Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400275

RESUMO

Spoofing against the Global Navigation Satellite System (GNSS) is an attack with strong concealment, posing a significant threat to the security of the GNSS. Many strategies have been developed to prevent such attacks, but current detection methods based on signal direction for multi-agent spoofing require multiple antennas/receivers, leading to increased cost and complexity in implementation. Additionally, methods utilizing a moving single antenna cannot effectively detect multi-agent spoofing. Therefore, we introduce a novel spoofing-detection technique based on the intersection angle between two directions of arrival (IA-DOA) using a single rotating antenna. The essence of this approach lies in estimating the IA-DOA between a pair of signals by utilizing the carrier-to-noise ratio (CNR) and carrier phase single difference (CPSD) of the received signal. The estimation of IA-DOA should be consistent with the prediction when there is no spoofing. With spoofing, it is difficult to accurately simulate the directionality of navigation signals, which can disrupt the consistency between the estimation and prediction of IA-DOA. Therefore, estimations and predictions of IA-DOA can be used to establish detection variables through generalized likelihood ratio testing (GLRT) to detect multi-agent spoofing. We conducted a simulation to analyze the impact of the antenna's parameters on the detection performance and evaluated it through on-site experiments. The results indicate that the method proposed in this article can efficiently achieve real-time detection of multi-agent spoofing.

2.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400394

RESUMO

Monitoring object displacement is critical for structural health monitoring (SHM). Radio frequency identification (RFID) sensors can be used for this purpose. Using more sensors enhances displacement estimation accuracy, especially when it is realized through the use of machine learning (ML) algorithms for predicting the direction of arrival of the associated signals. Our research shows that ML algorithms, in conjunction with adequate RFID passive sensor data, can precisely evaluate azimuth angles. However, increasing the number of sensors can lead to gaps in the data, which typical numerical methods such as interpolation and imputation may not fully resolve. To overcome this challenge, we propose enhancing the sensitivity of 3D-printed passive RFID sensor arrays using a novel photoluminescence-based RF signal enhancement technique. This can boost received RF signal levels by 2 dB to 8 dB, depending on the propagation mode (near-field or far-field). Hence, it effectively mitigates the issue of missing data without necessitating changes in transmit power levels or the number of sensors. This approach, which enables remote shaping of radiation patterns via light, can herald new prospects in the development of smart antennas for various applications apart from SHM, such as biomedicine and aerospace.

3.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610548

RESUMO

For direction-of-arrival (DOA) estimation problems in a sparse domain, sparse Bayesian learning (SBL) is highly favored by researchers owing to its excellent estimation performance. However, traditional SBL-based methods always assign Gaussian priors to parameters to be solved, leading to moderate sparse signal recovery (SSR) effects. The reason is Gaussian priors play a similar role to l2 regularization in sparsity constraint. Therefore, numerous methods are developed by adopting hierarchical priors that are used to perform better than Gaussian priors. However, these methods are in straitened circumstances when multiple measurement vector (MMV) data are adopted. On this basis, a block-sparse SBL method (named BSBL) is developed to handle DOA estimation problems in MMV models. The novelty of BSBL is the combination of hierarchical priors and block-sparse model originating from MMV data. Therefore, on the one hand, BSBL transfers the MMV model to a block-sparse model by vectorization so that Bayesian learning is directly performed, regardless of the prior independent assumption of different measurement vectors and the inconvenience caused by the solution of matrix form. On the other hand, BSBL inherited the advantage of hierarchical priors for better SSR ability. Despite the benefit, BSBL still has the disadvantage of relatively large computation complexity caused by high dimensional matrix operations. In view of this, two operations are implemented for low complexity. One is reducing the matrix dimension of BSBL by approximation, generating a method named BSBL-APPR, and the other is embedding the generalized approximate message passing (GAMB) technique into BSBL so as to decompose matrix operations into vector or scale operations, named BSBL-GAMP. Moreover, BSBL is able to suppress temporal correlation and handle wideband sources easily. Extensive simulation results are presented to prove the superiority of BSBL over other state-of-the-art algorithms.

4.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339525

RESUMO

Sparse arrays are widely employed in array signal processing due to their obvious advantages in array element distribution and uniform degrees of freedom (uDOFs). In this paper, a generalized augmented multi-subarray nested array (GAMSNA-I) and its variant, GAMSNA-II are proposed, with the objective of increasing uDOFs and reducing mutual coupling. Based on two subarrays of the prototype nested array (NA), GAMSNA-I is constructed by reconfiguring the dense uniform linear array (ULA) and forward-shifting the sparse ULA. GAMSNA-II is obtained by sparsifying the dense part of GAMSNA-I, ensuring constant uDOFs while further reducing mutual coupling. Subsequently, the closed-form expression for the uDOFs of GAMSNA-I with an arbitrary number of sensors is derived, and the proof is provided that the uDOFs of GAMSNA-II remain unchanged relative to that of GAMSNA-I. Compared to some existing array configurations, both GAMSNA-I and GAMSNA-II exhibit improved uDOFs, with GAMSNA-II achieving lower mutual coupling. Simulation results show the superior performance of the proposed GAMSNA-I and GAMSNA-II.

5.
Sensors (Basel) ; 24(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203122

RESUMO

This paper presents a new enhanced coprime array for direction of arrival (DOA) estimation. Coprime arrays are capable of estimating the DOA using coprime properties and outperforming uniform linear arrays. However, the associated algorithms are not directly applicable for estimating the DOA of coherent sources. To overcome this limitation, we propose an enhanced coprime array in this paper. By increasing the number of array sensors in the coprime array, it is feasible to enlarge the aperture of the array and these additional array sensors can be utilized to achieve spatial smoothing, thus enabling estimation of the DOA for coherent sources. Additionally, applying the spatial smoothing technique to the signal subspace, instead of the conventional spatial smoothing method, can further improve the ability to reduce noise interference and enhance the overall estimation result. Finally, DOA estimation is accomplished using the MUSIC algorithm. The simulation results demonstrate improved performance compared to traditional algorithms, confirming its feasibility.

6.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066116

RESUMO

Due to the low-complexity implementation, direction-of-arrival (DOA) estimation-based one-bit quantized data are of interest, but also, signal processing struggles to obtain the demanded estimation accuracy. In this study, we injected a number of noise components into the receiving data before the uniform linear array (ULA) composed of one-bit quantizers. Then, based on this designed noise-boosted quantizer unit (NBQU), we propose an efficient one-bit multiple signal classification (MUSIC) method for estimating the DOA. Benefiting from the injected noise, the numerical results show that the proposed NBQU-based MUSIC method outperforms existing one-bit MUSIC methods in terms of estimation accuracy and resolution. Furthermore, with the optimal root mean square (RMS) of the injected noise, the estimation accuracy of the proposed method for estimating DOA can approach that of the MUSIC method based on the complete analog data.

7.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931736

RESUMO

In array signal processing, the mutual coupling among physical sensors can inevitably affect the estimation of the direction of arrival (DOA). Despite the fact that multiple-input and multiple-output (MIMO) radar can provide greater degrees of freedom (DOFs), the influence of mutual coupling is largely overlooked in many current MIMO radar designs. To tackle this issue, we propose the utilization of a generalized nested array (GNA) in transmitter array and we introduce an expansion factor into the nested array in the receiver array. Thereby, a novel GNA-MIMO radar is put forward. The proposed MIMO radar offers O(N4) consecutive DOFs with N sensors and avoids the adverse effects of high mutual coupling caused by closely located sensors. Furthermore, we derive the closed-form expressions for the position of physical sensors and the attainable consecutive DOFs of the proposed MIMO radar. Through simulation experiments, we demonstrate the superior accuracy of the proposed MIMO configuration in DOA estimation and angle resolution under the condition of mutual coupling effect.

8.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676102

RESUMO

Partially impaired sensor arrays pose a significant challenge in accurately estimating signal parameters. The occurrence of bad data is highly probable, resulting in random loss of source information and substantial performance degradation in parameter estimation. In this paper, a tensor variational sparse Bayesian learning (TVSBL) method is proposed for the estimate of direction of arrival (DOA) and polarization parameters jointly based on a conformal polarization sensitive array (CPSA), taking into account scenarios with the partially impaired sensor array. First, a sparse tensor-based received data model is developed for CPSAs that incorporates bad data. Then, a column vector detection method is proposed to diagnose the positions of the impaired sensors. In scenarios involving partially impaired sensor arrays, a low-rank matrix completion method is employed to recover the random loss of signal information. Finally, variational sparse Bayesian learning (VSBL) and minimum eigenvector methods are utilized sequentially to obtain the DOA and polarization parameters estimation, successively. Furthermore, the Cramér-Rao bound is given for the proposed method. Simulation results validated the effectiveness of the proposed method.

9.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894243

RESUMO

Increasing airspace safety is an important challenge, both for unmanned aerial vehicles (UAVs) as well as manned aircraft. Future developments of collision avoidance systems are supposed to utilize information from multiple sensing systems. A compact sensing system could employ a multi-mode multi-port antenna (M 3PA). Their ability to radiate multiple orthogonal patterns simultaneously makes them suitable for communication applications as well as bearing and ranging applications. Furthermore, they can be designed to flexibly originate near-omnidirectional and/or directional radiation patterns. This option of flexibility with respect to the radiation characteristic is desired for antennas integrated in collision avoidance systems. Based on the aforementioned properties, M 3PAs represent a compelling option for aircraft transponders. In this paper, direction-of-arrival (DoA) estimation using an M 3PA designed for aerial applications is put to the test. First, a DoA estimation scheme suitable to be employed with M 3PAs is introduced. Next, the validity of the proposed method is confirmed through numerical simulations. Lastly, practical experiments are conducted in an antenna measurement chamber to verify the numerical results.

10.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931709

RESUMO

Accurate localization of devices within Internet of Things (IoT) networks is driven by the emergence of novel applications that require context awareness to improve operational efficiency, resource management, automation, and safety in industry and smart cities. With the Integrated Localization and Communication (ILAC) functionality, IoT devices can simultaneously exchange data and determine their position in space, resulting in maximized resource utilization with reduced deployment and operational costs. Localization capability in challenging scenarios, including harsh environments with complex geometry and obstacles, can be provided with robust, reliable, and energy-efficient communication protocols able to combat impairments caused by interference and multipath, such as the IEEE 802.15.4 Time-Slotted Channel Hopping (TSCH) protocol. This paper presents an enhancement of the TSCH protocol that integrates localization functionality along with communication, improving the protocol's operational capabilities and setting a baseline for monitoring, automation, and interaction within IoT setups in physical environments. A novel approach is proposed to incorporate a hybrid localization by integrating Direction of Arrival (DoA) estimation and Multi-Carrier Phase Difference (MCPD) ranging methods for providing DoA and distance estimates with each transmitted packet. With the proposed enhancement, a single node can determine the location of its neighboring nodes without significantly affecting the reliability of communication and the efficiency of the network. The feasibility and effectiveness of the proposed approach are validated in a real scenario in an office building using low-cost proprietary devices, and the software incorporating the solution is provided. The experimental evaluation results show that a node positioned in the center of the room successfully estimates both the DoA and the distance to each neighboring node. The proposed hybrid localization algorithm demonstrates an accuracy of a few tens of centimeters in a two-dimensional space.

11.
Entropy (Basel) ; 26(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056907

RESUMO

As one of the most widely used spread spectrum techniques, the frequency-hopping spread spectrum (FHSS) has been widely adopted in both civilian and military secure communications. In this technique, the carrier frequency of the signal hops pseudo-randomly over a large range, compared to the baseband. To capture an FHSS signal, conventional non-cooperative receivers without knowledge of the carrier have to operate at a high sampling rate covering the entire FHSS hopping range, according to the Nyquist sampling theorem. In this paper, we propose an adaptive compressed method for joint carrier and direction of arrival (DOA) estimations of FHSS signals, enabling subsequent non-cooperative processing. The compressed measurement kernels (i.e., non-zero entries in the sensing matrix) have been adaptively designed based on the posterior knowledge of the signal and task-specific information optimization. Moreover, a deep neural network has been designed to ensure the efficiency of the measurement kernel design process. Finally, the signal carrier and DOA are estimated based on the measurement data. Through simulations, the performance of the adaptively designed measurement kernels is proved to be improved over the random measurement kernels. In addition, the proposed method is shown to outperform the compressed methods in the literature.

12.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904753

RESUMO

Multiple-input multiple-output (MIMO) radars enable better estimation accuracy with improved resolution in contrast to traditional radar systems; thus, this field has attracted attention in recent years from researchers, funding agencies, and practitioners. The objective of this work is to estimate the direction of arrival of targets for co-located MIMO radars by proposing a novel approach called flower pollination. This approach is simple in concept, easy to implement and has the capability of solving complex optimization problems. The received data from the far field located targets are initially passed through the matched filter to enhance the signal-to-noise ratio, and then the fitness function is optimized by incorporating the concept of virtual or extended array manifold vectors of the system. The proposed approach outperforms other algorithms mentioned in the literature by utilizing statistical tools for fitness, root mean square error, cumulative distribution function, histograms, and box plots.

13.
Sensors (Basel) ; 23(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37430794

RESUMO

This paper illustrates a flexible design strategy for a three-element non-uniform linear array (NULA) aimed at estimating the direction of arrival (DoA) of a source of interest. Thanks to the spatial diversity resulting from non-uniform sensor spacings, satisfactory DoA estimation accuracies can be achieved by employing a very limited number of receiving elements. This makes NULA configurations particularly attractive for low-cost passive location applications. To estimate the DoA of the source of interest, we resort to the maximum likelihood estimator, and the proposed design strategy is obtained by constraining the maximum pairwise error probability to control the errors occurring due to outliers. In fact, it is well known that the accuracy of the maximum likelihood estimator is often degraded by outliers, especially when the signal-to-noise power ratio does not belong to the so-called asymptotic region. The imposed constraint allows for the defining of an admissible region in which the array should be selected. This region can be further modified to incorporate practical design constraints concerning the antenna element size and the positioning accuracy. The best admissible array is then compared to the one obtained with a conventional NULA design approach, where only antenna spacings multiple of λ/2 are considered, showing improved performance, which is also confirmed by the experimental results.

14.
Sensors (Basel) ; 23(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836878

RESUMO

This paper investigates the direction of arrival (DOA) estimation of coherent signals with a moving coprime array (MCA). Spatial smoothing techniques are often used to deal with the covariance matrix of coherent signals, but they cannot be used in sparse arrays. Therefore, super-resolution algorithms such as multiple signal classification (MUSIC) cannot be applied in the DOA estimation of coherent signals in sparse arrays. In this study, we propose an enhanced spatial smoothing method specifically designed for MCA. Firstly, we combine the signals received by the MCA at different times, which can be regarded as a sparse array with a larger number of array sensors. Secondly, we describe how to compute the covariance matrix, derive the signal subspace by eigenvalue decomposition, and prove that the signal subspace is also equivalent to a received signal. Thirdly, we apply enhanced spatial smoothing to the signal subspace and construct a rank recovered covariance matrix. Finally, the DOA of coherent signals are well estimated by the MUSIC algorithm. The simulation results validate the improved performance of the proposed algorithm compared with traditional methods, particularly in scenarios with low signal-to-noise ratios.

15.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960390

RESUMO

The direction-of-arrival (DOA) estimation is predominantly influenced by the antenna's aperture size. However, space constraints on flight platforms often necessitate the use of antennas with smaller apertures and fewer array elements. This inevitably imposes limitations on the DOA estimation's resolution and degrees of freedom. To address these precision constraints, we introduce an accurate DOA estimation method based on spatial synthetic aperture model. This method adopts a two-stage strategy to ensure both efficiency and precision in DOA estimation. Initially, the orthogonal matching pursuit (OMP) reconstruction algorithm processes the original aperture data, providing a rough estimate of target angles that guides the aircraft's flight direction. Subsequently, the early estimations merge with the aircraft's motion space samples, forming equivalent spatially synthesized array samples. The refined angle estimation then employs the OMP-RELAX algorithm. Moreover, with the off-grid issue in mind, we devise an estimation method integrating Bayesian parameter estimation with dictionary sequence refinement. The proposed technique harnesses the spatial synthetic aperture for pinpoint estimation, effectively addressing the challenges of atomic orthogonality and angular off-grid on estimation accuracy. Importantly, the efficiency of deploying sparse reconstruction for angle estimation is bolstered by our phased strategy, eliminating the necessity for fine grid analysis across the entire observation scene. Moreover, the poor estimation accuracy caused by coherent source targets and angular-flickering targets is improved by sparse reconstruction. Through simulation and experiment, we affirm the proposed method's efficacy in angle estimation. The results indicate that target angle estimation errors are limited to within 1°. Furthermore, we assess the impact of variables such as target state, heading angle, spatial sampling points, and target distance on the estimation accuracy of our method, showcasing its resilience and adaptability.

16.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631651

RESUMO

This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning (ML). Using the information obtained at a receiving system when a transmitter's signal hits it, a Decision Tree (DT) model is trained to estimate azimuth and elevation angles simultaneously. Simulation results demonstrate the robustness of the proposed DT-based method, showcasing its ability to predict the Direction of Arrival (DOA) in diverse conditions beyond the ones present in the training dataset, i.e., the results display the model's generalization capability. Additionally, the comparative analysis reveals that DT-based DOA estimation outperforms the state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm. Our results demonstrate an average reduction of over 90% in the prediction error and 50% in the prediction time achieved by our proposal when compared to the MUSIC algorithm. These results establish DTs as competitive alternatives for DOA estimation in signal reception systems.

17.
Sensors (Basel) ; 23(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37571767

RESUMO

Due to their ability to achieve higher DOA estimation accuracy and larger degrees of freedom (DOF) using a fixed number of antennas, sparse arrays, etc., nested and coprime arrays have attracted a lot of attention in relation to research into direction of arrival (DOA) estimation. However, the usage of the sparse array is based on the assumption that the signals are independent of each other, which is hard to guarantee in practice due to the complex propagation environment. To address the challenge of sparse arrays struggling to handle coherent wideband signals, we propose the following method. Firstly, we exploit the coherent signal subspace method (CSSM) to focus the wideband signals on the reference frequency and assist in the decorrelation process, which can be implemented without any pre-estimations. Then, we virtualize the covariance matrix of sparse array due to the decorrelation operation. Next, an enhanced spatial smoothing algorithm is applied to make full use of the information available in the data covariance matrix, as well as to improve the decorrelation effect, after which stage the multiple signal classification (MUSIC) algorithm is used to obtain DOA estimations. In the simulation, with reference to the root mean square error (RMSE) that varies in tandem with the signal-to-noise ratio (SNR), the algorithm achieves satisfactory results compared to other state-of-the-art algorithms, including sparse arrays using the traditional incoherent signal subspace method (ISSM), the coherent signal subspace method (CSSM), spatial smoothing algorithms, etc. Furthermore, the proposed method is also validated via real data tests, and the error value is only 0.2 degrees in real data tests, which is lower than those of the other methods in real data tests.

18.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299788

RESUMO

In modern applications such as robotics, autonomous vehicles, and speaker localization, the computational power for sound source localization applications can be limited when other functionalities get more complex. In such application fields, there is a need to maintain high localization accuracy for several sound sources while reducing computational complexity. The array manifold interpolation (AMI) method applied with the Multiple Signal Classification (MUSIC) algorithm enables sound source localization of multiple sources with high accuracy. However, the computational complexity has so far been relatively high. This paper presents a modified AMI for uniform circular array (UCA) that offers reduced computational complexity compared to the original AMI. The complexity reduction is based on the proposed UCA-specific focusing matrix which eliminates the calculation of the Bessel function. The simulation comparison is done with the existing methods of iMUSIC, the Weighted Squared Test of Orthogonality of Projected Subspaces (WS-TOPS), and the original AMI. The experiment result under different scenarios shows that the proposed algorithm outperforms the original AMI method in terms of estimation accuracy and up to a 30% reduction in computation time. An advantage offered by this proposed method is the ability to implement wideband array processing on low-end microprocessors.


Assuntos
Acústica , Localização de Som , Som , Simulação por Computador , Algoritmos
19.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050568

RESUMO

To estimate the direction of arrival (DOA) of a linear frequency modulation (LFM) signal in a low signal-to-noise ratio (SNR) hydroacoustic environment by a small aperture array, a novel deconvolved beamforming method based on fractional Fourier domain delay-and-sum beamforming (FrFB) was proposed. Fractional Fourier transform (FrFT) was used to convert the received signal into the fractional Fourier domain, and delay-and-sum beamforming was subsequently performed. Noise resistance was acquired by focusing the energy of the LFM signal distributed in the time-frequency domain. Then, according to the convolution structure of the FrFB complex output, the influence of the fractional Fourier domain complex beam pattern was removed by deconvolution, and the target spatial distribution was restored. Therefore, an improved spatial resolution of DOA estimation was obtained without increasing the array aperture. The simulation and experimental results show that, with a small aperture array at low SNR, the proposed method possesses higher spatial resolution than FrFB and frequency-domain deconvolved conventional beamforming.

20.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904717

RESUMO

Classifications based on deep learning have been widely applied in the estimation of the direction of arrival (DOA) of signal. Due to the limited number of classes, the classification of DOA cannot satisfy the required prediction accuracy of signals from random azimuth in real applications. This paper presents a Centroid Optimization of deep neural network classification (CO-DNNC) to improve the estimation accuracy of DOA. CO-DNNC includes signal preprocessing, classification network, and Centroid Optimization. The DNN classification network adopts a convolutional neural network, including convolutional layers and fully connected layers. The Centroid Optimization takes the classified labels as the coordinates and calculates the azimuth of received signal according to the probabilities of the Softmax output. The experimental results show that CO-DNNC is capable of acquiring precise and accurate estimation of DOA, especially in the cases of low SNRs. In addition, CO-DNNC requires lower numbers of classes under the same condition of prediction accuracy and SNR, which reduces the complexity of the DNN network and saves training and processing time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa