Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(7): 1543-1560.e6, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34004141

RESUMO

Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.


Assuntos
Sistema y+ de Transporte de Aminoácidos/imunologia , Proliferação de Células/fisiologia , Linfócitos T Reguladores/imunologia , Adulto , Autoimunidade/imunologia , Células Cultivadas , Feminino , Homeostase/imunologia , Humanos , Tolerância Imunológica/imunologia , Masculino , Esclerose Múltipla Recidivante-Remitente/imunologia , Fator 2 Relacionado a NF-E2/imunologia
2.
Semin Immunol ; 70: 101845, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806032

RESUMO

The gasdermin family of proteins are central effectors of the inflammatory, lytic cell death modality known as pyroptosis. Characterized in 2015, the most well-studied member gasdermin D can be proteolyzed, typically by caspases, to generate an active pore-forming N-terminal domain. At least well-studied three pharmacological inhibitors (necrosulfonamide, disulfiram, dimethyl fumarate) since 2018 have been shown to affect gasdermin D activity either through modulation of processing or interference with pore formation. A multitude of murine in vivo studies have since followed. Here, we discuss the current state of research surrounding these three inhibitors, caveats to their use, and a set of guiding principles that researchers should consider when pursuing further studies of gasdermin D inhibition.


Assuntos
Gasderminas , Animais , Humanos , Camundongos , Caspases/metabolismo , Gasderminas/química , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Piroptose
3.
Proc Natl Acad Sci U S A ; 121(8): e2315653121, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346199

RESUMO

Monkeypox virus (MPXV) infections in humans cause neurological disorders while studies of MPXV-infected animals indicate that the virus penetrates the brain. Pyroptosis is an inflammatory type of regulated cell death, resulting from plasma membrane rupture (PMR) due to oligomerization of cleaved gasdermins to cause membrane pore formation. Herein, we investigated the human neural cell tropism of MPXV compared to another orthopoxvirus, vaccinia virus (VACV), as well as its effects on immune responses and cell death. Astrocytes were most permissive to MPXV (and VACV) infections, followed by microglia and oligodendrocytes, with minimal infection of neurons based on plaque assays. Aberrant morphological changes were evident in MPXV-infected astrocytes that were accompanied with viral protein (I3) immunolabelling and detection of over 125 MPXV-encoded proteins in cell lysates by mass spectrometry. MPXV- and VACV-infected astrocytes showed increased expression of immune gene transcripts (IL12, IRF3, IL1B, TNFA, CASP1, and GSDMB). However, MPXV infection of astrocytes specifically induced proteolytic cleavage of gasdermin B (GSDMB) (50 kDa), evident by the appearance of cleaved N-terminal-GSDMB (30 kDa) and C-terminal- GSDMB (18 kDa) fragments. GSDMB cleavage was associated with release of lactate dehydrogenase and increased cellular nucleic acid staining, indicative of PMR. Pre-treatment with dimethyl fumarate reduced cleavage of GSDMB and associated PMR in MPXV-infected astrocytes. Human astrocytes support productive MPXV infection, resulting in inflammatory gene induction with accompanying GSDMB-mediated pyroptosis. These findings clarify the recently recognized neuropathogenic effects of MPXV in humans while also offering potential therapeutic options.


Assuntos
Monkeypox virus , Mpox , Animais , Humanos , Monkeypox virus/fisiologia , Piroptose , Astrócitos , Gasderminas
4.
Exp Cell Res ; 436(2): 113978, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382805

RESUMO

Osteosarcoma (OS) is one of the most prevalent primary bone tumors with a high degree of metastasis and poor prognosis. Epithelial-to-mesenchymal transition (EMT) is a cellular mechanism that contributes to the invasion and metastasis of cancer cells, and OS cells have been reported to exhibit EMT-like characteristics. Our previous studies have shown that the interaction between tumor necrosis factor superfamily member 11 (TNFRSF11A; also known as RANK) and its ligand TNFSF11 (also known as RANKL) promotes the EMT process in breast cancer cells. However, whether the interaction between RANK and RANKL enhances aggressive behavior by inducing EMT in OS cells has not yet been elucidated. In this study, we showed that the interaction between RANK and RANKL increased the migration, invasion, and metastasis of OS cells by promoting EMT. Importantly, we clarified that the RANK/RANKL axis induces EMT by activating the nuclear factor-kappa B (NF-κB) pathway. Furthermore, the NF-κB inhibitor dimethyl fumarate (DMF) suppressed migration, invasion, and EMT in OS cells. Our results suggest that the RANK/RANKL axis may serve as a potential tumor marker and promising therapeutic target for OS metastasis. Furthermore, DMF may have clinical applications in the treatment of lung metastasis in patients with OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Linhagem Celular Tumoral , Invasividade Neoplásica , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética
5.
Proc Natl Acad Sci U S A ; 119(31): e2205042119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881799

RESUMO

Dimethyl fumarate (DMF) is an immunomodulatory treatment for multiple sclerosis (MS). Despite its wide clinical use, the mechanisms underlying clinical response are not understood. This study aimed to reveal immune markers of therapeutic response to DMF treatment in MS. For this purpose, we prospectively collected peripheral blood mononuclear cells (PBMCs) from a highly characterized cohort of 44 individuals with MS before and at 12 and 48 wk of DMF treatment. Single cells were profiled using high-dimensional mass cytometry. To capture the heterogeneity of different immune subsets, we adopted a bioinformatic multipanel approach that allowed cell population-cluster assignment of more than 50 different parameters, including lineage and activation markers as well as chemokine receptors and cytokines. Data were further analyzed in a semiunbiased fashion implementing a supervised representation learning approach to capture subtle longitudinal immune changes characteristic for therapy response. With this approach, we identified a population of memory T helper cells expressing high levels of neuroinflammatory cytokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], interferon γ [IFNγ]) as well as CXCR3, whose abundance correlated with treatment response. Using spectral flow cytometry, we confirmed these findings in a second cohort of patients. Serum neurofilament light-chain levels confirmed the correlation of this immune cell signature with axonal damage. The identified cell population is expanded in peripheral blood under natalizumab treatment, substantiating a specific role in treatment response. We propose that depletion of GM-CSF-, IFNγ-, and CXCR3-expressing T helper cells is the main mechanism of action of DMF and allows monitoring of treatment response.


Assuntos
Biomarcadores Farmacológicos , Citocinas , Fumarato de Dimetilo , Imunossupressores , Esclerose Múltipla , Linfócitos T Auxiliares-Indutores , Biomarcadores Farmacológicos/metabolismo , Citocinas/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Interferon gama/metabolismo , Depleção Linfocítica , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Análise de Célula Única , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia
6.
J Neuroinflammation ; 21(1): 112, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684986

RESUMO

BACKGROUND: Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking. METHODS: To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF. RESULTS: Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells. CONCLUSIONS: DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.


Assuntos
Anti-Inflamatórios não Esteroides , Doenças Autoimunes , Fumarato de Dimetilo , Imunossupressores , Retina , Uveíte , Fumarato de Dimetilo/administração & dosagem , Fumarato de Dimetilo/farmacologia , Uveíte/genética , Uveíte/imunologia , Uveíte/terapia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Análise da Expressão Gênica de Célula Única , Modelos Animais de Doenças , Animais , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transcrição Gênica , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Atlas como Assunto , Imunossupressores/administração & dosagem , Imunossupressores/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Retina/efeitos dos fármacos , Retina/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia
7.
J Neuroinflammation ; 21(1): 55, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383481

RESUMO

BACKGROUND: Neuroinflammation substantially contributes to the pathology of Alzheimer's disease (AD), the most common form of dementia. Studies have reported that nuclear factor erythroid 2-related factor 2 (Nrf2) attenuates neuroinflammation in the mouse models of neurodegenerative diseases, however, the detailed mechanism remains unclear. METHODS: The effects of dimethyl fumarate (DMF), a clinically used drug to activate the Nrf2 pathway, on neuroinflammation were analyzed in primary astrocytes and AppNL-G-F (App-KI) mice. The cognitive function and behavior of DMF-administrated App-KI mice were evaluated. For the gene expression analysis, microglia and astrocytes were directly isolated from the mouse cerebral cortex by magnetic-activated cell sorting, followed by quantitative PCR. RESULTS: DMF treatment activated some Nrf2 target genes and inhibited the expression of proinflammatory markers in primary astrocytes. Moreover, chronic oral administration of DMF attenuated neuroinflammation, particularly in astrocytes, and reversed cognitive dysfunction presumably by activating the Nrf2-dependent pathway in App-KI mice. Furthermore, DMF administration inhibited the expression of STAT3/C3 and C3 receptor in astrocytes and microglia isolated from App-KI mice, respectively, suggesting that the astrocyte-microglia crosstalk is involved in neuroinflammation in mice with AD. CONCLUSION: The activation of astrocytic Nrf2 signaling confers neuroprotection in mice with AD by controlling neuroinflammation, particularly by regulating astrocytic C3-STAT3 signaling. Furthermore, our study has implications for the repositioning of DMF as a drug for AD treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Camundongos Transgênicos , Doenças Neuroinflamatórias , Fator 2 Relacionado a NF-E2/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças
8.
Small ; 20(23): e2308749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161265

RESUMO

Monosodium urate (MSU) crystal deposition in joints can lead to the infiltration of neutrophils and macrophages, and their activation plays a critical role in the pathological progress of gout. However, the role of MSU crystal physicochemical properties in inducing cell death in neutrophil and macrophage is still unclear. In this study, MSU crystals of different sizes are synthesized to explore the role of pyroptosis in gout. It is demonstrated that MSU crystals induce size-dependent pyroptotic cell death in bone marrow-derived neutrophils (BMNs) and bone marrow-derived macrophages (BMDMs) by triggering NLRP3 inflammasome-dependent caspase-1 activation and subsequent formation of N-GSDMD. Furthermore, it is demonstrated that the size of MSU crystal also determines the formation of neutrophil extracellular traps (NETs) and aggregated neutrophil extracellular traps (aggNETs), which are promoted by the addition of interleukin-1ß (IL-1ß). Based on these mechanistic understandings, it is shown that N-GSDMD oligomerization inhibitor, dimethyl fumarate (DMF), inhibits MSU crystal-induced pyroptosis in BMNs and J774A.1 cells, and it further alleviates the acute inflammatory response in MSU crystals-induced gout mice model. This study elucidates that MSU crystal-induced pyroptosis in neutrophil and macrophage is critical for the pathological progress of gout, and provides a new therapeutic approach for the treatment of gout.


Assuntos
Gota , Macrófagos , Neutrófilos , Piroptose , Ácido Úrico , Gota/patologia , Gota/metabolismo , Animais , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Camundongos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo
9.
Exp Dermatol ; 33(9): e15171, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39219147

RESUMO

The diagnosis of Sézary syndrome (SS) relies on the identification of blood Sézary cells (SC) by different markers via flow cytometry. Treatment of SS is challenging since its pathogenesis is characterized by cell death resistance rather than hyperproliferation. In this study, we establish an integrated approach that considers both the expression of SC markers and sensitivity to cell death both spontaneously and upon in vitro treatment. Peripheral blood mononuclear cells were isolated from 20 SS patients and analysed for the SC markers CD7 and CD26 loss as well as CD158k and PD1 gain. The cells were then treated with different established and experimental therapies in vitro and cell death was measured. Spontaneous and therapeutically induced cell death were measured and correlated to cellular marker profiles. In the marker-positive cells, spontaneous cell death sensitivity was reduced. Different treatments in vitro managed to specifically induce cell death in the putative CTCL cell populations. Interestingly, a repeated analysis after 3 months of treatment revealed the CTCL cell death sensitivity to be restored by therapy. We propose this novel integrated approach comprising the evaluation of SC marker expression and analysis of cell death sensitivity upon treatment that can also enable a better therapy stratification.


Assuntos
Biomarcadores Tumorais , Morte Celular , Citometria de Fluxo , Síndrome de Sézary , Neoplasias Cutâneas , Síndrome de Sézary/metabolismo , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Dipeptidil Peptidase 4/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Leucócitos Mononucleares/metabolismo , Antígenos CD7/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
10.
Arch Biochem Biophys ; 759: 110103, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39053682

RESUMO

Aberration of the gastric mucosal barrier homeostasis circuit is one of the key features linked to the onset of gastric ulcers (GU). This work aimed to inspect the gastroprotective influence of dimethyl fumarate (DMF) on ethanol-induced GU in rats and to decipher the possible mechanisms entailed. Rats were pretreated with either DMF (80 mg/kg) or omeprazole (OMP) (20 mg/kg) by oral gavage for 2 weeks. After 24 h of starvation, ethanol (5 ml/kg, oral) was employed to trigger GU in rats, while carboxymethyl cellulose (CMC) was used as a control. Ethanol notably elevated both macroscopic and microscopic gastric damage. DMF and OMP exhibited similar effects on gastric ulcer healing. DMF intervention led to a substantial improvement in gastric insults. DMF significantly reduced ethanol-triggered gastric lesions, as manifested by decreased gastric secretion, acidity, ulcer surface area percent, reduced leukocyte incursion, and increased mucus percent. DMF upregulated miR-34a-5p expression concomitant with the suppression of high mobility group box1 (HMGB1) and inflammatory responses in gastric mucosal homogenate. DMF improved GU by restoring reduced antioxidant defense mechanisms through the coactivation of nuclear factor erythroid 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), and sirtuin1 (SIRT1), indicating the protective role of the PPARγ/SIRT1/Nrf2 pathway. Intriguingly, DMF mitigated apoptosis in ethanol-elicited GU. Taken together, this research implies the potential for the repurposing of DMF as an innovative gastroprotective medication to reestablish the balance of the gastric mucosal barrier via the attenuation of gastric inflammation, oxidative stress, and apoptosis.


Assuntos
Fumarato de Dimetilo , Etanol , Proteína HMGB1 , MicroRNAs , Fator 2 Relacionado a NF-E2 , PPAR gama , Sirtuína 1 , Úlcera Gástrica , Receptor 4 Toll-Like , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Etanol/toxicidade , Etanol/efeitos adversos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Ratos , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , PPAR gama/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos Wistar
11.
Exp Eye Res ; 248: 110096, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278392

RESUMO

PURPOSE: This study focused on the mechanisms of pyroptosis and oxidative damage exacerbation by NOD-like receptor thermal protein domain associated protein 3 (NLRP3) during the infection of canine corneal epithelial cells (CCECs) with Staphylococcus pseudintermedius. METHODS: The CCECs treated with dimethyl fumarate (DMF), recombinant high mobility group protein 1 (HMGB1), or N-acetylcysteine (NAC). The gasdermin (GSDM) family and HMGB1 mRNA expression levels were detected using quantitative reverse transcription polymerase chain reaction. Lactate dehydrogenase activity, bacterial counts, the pyroptosis rate, reactive oxygen species (ROS) content, and antioxidant enzyme activity were used to reflect pyroptosis and oxidation level. RESULTS: Regulation of NLRP3 significantly affected the pyroptosis rate and GSDMD-N expression levels during S. pseudintermedius infection. Inhibition of GSDMD-N protein activation by DMF reversed the exacerbation of pyroptosis induced by NLRP3 overexpression and reduced the levels of cleaved interleukin-1ß (IL-1ß), cleaved cysteinyl aspartate-specific protease-1, and NLRP3. In addition, NLRP3 was found to target the HMGB1 promoter and regulate its protein expression, to increase ROS accumulation and GSDMD-N expression levels, and activate the NLRP3-HMGB1-ROS-GSDMD signaling axis to aggravate pyroptosis during infection. CONCLUSIONS: NLRP3 aggravates pyroptosis and oxidative damage associated with the activation of NLRP3-GSDMD and NLRP3-HMGB1-ROS-GSDMD signaling pathways during the infection of CCECs with S. pseudintermedius.

12.
FASEB J ; 37(8): e23068, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37436778

RESUMO

In sporadic amyotrophic lateral sclerosis (sALS), IL-17A- and granzyme-positive cytotoxic T lymphocytes (CTL), IL-17A-positive mast cells, and inflammatory macrophages invade the brain and spinal cord. In some patients, the disease starts following a trauma or a severe infection. We examined cytokines and cytokine regulators over the disease course and found that, since the early stages, peripheral blood mononuclear cells (PBMC) exhibit increased expression of inflammatory cytokines IL-12A, IFN-γ, and TNF-α, as well as granzymes and the transcription factors STAT3 and STAT4. In later stages, PBMCs upregulated the autoimmunity-associated cytokines IL-23A and IL-17B, and the chemokines CXCL9 and CXCL10, which attract CTL and monocytes into the central nervous system. The inflammation is fueled by the downregulation of IL-10, TGFß, and the inhibitory T-cell co-receptors CTLA4, LAG3, and PD-1, and, in vitro, by stimulation with the ligand PD-L1. We investigated in two sALS patients the regulation of the macrophage transcriptome by dimethyl fumarate (DMF), a drug approved against multiple sclerosis and psoriasis, and the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway inhibitor H-151. Both DMF and H-151 downregulated the expression of granzymes and the pro-inflammatory cytokines IL-1ß, IL-6, IL-15, IL-23A, and IFN-γ, and induced a pro-resolution macrophage phenotype. The eicosanoid epoxyeicosatrienoic acids (EET) from arachidonic acid was anti-inflammatory in synergy with DMF. H-151 and DMF are thus candidate drugs targeting the inflammation and autoimmunity in sALS via modulation of the NFκB and cGAS/STING pathways.


Assuntos
Esclerose Lateral Amiotrófica , Citocinas , Humanos , Citocinas/metabolismo , Interleucina-17 , Fumarato de Dimetilo , Leucócitos Mononucleares/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Granzimas , Inflamação/tratamento farmacológico , Nucleotidiltransferases
13.
Mult Scler ; 30(11-12): 1503-1513, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39263885

RESUMO

BACKGROUND: Evidence on the impact of dimethyl fumarate (DMF) during pregnancy in women with multiple sclerosis (MS) is limited. OBJECTIVES: To investigate disease activity and pregnancy outcomes in a retrospective cohort of women exposed to DMF in early pregnancy. METHODS: Women discontinuing DMF after pregnancy confirmation were identified from 29 Italian MS Centers. Disease activity 12 months before conception, during pregnancy, and 12 months postpartum were recorded, exploring reactivation predictors. Pregnancy and fetal outcomes were assessed. RESULTS: The study analyzed 137 pregnancies (12 pregnancy losses, 125 live births) from 137 women (mean age 32.9 ± 4.7 years), discontinuing DMF within a median (interquartile range (IQR)) interval of 4.9 (3.7-5.7) weeks from conception. In live birth pregnancies, annualized relapse rate (ARR) significantly decreased during pregnancy (ARR = 0.07, 95% confidence interval (CI): 0.03-0.14, p = 0.021) compared to pre-conception (ARR = 0.21 (95% CI: 0.14-0.30)) and increased postpartum ((ARR = 0.22 (95% CI: 0.15-0.32), p = 0.006). Median time to first relapse (TTFR) was 3.16 (IQR: 1:87-5.42) months. Higher pre-conception relapse number (hazard ratio (HR) = 2.33, 95% CI: 1.08-5.02) and Expanded Disability Status Scale (EDSS; HR = 1.81, 95% CI: 1.17-2.74) were associated with shorter TTFR, while treatment resumption with longer TTFR (HR = 0.29, 95% CI: 0.11-0.74). Fetal outcomes were unaffected by DMF exposure. CONCLUSION: DMF discontinuation does not increase relapse risk during pregnancy. Early therapy restart prevents postpartum relapses. Early DMF exposure shows no adverse fetal outcomes.


Assuntos
Fumarato de Dimetilo , Imunossupressores , Esclerose Múltipla , Complicações na Gravidez , Resultado da Gravidez , Humanos , Feminino , Gravidez , Fumarato de Dimetilo/efeitos adversos , Adulto , Itália , Complicações na Gravidez/tratamento farmacológico , Estudos Retrospectivos , Esclerose Múltipla/tratamento farmacológico , Imunossupressores/efeitos adversos , Recidiva
14.
Mult Scler ; 30(2): 209-215, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38166480

RESUMO

BACKGROUND: Dimethyl fumarate (DMF) has a favorable benefit-risk profile treating people with multiple sclerosis and should be used in pregnant women only if the potential benefits outweigh potential risks to the fetus. OBJECTIVE: Assess pregnancy outcomes in a completed international registry (TecGistry) of women with MS exposed to DMF. METHODS: TecGistry included pregnant women with MS exposed to DMF, with data collected at enrollment, 6-7 months gestation, 4 weeks after estimated due date, and at postpartum weeks 4, 12, and 52. Outcomes included live births, gestational size, pregnancy loss, ectopic/molar pregnancies, birth defects, and infant/maternal death. RESULTS: Of 397 enrolled, median (range) age was 32 years (19-43). Median (range) gestational week at enrollment was 10 (0-39) and at first DMF exposure was 1 (0-13). Median (range) duration of gestational DMF exposure was 5 weeks (0-40). Fifteen (3.8%) spontaneous abortions occurred. Of 360 (89.1%) live births, 323 were full term and 37 were premature. One neonatal death and no maternal deaths occurred. Adjudicator-confirmed EUROCAT birth defects were found in 2.2%. CONCLUSION: DMF exposure during pregnancy did not adversely affect pregnancy outcomes; birth defects, preterm birth, and spontaneous abortion were in line with rates from the general population.


Assuntos
Aborto Espontâneo , Nascimento Prematuro , Humanos , Recém-Nascido , Lactente , Feminino , Gravidez , Adulto Jovem , Adulto , Resultado da Gravidez/epidemiologia , Fumarato de Dimetilo/efeitos adversos , Estudos Prospectivos , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia , Aborto Espontâneo/induzido quimicamente , Aborto Espontâneo/epidemiologia , Sistema de Registros
15.
Mult Scler ; 30(10): 1379-1382, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38605496

RESUMO

Lymphopenia is a known adverse effect in patients with relapsing multiple sclerosis (RMS) treated with fumaric acids. We present a case series of four patients diagnosed with RMS with prolonged lymphocyte stability on dimethyl fumarate for over 1 year who developed significant lymphopenia after transitioning to diroximel fumarate. This case series highlights the need for further research to elucidate the risk of lymphopenia in patients switching between fumaric acids.


Assuntos
Fumarato de Dimetilo , Imunossupressores , Linfopenia , Esclerose Múltipla Recidivante-Remitente , Humanos , Linfopenia/induzido quimicamente , Fumarato de Dimetilo/efeitos adversos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Feminino , Adulto , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Fumaratos/efeitos adversos , Substituição de Medicamentos
16.
Pharmacol Res ; 203: 107182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614373

RESUMO

Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.


Assuntos
Epigênese Genética , Inflamação , Processamento de Proteína Pós-Traducional , Piroptose , Humanos , Piroptose/efeitos dos fármacos , Animais , Inflamação/genética , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
17.
Neuroimmunomodulation ; 31(1): 126-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843787

RESUMO

INTRODUCTION: Dimethyl fumarate (DMF) has shown potential for protection in various animal models of neurological diseases. However, the impact of DMF on changes in peripheral immune organs and the central nervous system (CNS) immune cell composition after ischemic stroke remains unclear. METHODS: Eight-week-old C57BL/6J mice with photothrombosis ischemia and patients with acute ischemic stroke (AIS) were treated with DMF. TTC staining, flow cytometry, and immunofluorescence staining were used to evaluate the infarct volume and changes in immune cells in the periphery and the CNS. RESULTS: DMF reduced the infarct volume on day 1 after PT. DMF reduced the percentages of peripheral immune cells, such as neutrophils, dendritic cells, macrophages, and monocytes, on day 1, followed by NK cells on day 3 and B cells on day 7 after PT. In the CNS, DMF significantly reduced the percentage of monocytes in the brain on day 3 after PT. In addition, DMF increased the number of microglia in the peri-infarct area and reduced the number of neurons in the peri-infarct area in the acute and subacute phases after PT. In AIS patients, B cells decreased in patients receiving alteplase in combination with DMF. CONCLUSION: DMF can change the immune environment of the periphery and the CNS, reduce infarct volume in the acute phase, promote the recruitment of microglia and preserve neurons in the peri-infarct area after ischemic stroke.


Assuntos
Fumarato de Dimetilo , AVC Isquêmico , Camundongos Endogâmicos C57BL , Animais , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , AVC Isquêmico/imunologia , AVC Isquêmico/tratamento farmacológico , Camundongos , Masculino , Humanos , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Modelos Animais de Doenças
18.
J Biochem Mol Toxicol ; 38(2): e23652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348708

RESUMO

Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.


Assuntos
Dieta Hiperlipídica , Fumarato de Dimetilo , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Fumarato de Dimetilo/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
19.
Exp Cell Res ; 432(2): 113781, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722551

RESUMO

The progression of cholestasis is characterized by excessive accumulation of bile acids (BAs) in the liver, which leads to oxidative stress (OS), inflammation and liver injury. There are currently limited treatments for cholestasis. Therefore, appropriate drugs for cholestasis treatment need to be developed. Dimethyl fumarate (DMF) has been widely used in the treatment of various diseases and exerts antioxidant and anti-inflammatory effects, but its effect on cholestatic liver disease remains unclarified. We fed mice 3,5-diethoxycarbonyl-1,4-dihydrocollidine or cholic acid to induce cholestatic liver injury and treated these mice with DMF to evaluate its protective ability. Alanine aminotransferase, aspartate aminotransferase, and total liver BAs were assessed as indicators of liver function. The levels of OS, liver inflammation, transporters and metabolic enzymes were also measured. DMF markedly altered the relative ALT and AST levels and enhanced the liver antioxidant capacity. DMF regulated the MST/NRF2 signaling pathway to protect against OS and reduced liver inflammation through the NLRP3/GSDMD signaling pathway. DMF also regulated the levels of BA transporters by promoting FXR protein expression. These findings provide new strategies for the treatment of cholestatic liver disorders.

20.
Acta Pharmacol Sin ; 45(3): 594-608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964019

RESUMO

PANoptosis is a new type of cell death featured with pyroptosis, apoptosis and necroptosis, and is implicated in organ injury and mortality in various inflammatory diseases, such as sepsis and hemophagocytic lymphohistiocytosis (HLH). Reverse electron transport (RET)-mediated mitochondrial reactive oxygen species (mtROS) has been shown to contribute to pyroptosis and necroptosis. In this study we investigated the roles of mtROS and RET in PANoptosis induced by TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (Oxo) plus lipopolysaccharide (LPS) as well as the effects of anti-RET reagents on PANoptosis. We showed that pretreatment with anti-RET reagents 1-methoxy PMS (MPMS) or dimethyl fumarate (DMF) dose-dependently inhibited PANoptosis in macrophages BMDMs and J774A.1 cells induced by Oxo/LPS treatment assayed by propidium iodide (PI) staining. The three arms of the PANoptosis signaling pathway, namely pyroptosis, apoptosis and necroptosis signaling, as well as the formation of PANoptosomes were all inhibited by MPMS or DMF. We demonstrated that Oxo/LPS treatment induced RET and mtROS in BMDMs, which were reversed by MPMS or DMF pretreatment. Interestingly, the PANoptosome was co-located with mitochondria, in which the mitochondrial DNA was oxidized. MPMS and DMF fully blocked the mtROS production and the formation of PANoptosome induced by Oxo plus LPS treatment. An HLH mouse model was established by poly(I:C)/LPS challenge. Pretreatment with DMF (50 mg·kg-1·d-1, i.g. for 3 days) or MPMS (10 mg·kg-1·d-1, i.p. for 2 days) (DMF i.g. MPMS i.p.) effectively alleviated HLH lesions accompanied by decreased hallmarks of PANoptosis in the liver and kidney. Collectively, RET and mtDNA play crucial roles in PANoptosis induction and anti-RET reagents represent a novel class of PANoptosis inhibitors by blocking oxidation of mtDNA, highlighting their potential application in treating PANoptosis-related inflammatory diseases. PANoptotic stimulation induces reverse electron transport (RET) and reactive oxygen species (ROS) in mitochondia, while 1-methoxy PMS and dimethyl fumarate can inhibit PANoptosis by suppressing RETmediated oxidation of mitochondrial DNA.


Assuntos
DNA Mitocondrial , Fumarato de Dimetilo , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Transporte de Elétrons , Fumarato de Dimetilo/metabolismo , Fumarato de Dimetilo/farmacologia , DNA Mitocondrial/metabolismo , Lipopolissacarídeos/farmacologia , Elétrons , Mitocôndrias , Apoptose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa