Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0206523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38527003

RESUMO

Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO2 buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate. The water H assimilation factor (αW) and the inorganic C assimilation into C18:2 fatty acid isolated from five fungal species growing on glucose was lower (0.62% ± 0.01% and 4.7% ± 1.6%, respectively) than for species grown on glutamic acid (0.90% ± 0.02% and 7.4% ± 3.7%, respectively). Furthermore, the assimilation ratio (RIC/αW) for growth on glucose and glutamic acid can distinguish between these two metabolic modes. This dual-SIP assay thus delivers estimates of fungal activity and may help to delineate the predominant substrates that are respired among a matrix of compounds found in natural environments.IMPORTANCEFungal decomposers play important roles in food webs and nutrient cycling because they can feed on both labile and more recalcitrant forms of carbon. This study developed and applied a dual stable isotope assay (13C-dissolved inorganic carbon/2H) to improve the investigation of fungal activity in the environment. By determining the incorporation patterns of hydrogen and carbon into fungal lipids, this assay delivers estimates of fungal activity and the different metabolic pathways that they employ in ecological and environmental systems.


Assuntos
Bactérias , Carbono , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecossistema , Água/análise , Ácido Glutâmico/metabolismo , Ácidos Graxos/metabolismo , Solo , Hidrogênio/metabolismo , Glucose/metabolismo
2.
Photosynth Res ; 159(1): 61-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38316719

RESUMO

Following the principle of oxygenic photosynthesis, electron transport in the thylakoid membranes (i.e., light reaction) generates ATP and NADPH from light energy, which is subsequently utilized for CO2 fixation in the Calvin-Benson-Bassham cycle (i.e., dark reaction). However, light and dark reactions could discord when an alternative electron flow occurs with a rate comparable to the linear electron flow. Here, we quantitatively monitored O2 and total dissolved inorganic carbon (DIC) during photosynthesis in the pennate diatom Phaeodactylum tricornutum, and found that evolved O2 was larger than the consumption of DIC, which was consistent with 14CO2 measurements in literature. In our measurements, the stoichiometry of O2 evolution to DIC consumption was always around 1.5 during photosynthesis at different DIC concentrations. The same stoichiometry was observed in the cells grown under different CO2 concentrations and nitrogen sources except for the nitrogen-starved cells showing O2 evolution 2.5 times larger than DIC consumption. An inhibitor to nitrogen assimilation did not affect the extra O2 evolution. Further, the same physiological phenomenon was observed in the centric diatom Thalassiosira pseudonana. Based on the present dataset, we propose that the marine diatoms possess the metabolic pathway(s) functioning as the O2-independent electron sink under steady state photosynthesis that reaches nearly half of electron flux of the Calvin-Benson-Bassham cycle.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Dióxido de Carbono/metabolismo , Elétrons , Fotossíntese/fisiologia , Nitrogênio/metabolismo
3.
J Phycol ; 60(1): 29-45, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38127095

RESUMO

Photosynthesis by marine diatoms contributes significantly to the global carbon cycle. Due to the low concentration of CO2 in seawater, many diatoms use extracellular carbonic anhydrase (eCA) to enhance the supply of CO2 to the cell surface. While much research has investigated how the requirement for eCA is influenced by changes in CO2 availability, little is known about how eCA contributes to CO2 supply following changes in the demand for carbon. We therefore examined how changes in photosynthetic rate influence the requirement for eCA in three centric diatoms. Modeling of cell surface carbonate chemistry indicated that diffusive CO2 supply to the cell surface was greatly reduced in large diatoms at higher photosynthetic rates. Laboratory experiments demonstrated a trend of an increasing requirement for eCA with increasing photosynthetic rate that was most pronounced in the larger species, supporting the findings of the cellular modeling. Microelectrode measurements of cell surface pH and O2 demonstrated that individual cells exhibited an increased contribution of eCA to photosynthesis at higher irradiances. Our data demonstrate that changes in carbon demand strongly influence the requirement for eCA in diatoms. Cell size and photosynthetic rate will therefore be key determinants of the mode of dissolved inorganic carbon uptake.


Assuntos
Anidrases Carbônicas , Diatomáceas , Diatomáceas/metabolismo , Anidrases Carbônicas/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Carbonatos/metabolismo , Fotossíntese
4.
Environ Res ; : 119826, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173819

RESUMO

Carbon dioxide (CO2) stands as the primary driver of Earth's greenhouse effect, and it's suggested that the global contribution of CO2 emissions from lakes cannot be ignored. Despite the numerous estimations of CO2 fluxes from lakes, limited focus has been directed towards the carbon isotopes (δ13C) of dissolved CO2 in lake water. Particularly, the potential use of δ13C values in tracing the CO2 concentrations in lake water remains as an understudied area, warranting further exploration and investigation. In this study, we conducted an analysis of the concentrations and δ13C values of dissolved CO2 in 33 lakes located at the Tibetan Plateau, Chinese Loess Plateau, and Yangtze Plain (among which high-resolution spatial investigations were performed in 6 lakes through in-situ continuous monitoring). Our findings revealed spatial variations in both the CO2 concentrations and δ13C values in lakes. Additionally, notable differences are observed among lakes in different regions of China, with lakes in the Yangtze Plain exhibiting considerably higher CO2 concentrations, and the overall CO2 δ13C values in lakes on the Tibetan Plateau tend to be more positive, while those in lakes on the Chinese Loess Plateau tend to be more negative. The pH values, dissolved oxygen, and dissolved organic carbon are likely crucial factors influencing the CO2 concentrations and δ13C values in the lakes. Furthermore, lake water CO2 concentrations are negatively correlated with δ13C values of CO2 and dissolved inorganic carbon (DIC) both within a single lake with high spatial resolutions or in lake groups across different regions. These results highlight that the CO2/DIC δ13C values can be applied to trace the concentration variations of dissolved CO2 in lakes.

5.
Environ Res ; 259: 119536, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964577

RESUMO

The acidification of the marginal seawater was a more intricate process than the ocean. Although some studies have been done on seasonal acidification in the bottom water of Chinese marginal seas, research on surface water acidification has still been insufficient. We analyzed the acidification properties and controlling factors in the Bohai Sea (BS) and Yellow Sea (YS) surface water during April 2023. The observation showed that the average surface water pH of the BS, North Yellow Sea (NYS), and South Yellow Sea (SYS) were 8.09 ± 0.06, 8.13 ± 0.05, and 8.15 ± 0.05. Phytoplankton significantly impacted pH and Ωarag, while riverine inputs and biological activity played a vital role in controlling DIC and TA. The Yellow River significantly impacted the BS. The North Yellow Sea Cold Water Mass had a limited impact on acidification, while the South Yellow Sea Cold Water Mass significantly affected the SYS. Regarding seasonal fluctuations, Ωarag was significantly higher in summer than in other seasons. DIC and TA showed different patterns in both the BS and YS, with a minimal fluctuation in pH. Over the last two decades, the pH in the BS showed a slight annual decline, and the rate of change was (-1.45 ± 2.19) × 10-5 yr-1. In contrast, the NYS and SYS have slightly risen, with rates of change of (2.39 ± 1.24) × 10-5 and (1.23 ± 0.76) × 10-5 yr-1. We believed that surface water acidification in the BS and YS did not follow the expected trend of significant acidification observed in open oceanic regions. Instead, the acidification process in these marginal seas was dominated by local factors such as riverine inputs, biological activity, and cold water masses, resulting in minimal pH changes over the last two decades.

6.
Environ Res ; 252(Pt 3): 119041, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704013

RESUMO

Under the influence of periodic temperature variations, biogeochemical cycling in water bodies is markedly affected by the periodic thermal stratification processes in subtropical reservoirs or lakes. In current studies, there is insufficient research on the influence and mechanism of dissolved inorganic carbon (DIC) distribution in karst carbon-rich groundwater-fed reservoirs under the coupled effects of thermal structure stratification and the biological carbon pump (BCP) effect. To address this issue, the Dalongdong (DLD) reservoir in the subtropical region of southern China was chosen as the site for long-term monitoring and research on relevant physicochemical parameters of water, DIC, and its stable carbon isotope (δ13CDIC), CO2 emission flux, as well as the reservoir's thermal stratification index. The results show that: (1) the DLD reservoir is a typical warm monomictic reservoir, which exhibits regular variations of mixing period-stratification period-mixing period on a yearly scale due to thermal structure changes; (2) DIC was consumed by aquatic photosynthetic organisms in the epilimnion during the stratification period, leading to a decrease in DIC concentration, partial pressure of CO2 (pCO2) and CO2 emission flux, and an increase in stable carbon isotope (δ13CDIC). During the mixing period, the trend was reversed; (3) During the thermal stratification, aquatic photosynthesis and water temperature were the primary factors controlling DIC variations in both the epilimnion and thermocline. Regarding the hypolimnion, calcite dissolution, organic matter decomposition, and water temperature were the dominant controlling factors. These results indicate that although carbon-rich karst groundwater provides a plentiful supply of DIC in the DLD reservoir, its availability is still influenced by variations in the reservoir's thermal structure and the metabolic processes of aquatic photosynthetic organisms. Therefore, to better estimate the regional carbon budget in a reservoir or lake, future studies should especially consider the combined effects of BCP and thermal structure variations on carbon variations.


Assuntos
Água Subterrânea , Fotossíntese , Temperatura , Água Subterrânea/química , China , Carbono/química , Carbono/análise , Monitoramento Ambiental/métodos , Dióxido de Carbono/análise , Dióxido de Carbono/química , Isótopos de Carbono/análise
7.
J Environ Manage ; 366: 121791, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991354

RESUMO

To clarify the impacts of tidal hydrological process shifts caused by sea level rise on the blue carbon cycle, a typical coastal wetland in Jiaozhou Bay was selected for this study. The soils of Suaeda salsa (SS) and Phragmites australis (PA) wetlands were collected to simulate the effects of three types of tidal hydrological processes (Neap tide group, NT; Middle tide group, MT; Spring tide group, ST) on the soil-water dissolved inorganic carbon (DIC) dynamic. The results showed that the concentration of water dissolved inorganic carbon (WDIC) increased rapidly (115% higher) at early stage (days 0-4) under the influence of the tidal hydrological processes. Significant differences were found in WDIC concentration during different tidal hydrological processes (P < 0.05), which were expressed as MT (52.7 ± 13.3 mg L-1) > ST (52.5 ± 12.9 mg L-1) > NT (48.4 ± 10.1 mg L-1). After experiencing the tidal hydrological processes, the soil DIC content showed a net accumulation (55.1 ± 1.29 mg L-1vs. 46.7 ± 1.76 mg L-1, P < 0.001), whereas the soil inorganic carbon (SIC) decreased (2.73 ± 1.64 mg L-1vs. 4.61 ± 1.71 mg L-1), which may be attributed to the dissolution of SIC caused by the uptake of CO2 to form DIC. The accumulation of soil DIC was directly related to the SIC (λ = 1.03, P < 0.01), and indirectly related to soil nutrients (SOC substrate, λ = -0.003) and microbes (microbial biomass, λ = -0.10), and was mainly dominated by abiotic processes (abiotic: 58.1 ± 1.8% to 82.7 ± 2.46% vs. biotic: 17.4 ± 2.46% to 41.9 ± 1.76%). The increase of tidal frequency generally inhibited the accumulation of soil DIC content and promoted the output of WDIC. However, the response of soil DIC in different wetland types to tidal frequency was divergent, which was mainly regulated by the trade-off between soil nutrients and SIC content. Taken together, tidal hydrological processes and their frequency changes reshaped DIC dynamics, promoted the dissolution of SIC and the potential uptake of CO2. These findings enhance the comprehension of the inorganic carbon cycle within coastal wetlands, particularly amidst the backdrop of climate change and the rising sea levels.


Assuntos
Carbono , Hidrologia , Solo , Áreas Alagadas , Solo/química , Ciclo do Carbono
8.
Water Sci Technol ; 89(8): 2060-2072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678409

RESUMO

A wet chemical oxidation (WCO) method has been widely used to obtain the dissolved organic carbon (DOC) content and carbon isotope (δ13CDOC) ratios. However, it is sometimes difficult to get high precision results because not enough CO2 was oxidized from the natural water samples with low DOC concentrations. This improvement primarily aims to increase the water sample volume, improve the removal rate of dissolved inorganic carbon (DIC), and minimize the blank DOC from the standard solution. Following the improved procedure, the δ13C ratios of standardized DOC solutions were consistent with their actual values, and their differences were less than 0.2‰. The improved method demonstrated good accuracy and stability when applied to natural water samples with DOC concentrations ≥0.5 mg L-1, with the precisions of DOC concentrations and δ13C ratios were better than 0.07 mg L-1 and 0.1‰, respectively. More importantly, this method saved much pre-treatment time and realized batch processing of water samples to obtain their DOC contents and isotope ratios.


Assuntos
Isótopos de Carbono , Carbono , Isótopos de Carbono/análise , Carbono/química , Carbono/análise , Água/química , Oxirredução
9.
PNAS Nexus ; 3(4): pgae134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617586

RESUMO

The Canadian Arctic is warming at an unprecedented rate. Warming-induced permafrost thaw can lead to mobilization of aged carbon from stores in soils and rocks. Tracking the carbon pools supplied to surrounding river networks provides insight on pathways and processes of greenhouse gas release. Here, we investigated the dual-carbon isotopic characteristics of the dissolved inorganic carbon (DIC) pool in the main stem and tributaries of the Mackenzie River system. The radiocarbon (14C) activity of DIC shows export of "old" carbon (2,380 ± 1,040 14C years BP on average) occurred during summer in sampling years. The stable isotope composition of river DIC implicates degassing of aged carbon as CO2 from riverine tributaries during transport to the delta; however, information on potential drivers and fluxes are still lacking. Accounting for stable isotope fractionation during CO2 loss, we show that a large proportion of this aged carbon (60 ± 10%) may have been sourced from biospheric organic carbon oxidation, with other inputs from carbonate weathering pathways and atmospheric exchange. The findings highlight hydrologically connected waters as viable pathways for mobilization of aged carbon pools from Arctic permafrost soils.

10.
Estuaries Coast ; 47(1): 76-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38130776

RESUMO

In coastal regions and marginal bodies of water, the increase in partial pressure of carbon dioxide (pCO2) in many instances is greater than that of the open ocean due to terrestrial (river, estuarine, and wetland) influences, decreasing buffering capacity and/or increasing water temperatures. Coastal oceans receive freshwater from rivers and groundwater as well as terrestrial-derived organic matter, both of which have a direct influence on coastal carbonate chemistry. The objective of this research is to determine if coastal marshes in Georgia, USA, may be "hot-spots" for acidification due to enhanced inorganic carbon sources and if there is terrestrial influence on offshore acidification in the South Atlantic Bight (SAB). The results of this study show that dissolved inorganic carbon (DIC) and total alkalinity (TA) are elevated in the marshes compared to predictions from conservative mixing of the freshwater and oceanic end-members, with accompanying pH around 7.2 to 7.6 within the marshes and aragonite saturation states (ΩAr) <1. In the marshes, there is a strong relationship between the terrestrial/estuarine-derived organic and inorganic carbon and acidification. Comparisons of pH, TA, and DIC to terrestrial organic material markers, however, show that there is little influence of terrestrial-derived organic matter on shelf acidification during this period in 2014. In addition, ΩAr increases rapidly offshore, especially in drier months (July). River stream flow during 2014 was anomalously low compared to climatological means; therefore, offshore influences from terrestrial carbon could also be decreased. The SAB shelf may not be strongly influenced by terrestrial inputs to acidification during drier than normal periods; conversely, shelf waters that are well-buffered against acidification may not play a significant role in mitigating acidification within the Georgia marshes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12237-023-01261-3.

11.
Water Res ; 250: 121058, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150860

RESUMO

Dam construction significantly impacts river hydrodynamics, subsequently influencing carbon biogeochemical processes. However, the influence of hydrodynamic conditions on the migration and transformation of Dissolved Inorganic Carbon (DIC) remains uncertain. To bridge this knowledge gap, we integrated hydrochemistry, isotopic composition (δ13CDIC), and a hydrodynamic model (CE-QUAL-W2) to examine the distinctions, control mechanisms, and environmental effects of DIC biogeochemical processes in a typical large and deep reservoir (Hongjiadu Reservoir) under different hydrodynamic conditions. We evaluated hydrodynamic alterations through the Schmidt stability index and relative water column stability. The analysis disclosed that during weak hydrodynamics periods, the energy necessary for complete mixing the surface and deep water was 34 times higher (3615.32 J/m2 vs.106.86 J/m2), and stability was 13 times greater (312.96 vs. 24.69) compared to periods of strong hydrodynamics. Additionally, the spatiotemporal heterogeneity of DIC concentrations (1.4 % to -9.1 %) and δ13CDIC (-1.7 % to -19.5 %) from the dry to wet seasons reflected disparities in DIC control mechanisms under varied hydrodynamic conditions. Based on model simulations, our calculations indicate that during weak hydrodynamics periods, the enhancement of the biological carbon pump effect resulted in substantial sequestration of DIC, reaching up to 379.6 t-DIC·d-1 in the water. Conversely, during strong hydrodynamics periods, DIC retention capacity decreased by 69.2 t·d-1, resulting in reservoir CO2 emissions of 22.7 × 104 t, which were more than 7 times higher than during weak hydrodynamics periods (3.2 × 104 t). Our findings emphasize the discernible impact of hydrodynamic conditions on reservoir biogeochemical processes related to DIC. Considering the increasing construction of reservoirs globally, understanding and controlling hydrodynamic conditions are crucial for mitigating CO2 emissions and optimizing reservoir management.


Assuntos
Dióxido de Carbono , Hidrodinâmica , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Rios/química , Água/análise , Carbono/análise , China
12.
Mar Pollut Bull ; 201: 116252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479328

RESUMO

Ocean acidification (OA) is a global environmental concern, and submarine groundwater discharge (SGD) is a potentially process that enhances OA. This review summarizes the relationship between two types of constituents carried by SGD into China's seawater and OA. 1) Current research predominantly concentrates on constituent fluxes from SGD, neglecting its ecological impacts on carbon and nutrients budgets, as well as the mechanisms between carbon and nutrients. 2) Uncertainties persist in SGD research methods and acidification characterization. 3) There's a need to enhance quantitative research methods of SGD-OA, particularly in areas with intricate biogeochemical processes. Effective identification methods are crucial to quantify SGD's contribution to OA. Investigating core scientific questions, including SGD's impact on OA rates and scales, is paramount. While the primary focus is on SGD-OA research in China, insights gained from novel perspectives could have broader value for coastal management globally.


Assuntos
Água Subterrânea , Água do Mar , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Monitoramento Ambiental , Água Subterrânea/química , China , Carbono
13.
Sci Total Environ ; 949: 174898, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059644

RESUMO

Carbon cycling in coastal wetland soil is controlled by a complex interplay between microbial processes and porewater chemistry that are often influenced by various external forcings like wind, river discharge, and sea-level changes, where most of the organic carbon is mineralized to its inorganic form by various aerobic and anaerobic respiration pathways. The export of this inorganic carbon (DIC) from coastal wetlands has long been recognized as a significant component of the global carbon cycle. The major objective of this work is to determine the relative contribution of various respiration pathways to seasonal DIC production in two contrasting marshes (brackish and salt). The DIC fluxes estimates for the brackish and salt marshes were found to range between 36.52 ± 5.81 and 33.98 ± 2.21 mmol m-2 d-1 in winter and 133.10 ± 102.60 and 82.37 ± 30.87 mmol m-2 d-1 during summer of 2020. For the brackish marsh, aerobic respiration and iron reduction were found to be the primary contributors to DIC production representing 17.91-35.21 % and 61.13-81.97 % of total measured organic matter (OM) respiration respectively. On the other hand, aerobic respiration and sulfate reduction were the primary contributors to DIC production in the salt marsh, accounting for 37.91-83.93 % and 15.87-62.04 % of the total measured OM respiration respectively. The Mississippi River Deltaic Plain experiences high relative sea level rise and expected to undergo rapid change in salinity regime in near future from additional changes in river discharge, proposed sediment diversion plans, and storm surge intensities. The current study represents the first attempt to concurrently estimate various respiration pathways in this region and more studies are needed to understand the trajectories of soil OM respiration pathways and its impact on coastal carbon cycling.

14.
Sci Total Environ ; 949: 174994, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069180

RESUMO

During groundwater evaporation discharge, a series of carbon-related water-rock interactions potentially impact the terrestrial carbon cycle significantly. However, the migration and transformation of carbon in groundwater evaporation discharge area remain inadequately understood. Using the Tumochuan Plain in Inner Mongolia as a case study, this paper constructs a carbon balance equation for groundwater evaporation discharge area by employing mass balance principles and hydrogeochemical simulation methods, thereby analyzing the mechanisms of carbon diversion during groundwater evaporation. The result showed that evaporation discharge area of Tumochuan Plain was a 'carbon sink'. Carbon emission rate to atmosphere in study area was 7.35 g/(m2·a), while carbon fixation rate by calcite precipitation and dissolved inorganic carbon (DIC) into groundwater was 37.15 g/(m2·a). The precipitation of calcite and the dissolution of dolomite were the main water-rock interactions controlling the migration and transformation of DIC. The carbon absorbed by dolomite dissolution reached 21,698.02 t/a (30.56 g/(m2·a)), offsetting a significant portion of the CO2 emitted during calcite precipitation. In addition, the calcium released by the dissolution of dolomite and anorthite effectively promoted the precipitation of calcite, which was the primary factor for groundwater to become a carbon sink in this area.

15.
Environ Sci Pollut Res Int ; 31(35): 48027-48038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017875

RESUMO

Four species of shellfish, blue mussel (Mytilus galloprovincialis), Pacific abalone (Haliotis discus hannai), zhikong scallops (Chlamys farreri), and Pacific oyster (Crassostrea gigas), were exposed to decoupled carbonate system variables to investigate the impacts of different seawater carbonate parameters on the CO2 excretion process of mariculture shellfish. Six experimental groups with two levels of seawater pH (pH 8.1 and pH 7.7) and three levels of total alkalinity (TA = 1000, 2300, and 3600 µmol/kg, respectively) were established, while pH 8.1 and TA = 2300 µmol/kg was taken as control. Results showed that the CO2 excretion rates of these tested shellfish were significantly affected by the change in carbonate chemistry (P < 0.05). At the same TA level, animals incubated in the acidified group (pH 7.7) had a lower CO2 excretion rate than those in the control group (pH 8.1). In comparison, at the same pH level, the CO2 excretion rate increased when seawater TA level was elevated. No significant correlation between the CO2 excretion rate and seawater pCO2 levels (P > 0.05) was found; however, a significant correlation (P < 0.05) between CO2 excretion rate and TA-DIC (the difference between total alkalinity and dissolved inorganic carbon) was observed. Blue mussel has a significantly higher CO2 excretion rate than the other three species in the CO2 excretions per unit mass of soft parts, with no significant difference observed among these three species. However, in terms of CO2 excretion rate per unit mass of gills, abalone has the highest CO2 excretion rate, while significant differences were found between each species. Our studies indicate that the CO2 buffering capacity impacts the CO2 excretion rate of four shellfish species largely independent of pCO2. Since CO2 excretion is related to acid-base balancing, the results imply that the effects of other carbonate parameters, particularly the CO2 buffering capacity, should be studied to fully understand the mechanism of how acidification affects shellfish. Besides, the species difference in gill to soft parts proportion may contribute to the species difference in responding to ocean acidification.


Assuntos
Dióxido de Carbono , Carbonatos , Água do Mar , Frutos do Mar , Água do Mar/química , Animais , Concentração de Íons de Hidrogênio
16.
Anal Chim Acta ; 1307: 342610, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719401

RESUMO

BACKGROUND: The increase in anthropogenic CO2 concentrations in the Earth's atmosphere since the industrial revolution has resulted in an increased uptake of CO2 by the oceans, leading to ocean acidification. Dissolved Inorganic Carbon (DIC) is one of the key variables to characterize the seawater carbonate system. High quality DIC observations at a high spatial-temporal resolution is required to improve our understanding of the marine carbonate system. To meet the requirements, autonomous DIC analyzers are needed which offer a high sampling frequency, are cost-effective and have a low reagent and power consumption. RESULTS: We present the development and validation of a novel analyzer for autonomous measurements of DIC in seawater using conductometric detection. The analyzer employs a gas diffusion sequential injection approach in a "Tube In A Tube" configuration that facilitates diffusion of gaseous CO2 from an acidified sample through a gas permeable membrane into a stream of an alkaline solution. The change in conductivity in the alkaline medium is proportional to the DIC concentration of the sample and is measured using a detection cell constructed of 4 hollow brass electrodes. Physical and chemical optimizations of the analyzer yielded a sampling frequency of 4 samples h-1 using sub mL reagent volumes for each measurement. Temperature and salinity effects on DIC measurements were mathematically corrected to increase accuracy. Analytical precision of ±4.9 µmol kg-1 and ±9.7 µmol kg-1 were achieved from measurements of a DIC reference material in the laboratory and during a field deployment in the southwest Baltic Sea, respectively. SIGNIFICANCE: This study describes a simple, cost-effective, autonomous, on-site benchtop DIC analyzer capable of measuring DIC in seawater at a high temporal resolution as a step towards an underwater DIC sensor. The analyzer is able to measure a wide range of DIC concentrations in both fresh and marine waters. The achieved accuracy and precision offer an excellent opportunity to employ the analyzer for ocean acidification studies and CO2 leakage detection in the context of Carbon Capture and Storage operations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa