there are two very important and fundamental points that might cause a rise in the demand and usage of AFVs, rather than waiting for the reduction in AFVs prices. Those points are car salespeople's and people's knowledge about AFVs and the environmental issues, and their encouragement to accept and use AFVs. Although the AFVs are available on the market for many years, many people around the world have no/less/old/wrong knowledge about the current AFVs. Thus, most of these people reject these vehicles for usage, even when their important parameters such as purchase price, operating cost, driving range, and fuel availability be the same (or close) as those of gasoline or diesel vehicles. Detailed information, examples, and recommendations to the increases in people's knowledge and encouragement are presented in this review.

17.
Environ Pollut ; 266(Pt 2): 115347, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32814177

RESUMO

The main purpose of current study is accurate prediction of NOx emissions from diesel engines considering in-cylinder ion current. To reach this goal, a validated thermodynamic multi-zone model was used. A modified chemical kinetics mechanism of diesel fuel oxidation was used too. A chemical kinetics mechanism of NOX formation including 103 reactions was added to the main mechanism. A set of ions and ionic reactions was added to the developed chemical kinetics mechanism and finally a modified chemical kinetics mechanism with 445 reactions and 100 species was formed. The developed mechanism was coupled to the multi-zone model and a diesel engine was simulated. The importance of Zeldovich mechanism, prompt mechanism, N2O mechanism and NNH mechanism were investigated. The progress rates of reactions were calculated and important reactions were identified. The results show that the oxygenated ions, NO+, O+ and O2+, has more effects on NO production than other ions. The prompt mechanism plays an important role in predicting the ion current inside the chamber. Because this mechanism has reactions that can lead to CH production. The CH radicals produced by this mechanism can be employed by basic ionic reactions and lead to ion production. The results show that using NOx related ionic reactions results in accurate prediction of engine exhaust NOx.


Assuntos
Óxidos de Nitrogênio/análise , Emissões de Veículos , Gasolina
18.
Artigo em Inglês | MEDLINE | ID: mdl-33322083

RESUMO

Since the life cycle of a building spans more than 50 years, studies of the environmental impacts in the construction industry have focused on reducing the energy consumption and greenhouse gas emissions during the operation and maintenance phase. The products of the construction industry are assembled using various building materials manufactured outside of the construction site. Consequently, it is essential that the manufactured building materials be transported to the construction site using various types of transportation methods. However, there is a lack of studies that assess the pollutant emissions of road transport while executing a construction project. The purpose of this study is to investigate the changes in the road pollutant emissions when the old diesel vehicles for transporting building materials are replaced according to enhanced pollutant emission regulations. In this study, we found that approximately 89, 64, 77, and 64% of NOx, VOC, PM, and CO, respectively, were emitted during transportation of building materials as a proportion of the emissions during the construction of the structure. The analyzed results also show that about 10, 35, 23, and 35% of NOx, VOC, PM, and CO, respectively, were generated from material transportation as a proportion of the emissions from finishing the work. It is expected that a reduction in pollutant emissions from transporting building materials of up to approximately 64, 39, 49, and 27% of NOx, VOC, PM, and CO, respectively, can be achieved when vehicles registered before 2003 are replaced with ones that adhere to the tightened regulations.


Assuntos
Poluentes Atmosféricos/análise , Materiais de Construção/efeitos adversos , Poluentes Ambientais , Emissões de Veículos/análise , Meio Ambiente , Monitoramento Ambiental , Humanos , Veículos Automotores
19.
Sci Total Environ ; 660: 188-198, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30640087

RESUMO

Road traffic is one of the main sources of particulate matter in the atmospheric environment. Notwithstanding its significance, there are noteworthy challenges in quantitative assessment of its contribution to the concentrations of airborne. This study reports on the characterization and quantification of PM2.5 emissions and PAHs concentration in PM2.5 from the exhausts of on-road diesel vehicles with various accumulated mileages in Kaohsiung City, Taiwan. Urban areas could be a subject matter not just in connection to deprived air quality, but similarly to pollution of other significant environmental media by air contaminants. To that end, our study intends to estimate the PM2.5 emissions from diesel vehicles using diesel fuels and to analyze the PM2.5 emissions and PAHs concentration in PM2.5. In this study, particulate matters (PM2.5) were characterized and quantified from a place impacted by diesel vehicles fueled with diesel in Kaohsiung City, Taiwan. The tested diesel vehicles with various accumulated mileages overs the model year comprising of the vehicles registered from 1984 to 2012 from different manufacturers (or brands) ranging from 8733 to 965,026 km (average 445,433 km) accumulative mileages. Exhaust constituents include CO, NOx, PM2.5 and particle phase PAHs. The concentrations of twenty-one (21) priority polycyclic aromatic hydrocarbons (PAHs) were studied in the samples by their relationship with atmospheric PM2.5. However, in relations to cumulative mileages, lower cumulative mileage (mileage <20,000 km) has the lowest CO and NOx emission factors. The mileage ranged from 20,001 to 30,000 km had an increased CO and NOx emission factors, respectively. Interestingly, with the increased high number of mileages ranged from 30,001 to 50,000 km, CO and NOx emission factor was observed to be declining, respectively. This could be attributed to the technological changes on new diesel vehicle models. But nonetheless, the trend of CO emission factor was found to be higher with an increasing of cumulative mileages as compared to the mileage that reached lower than 30,000 km.

20.
Huan Jing Ke Xue ; 40(10): 4330-4336, 2019 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854799

RESUMO

Diesel vehicles were the primary source of atmospheric particulate matter (PM) emitted by motor vehicles. To study the emission factors and carbon components of PM2.5 and PM10 from diesel vehicles in Shenyang, exhaust PM samples were collected from 15 diesel vehicles including small, medium, and large passenger vehicles, and light, medium, and heavy-duty trucks under China Ⅲ and China Ⅳ emission standards. This was undertaken using a dilution channel sampling system, and the carbon components were also analyzed. The results showed that the average distance-based PM2.5 and PM10 emission factors for diesel vehicles under China Ⅲ were (0.193±0.092) g·km-1 and (0.338±0.305) g·km-1, respectively, and for China Ⅳ were (0.085±0.038) g·km-1 and (0.100±0.042) g·km-1, respectively. This shows that the PM emission factors decreased significantly with the improvement of emission standards. Under the same emission standards, emission factors increased with the increase of vehicle passenger volume or cargo capacity. TC (total carbon) was the main component of the emissions from diesel vehicles. The mass fraction of TC under China Ⅳ (23%-48%) was significantly lower than under China Ⅲ (29%-70%). The mass fraction of elemental carbon (EC) for all types of diesel vehicles was greater than organic carbon (OC). The OC/EC value was 0.70±0.29, and the OC/EC value for diesel vehicles under China Ⅳ was lower than under China Ⅲ. The total mileage of passenger vehicles was significantly higher than that of trucks, resulting in higher fuel consumption. The mass fraction of OC and EC in passenger vehicles was higher than for trucks under the same emission standards. EC2 (elemental carbon which was measured at temperatures of 700℃) was the highest carbon content of diesel vehicles under China Ⅲ and China Ⅳ emission standards, which can be used in the identification of diesel vehicles in source apportionment studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa