RESUMO
We previously reported that the bismuth(III) dithiocarbamate derivative, bismuth diethyldithiocarbamate (1) exhibited greater cytotoxicity while inducing apoptosis via the intrinsic pathway in MCF-7 cells. We further evaluated the other bismuth(III) dithiocarbamate derivatives, Bi[S2CNR]3, with R = (CH2CH2OH)(iPr), (CH2)4, and (CH2CH2OH)(CH3), denoted as 2, 3, and 4, respectively, in the same MCF-7 cell line. 2-4 were found to exhibit IC50 values of 10.33 ± 0.06 µM, 1.07 ± 0.01 µM and 25.37 ± 0.12 µM, respectively, compared to that of cisplatin at 30.53 ± 0.23 µM. Apoptotic promotion via the mitochondrial-dependent pathway was due to the elevation of intracellular reactive oxygen species (ROS), promotion of caspases, release of cytochrome c, fragmentation of DNA, and results of staining assay observed in all compound-treated cells. 2-4 are also capable of suppressing MCF-7 cell invasion and modulate Lys-48 also Lys-63 linked polyubiquitination, leading to proteasomal degradation. Analysis of gene expression via qRT-PCR revealed their modulation, which supported all activities conducted upon treatment with 2-4. Altogether, bismuth dithiocarbamate derivatives, with bismuth(III) as the metal center bound to ligands, isopropyl ethanol, pyrrolidine, and methyl ethanol dithiocarbamate, are potential anti-breast cancer agents that induce apoptosis and suppress metastasis. Further studies using other breast cancer cell lines and in vivo studies are recommended to clarify the anticancer effects of these compounds.
Assuntos
Antineoplásicos , Apoptose , Bismuto , Neoplasias da Mama , Mitocôndrias , Tiocarbamatos , Humanos , Bismuto/química , Bismuto/farmacologia , Apoptose/efeitos dos fármacos , Tiocarbamatos/farmacologia , Tiocarbamatos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Feminino , Invasividade Neoplásica , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacosRESUMO
Dithiocarbamate is a key structural sequence in pharmaceuticals and agrochemicals, and its synthesis is crucial in organic chemistry. Although significant progress has been made in related synthesis research, developing a practical and universal synthesis method remains fascinating. Herein, we report a new visible-light-induced decarboxylation coupling reaction between N-hydroxyphthalimide esters and tetraalkylthiuram disulfides, which uses Ir(ppy)3 as a photocatalyst to promote the generation of corresponding decarboxylation thioacylation product-dithiocarbamates in high yields. This redox-neutral protocol uses inexpensive and readily available starting material under mild reaction conditions, exhibiting broad substrate scope and wide functional group compatibility. This method can be further used for post modification of complex natural products and bioactive drugs.
RESUMO
In recent years, poly(ADP-ribose)polymerase-1 (PARP-1) and histone deacetylase (HDAC) have emerged as significant targets in tumor therapy, garnering widespread attention. In this study, we designed and synthesized two novel phthalazinone PARP-1 inhibitors and dual PARP-1/HDAC-1 inhibitors, named DLC-1-46 containing dithiocarboxylate fragments and DLC-47-63 containing hydroxamic acid fragments, and evaluated their inhibitory activities on enzymes and cells. Among the PARP-1 inhibitors, most compounds exhibited high inhibitory activity against the PARP-1 enzyme, with DLC-1-6 being particularly notable, showing IC50 values <0.2â¯nM. Notably, DLC-1 demonstrated significant anti-proliferative activity, with IC50 values for inhibiting the proliferation of MDA-MB-436, MDA-MB-231, and MCF-7 cells reaching 0.08, 26.39, and 1.01⯵M, respectively. Further investigation revealed that DLC-1 arrested MDA-MB-231 cells in the G1 phase and induced apoptosis in a dose-dependent manner. Among the designed dual PARP-1/HDAC-1 inhibitors, several compounds exhibited potent dual-target inhibitory activity, with DLC-49 displaying IC50 values of 0.53â¯nM and 17â¯nM for PARP-1 and HDAC-1, respectively. DLC-50 demonstrated the most potent anti-proliferative activity, with IC50 values for inhibiting the proliferation of MDA-MB-436, MDA-MB-231, and MCF-7 cells at 0.30, 2.70, and 2.41⯵M, respectively. Cell cycle arrest and apoptosis assays indicated that DLC-50 arrested the cell cycle in the G2 phase and induced apoptosis in HCT-116 cells. Our findings present a novel avenue for further exploration of PARP-1 inhibitors and dual PARP-1/HDAC-1 inhibitors.
Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1 , Inibidores de Histona Desacetilases , Ftalazinas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Relação Estrutura-Atividade , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Ftalazinas/farmacologia , Ftalazinas/síntese química , Ftalazinas/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Simulação de Acoplamento MolecularRESUMO
Two series of 2,4-diarylaminopyrimidine derivatives containing sulfonamide moiety were designed and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most compounds significantly inhibited the enzymatic activities of FAK, and the best compound was 7b (IC50 = 0.27 nM). A majority of aminoethyl sulfonamide derivatives could effectively inhibit the proliferation of human cancer cell lines (HCT116, A549, MDA-MB-231 and Hela) expressing high levels of FAK. Particularly, compounds 7b, 7c, and 7o exhibited more significant efficacy against all of four cancer cell lines within concentrations of 1.5 µM. Furthermore, these three compounds displayed higher selectivity of cancer cells over normal cells (SI value > 14), compared to the positive control TAE226 (SI value = 1.63). Interestingly, introduction of dithiocarbamate moiety to the aminoethyl sulfonamide derivatives can indeed improve the antiproliferative activities against A549 cells. Especially, compound 8d demonstrated most significant cytotoxicity activity against A549 cells with an IC50 value of 0.08 µM, which is 20-fold superior to parent compound 7k. Additionally, compound 7b, which display the best anti-FAK potency, can inhibit the clone formation and migration of HCT-116 cells, and cause cell cycle arrest at G2/M phase, inducing apoptosis by promoting ROS production. Overall, these results suggest that 7b is a valuable FAK inhibitor that deserves further optimization to improve its druggability.
Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Proteína-Tirosina Quinases de Adesão Focal , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologiaRESUMO
The aim of this study was to investigate the genotoxic effect of Propineb fungicide at different concentrations (0.167, 0.335 and 0.670 mg L-1) and different treatment times (24, 48, 72 and 96 h) on Danio rerio. At the end of the treatment periods, blood was collected from the fish with a heparin injector; smear preparations were prepared, fixed and stained. In the prepared preparations, the numbers of cells with MN and erythrocyte nucleus abnormalities were examined. It was found that propineb increased micronucleus formation at all treatment times and concentrations and induced the formation of erythrocytes with morphological abnormal nuclei such as segmented, kidney-shaped, notched, vacuolated nuclei and binucleated. The increase in micronucleus formation and the number of erythrocytes with abnormal nuclei were found to be concentration and treatment time-dependent. In conclusion, in this study, Danio rerio erythrocytes were used to evaluate the genotoxic effects of propineb fungicide on aquatic organisms, which have an important place in environmental risk assessment criteria. Since fungicides used in agricultural control such as propineb may have the potential to be genotoxic to aquatic organisms, the results of toxicity tests should be taken into consideration in the selection and use of concentrations of these chemicals.
RESUMO
The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) represents a promising target for antiviral drugs aimed at combating COVID-19. Consequently, the development of Mpro inhibitor is an ideal strategy for combating the virus. In this study, we identified twenty-two dithiocarbamates (1 a-h), dithiocarbamate-Cu(II) complexes (2 a-hCu) and disulfide derivatives (2 a-e, 2 i) as potent inhibitors of Mpro, with IC50 value range of 0.09-0.72, 0.9-24.7, and 15.1-111â µM, respectively, through FRET screening. The enzyme kinetics, inhibition mode, jump dilution, and DTT assay revealed that 1 g may be a partial reversible inhibitor, while 2 d and 2 f-Cu are the irreversible and dose- and time-dependent inhibitors, potentially covalently binding to the target. Binding of 2 d, 2 f-Cu, and 1 g to Mpro was found to decrease the stability of the protein. Additionally, DTT assays and thermal shift assays indicated that 2 f-Cu and 2 d are the nonspecific and promiscuous cysteine protease inhibitor. ICP-MS implied that the inhibitory activity of 2 f-Cu may stem from the uptake of Cu(II) by the enzyme. Cytotoxicity assays demonstrated that 2 d and 1 g exhibit low cytotoxicity, whereas 2 f-Cu show certain cytotoxicity in L929 cells. Overall, this work presents two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.
RESUMO
Thioamides are widely used structures in pharmaceuticals and agrochemicals, as well as important synthons for the construction of sulfur-containing heterocycles. This report presents a series of visible-light-driven multicomponent reactions of amines, carbon disulfide, and olefins for the mild and versatile synthesis of linear thioamides and cyclic thiolactams. The use of inexpensive and readily available carbon disulfide as the thiocarbonyl source in a radical pathway enables the facile assembly of structurally diverse amine moieties with non-nucleophilic carbon-based reaction partners. Radical thiocarbamoylative cyclization provides a practical protocol that complements traditional approaches to thiolactams relying on deoxythionation. Mechanistic studies reveal that direct photoexcitation of in situ formed dithiocarbamate anions as well as versatile photoinduced electron transfer with diverse electron acceptors are key to the reactions.
RESUMO
Cyclooxygenase, also known as prostaglandin H2 synthase (PGH2), is one of the most important enzymes in pharmacology because inhibition of COX is the mechanism of action of most nonsteroidal anti-inflammatory drugs. In this study, ten thiazole derivative compounds had synthesized. The analysis of the obtained compounds was performed by 1 H NMR and 13 C NMR methods. By this method, the obtained compounds could be elucidated. The inhibitory effect of the obtained compounds on cyclooxygenase (COX) enzymes was investigated. The encoded compounds 5a, 5b, and 5c were found to be the most potent compared to the reference compounds ibuprofen (IC50 = 5.589 ± 0.278 µM), celecoxib (IC50 = 0.132 ± 0.004 µM), and nimesulide (IC50 = 1.692 ± 0.077 µM)against COX-2 isoenzyme. The inhibitory activity of 5a, 5b, and 5c is approximate, but the 5a derivative proved to be the most active in the series with an IC50 value of 0.180 ± 0.002 µM. The most potent COXs inhibitor was 5a, which was further investigated for its potential binding mode by a molecular docking study. Compound 5a was found to be localized at the active site of the enzyme, like celecoxib, which has a remarkable effect on COXs enzymes.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Farmacóforo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Celecoxib , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Relação Estrutura-Atividade , Estrutura MolecularRESUMO
Maneb is a manganese(II)-containing fungicide with a multi-site effect and no resistance, therefore it is widely applied in many parts of the world. There is, however, mounting evidence for neurotoxic effects with Parkinson-like symptoms (manganism) related to usage of Maneb. Due to its insolubility in most solvents and its paramagnetism, structural elucidation is not trivial, and thus its exact molecular structure remains unknown. We report herein a synthesis procedure to prepare Maneb reproducibly in pure form and the use of various analytical techniques including X-ray diffraction, X-ray absorption spectroscopy and electron diffraction to determine the molecular structure of Maneb in the solid state and also in solution.
RESUMO
Breast cancer is a non-communicable disease but dangerous for women, and research on anti-breast cancer drug compounds is being investigated. Mn(II)Prolinedithiocarbamate (MnProDtc) complex was synthesized and characterized in cytotoxicity and in silico assay by molecular docking. Dithiocarbamate ligand plays an important role as an anticancer agent. Melting point determination, conductivity, UV-Vis spectroscopy, FT-IR spectroscopy, XRD, and HOMO-LUMO have been studied. The binding of MnProDtc to cancer cells was examined by molecular docking, showing that the active sites of the MCF-7 strain, namely the protein O(6)-methylguanine-DNA methyltransferase (MGMT), caspase-8, and the estrogen receptor, bind to the complex. The results of the cytotoxic test of MCF-7 cancer cells undergoing apoptosis at a concentration of 37.50 µg/ml with an IC50 value of 453.96 µg/ml showed moderate anticancer activity in MCF-7 cancer cells.
RESUMO
Cisplatin is a cancer medication widely used today, but it still poses some problems due to its toxic properties in the body. To overcome this issue, a new complex has been developed as a potential anticancer drug prospect by minimizing its toxic consequences. A novel Zn(II)IleDTC complex containing isoleucine dithiocarbamate ligands has been produced and analyzed using a range of analytical and spectroscopic methods. The Zn(II) IleDTC complex were characterized using various methods, including UV-Vis spectroscopy, FT-IR, determination of melting point, conductivity, and HOMO-LUMO analysis. Furthermore, computational NMR spectrum analysis was conducted in this study. Molecular docking studies was conducted to evaluate the potential of Zn(II) isoleucine dithiocarbamate as an HIF1 inhibitor. The results showed that the Zn complex exhibited a good docking score of -6.6 and formed hydrogen bonds with ARG 17, VAL264, and GLU15, alkyl bonds with TRP27 and LEU32, and Pi-Alkyl bonds with PRO41 and ARG44. This suggests that the Zn(II) isoleucine dithiocarbamate complex could be a promising candidate for cancer treatment with potential HIF1 inhibition properties. To assess the dynamic stability and efficacy of protein-ligand interactions over time, molecular dynamics simulations was conducted for both individual proteins and protein complexes. The cytotoxicity evaluation of Zn(II) isoleucine dithiocarbamate against MCF-7 cells obtained an IC50 value of 362.70 µg/mL indicating moderate cytotoxicity and morphological changes of cancer cells causing cancer cells to undergo apoptosis. The Zn(II) isoleucine dithiocarbamate complex may have promising potential as an anticancer compound due to its significant inhibitory effect on the breast cancer cell line (MCF7). According to the ADMET study, the complex exhibits drug-like characteristics with low toxicity, further supporting its potential as a viable drug candidate.
RESUMO
Proinflammatory cytokines, reactive oxygen species and imbalance of neurotransmitters are involved in the pathophysiology of angiotensin II-induced hypertension. The hypothalamic paraventricular nucleus (PVN) plays a vital role in hypertension. Evidences show that microglia are activated and release proinflammatory cytokines in angiocardiopathy. We hypothesized that angiotensin II induces PVN microglial activation, and the activated PVN microglia release proinflammatory cytokines and cause oxidative stress through nuclear factor-kappa B (NF-κB) pathway, which contributes to sympathetic overactivity and hypertension. Male Sprague-Dawley rats (weight 275-300 g) were infused with angiotensin II to induce hypertension. Then, rats were treated with bilateral PVN infusion of microglial activation inhibitor minocycline, NF-κB activation inhibitor pyrrolidine dithiocarbamate or vehicle for 4 weeks. When compared to control groups, angiotensin II-induced hypertensive rats had higher mean arterial pressure, PVN proinflammatory cytokines, and imbalance of neurotransmitters, accompanied with PVN activated microglia. These rats also had more PVN gp91phox (source of reactive oxygen species production), and NF-κB p65. Bilateral PVN infusion of minocycline or pyrrolidine dithiocarbamate partly or completely ameliorated these changes. This study indicates that angiotensin II-induced hypertensive rats have more activated microglia in PVN, and activated PVN microglia release proinflammatory cytokines and result in oxidative stress, which contributes to sympathoexcitation and hypertensive response. Suppression of activated PVN microglia by minocycline or pyrrolidine dithiocarbamate attenuates inflammation and oxidative stress, and improves angiotensin II-induced hypertension, which indicates that activated microglia promote hypertension through activated NF-κB. The findings may offer hypertension new strategies.
Assuntos
Hipertensão , Minociclina , Ratos , Masculino , Animais , Minociclina/efeitos adversos , Microglia/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Ratos Sprague-Dawley , Hipertensão/tratamento farmacológico , Citocinas/metabolismo , Neurotransmissores/efeitos adversos , Neurotransmissores/metabolismoRESUMO
Mancozeb (MZ), a manganese/zinc containing ethylene-bis-dithiocarbamate, is a broad-spectrum fungicide. Chronic exposure to MZ has been related to several organisms' neurological, hormonal, and developmental disorders. However, little is known about the post-natal effects of developmental exposure to MZ. In this study, Drosophila melanogaster was subjected to a pre-imaginal (eggs-larvae-pupae stage) model of exposure to MZ at 0.1 and 0.5 mg/mL. The emergence rate, body size, locomotor performance, sleep patterns, and molecular and biochemical parameters were evaluated in post-emerged flies. Results demonstrate that pre-imaginal exposure to MZ significantly impacted early emerged flies. Additionally, reduced progeny viability, smaller body size and delaying in emergence period, locomotor impairment, and prolonged sleep time were observed. Content of glucose, proteins, and triglycerides were altered, and the bioenergetics efficiency and oxidative phosphorylation at complex I were inhibited. mRNA stade state levels of genes responsive to stress, metabolism, and regulation of circadian cycle (Nrf2, p38, Hsp83, Akt1, GPDH, tor, per, tim, dILP2, and dILP6) were augmented, pointing out to stimulation of antioxidant defenses, insulin-dependent signaling pathway activation, and disruption of sleep regulation. These data were followed by increased lipid peroxidation and lower glutathione levels. In addition, the activity of catalase and glutathione-S-transferase were induced, whereas superoxide dismutase was inhibited. Together, these results demonstrate that developmental exposure to MZ formulation led to phenotype and behavioral alterations in young flies, possibly related to disruption of energetic metabolism, oxidative stress, and deregulation of genes implied in growth, sleep, and metabolism.
Assuntos
Drosophila melanogaster , Zineb , Animais , Zineb/toxicidade , Estresse Oxidativo , Antioxidantes/farmacologia , Glutationa/metabolismoRESUMO
Schistosomiasis or bilharzia is caused by blood flukes of the genus Schistosoma and represents a considerable health and economic burden in tropical and subtropical regions. The treatment of this infectious disease relies on one single drug: praziquantel (PZQ). Therefore, new and potent antischistosomal compounds need to be developed. In our previous work, starting with the drug disulfiram, we developed dithiocarbamates with in vitro antischistosomal activities in the low micromolar range. Based on these results, we report in this study on the synthesis and biological testing of the structurally related dithiocarbazates against Schistosoma mansoni, one of the major species of schistosomes. In total, three series of dithiocarbazate derivatives were examined, and we found that the antischistosomal activity of N-unbranched dithiocarbazates increased by further N-substitution. Comparable tetra-substituted dithiocarbazates were rarely described in the literature, thus a synthesis route was established. Due to the elaborate synthesis, the branched dithiocarbazates (containing an N-aminopiperazine) were simplified, but the resulting branched dithiocarbamates (containing a 4-aminopiperidine) were considerably less active. Taken together, dithiocarbazate-containing compounds with an in vitro antischistosomal activity of 5 µM were obtained.
Assuntos
Esquistossomose , Esquistossomicidas , Humanos , Animais , Esquistossomicidas/farmacologia , Relação Estrutura-Atividade , Esquistossomose/tratamento farmacológico , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma mansoniRESUMO
Organic polymers are widely explored due to their high stability, scalability, and more facile modification properties. We developed cost-effective dithiocarbamate-based organic polymers synthesized using diamides, carbon disulfide, and diamines to apply for environmental remediation. The sequestration of radioiodine is a serious concern to tackle when dealing with nuclear power for energy requirements. However, many of the current sorbents have the problem of slower adsorption for removing iodine. In this report, we discuss the utilization of an electron-rich dithiocarbamate-based organic polymer for the removal of iodine in a very short time and with high uptake. Our material showed 2.8 g/g uptake of vapor iodine in 1 h, 915.19 mg/g uptake of iodine from cyclohexane within 5 s, 93% removal of saturated iodine from water in 1 min, and 1250 mg/g uptake of triiodide ions from water within 30 s. To the best of our knowledge, the iodine capture was faster than previously observed for any existing material. The material was fully recyclable when applied for up to four cycles. Hence, this dithiocarbamate-based polymer can be a promising system for the fast removal of various forms of iodine and, thus, enhance environmental security.
Assuntos
Iodo , Polímeros , Água , Radioisótopos do Iodo , SolventesRESUMO
Polycarbamate is commonly used as an antifoulant coating on fishing nets in Japan. Although its toxicity to freshwater organisms has been reported, its toxicity to marine organisms is currently unknown. We conducted algal growth inhibition and crustacean immobilization tests to assess the effects of polycarbamate on marine organisms. We also evaluated the acute toxicity of the main components of polycarbamate, namely, dimethyldithiocarbamate and ethylenebisdithiocarbamate, to algae, which are the most sensitive tested organisms to polycarbamate. The toxicities of dimethyldithiocarbamate and ethylenebisdithiocarbamate partially explain that of polycarbamate. To assess the primary risk, we derived the predicted no-effect concentration (PNEC) for polycarbamate in a probabilistic manner using species sensitivity distributions. The 72 h no observed effect concentration (NOEC) of polycarbamate to the alga Skeletonema marinoi-dohrnii complex was 0.45 µg/L. The toxicity of dimethyldithiocarbamate may have contributed up to 72% of the toxicity observed for polycarbamate. The fifth percentile of hazardous concentration (HC5) derived from the acute toxicity values was 0.48 µg/L. Comparison of previously reported environmental polycarbamate concentrations in Hiroshima Bay, Japan, to the PNEC estimated using the minimum NOEC and HC5 suggest that polycarbamate currently poses a high ecological risk. Therefore, reducing the risk by restricting polycarbamate use is necessary.
Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Crustáceos , Organismos Aquáticos , Dimetilditiocarbamato/farmacologia , Medição de RiscoRESUMO
For fabricating a membrane with hydrophilic and complexing agent groups, a new dithiocarbamate-based polymer (DTCP) containing dithiocarbamate, thioamide, and ethereal oxygen groups was synthesized and blended in polysulfone (PSF) matrix with 1, 2, 5, and 10 wt% proportion. The membranes were produced by the nonsolvent induced phase separation method. For DTCP characterization, NMR, FTIR, TGA and GPC techniques were used. SEM images show that no morphological change can be seen even in 10 wt% blended membranes. AFM surface images show that the roughness of 5 and 10 wt% membranes extremely increased. The performance of the DTCP/PSF membranes were investigated in the separation of lead ions and Reactive Yellow 39 dye from the contaminated water. The outcomes indicated that by increasing the amount of DTCP up to 10 wt%, the pure water ï¬ux, bovine serum albumin flux, and the lead removal increased very efficiently compared to the bare one. Blending of more than 1 wt% DTCP, cause to removal of 99.6% lead ions. The water contact angle decreased by the adding of DTCP, caused to increase fouling resistance. The results of this research shows that the synthesized DTCP can be used as a good additive for improving membrane permeability, anti-fouling and especially heavy metal removal efficiency.
Assuntos
Purificação da Água , Purificação da Água/métodos , Membranas Artificiais , Chumbo , Água/química , PolímerosRESUMO
Sodium dimethyl dithiocarbamate (SDD) is widely used for stabilizing heavy metals to minimize pollution from air pollution control (APC) residues derived from municipal solid waste incineration. However, the effect of environmental conditions on heavy metal leaching from SDD-stabilized APC residues remains unknown. Therefore, this study aimed to evaluate the durability of SDD-stabilized APC residues and determine the relationship between heavy metal leaching and environmental factors, including pH, temperature, and oxygen. The results revealed that accelerated SDD decomposition and the decline in durability of SDD-stabilized APC residues were caused by acidic and aerated conditions and temperatures above 40 °C. A decrease in pH from 12.25 to 4.69 increased the Cd and Pb concentrations in SDD-stabilized APC residue leachate from below detection (0.002 mg/L) to 1.32 mg/L and 0.04 mg/L to 3.79 mg/L, respectively. Heating at 100 °C for 2 d increased the Cd and Pb concentrations from below detection (0.002 mg/L and 0.01 mg/L) to 2.96 mg/L and 0.47 mg/L, respectively. Aeration for 5 d increased the Cd and Pb concentrations from below detection to 0.09 mg/L and 0.49 mg/L, respectively. The decline in durability was attributed to acid hydrolysis, thermal decomposition, and oxidative damage of SDD, resulting in breakage of the chelated sulfur-metal bond, which was confirmed by the decrease in the oxidizable fraction of heavy metals and the SDD content. This study improves the understanding of the factors contributing to the decline in durability of heavy metals in SDD-stabilized APC residues, which is important for ensuring the long-term stabilization and environmental safety of these residues.
Assuntos
Poluição do Ar , Metais Pesados , Eliminação de Resíduos , Incineração , Eliminação de Resíduos/métodos , Resíduos Sólidos , Dimetilditiocarbamato , Cádmio , Chumbo , Metais Pesados/química , Sódio , Cinza de Carvão , CarbonoRESUMO
Organotin (IV) dithiocarbamate has recently received attention as a therapeutic agent among organotin (IV) compounds. The individual properties of the organotin (IV) and dithiocarbamate moieties in the hybrid complex form a synergy of action that stimulates increased biological activity. Organotin (IV) components have been shown to play a crucial role in cytotoxicity. The biological effects of organotin compounds are believed to be influenced by the number of Sn-C bonds and the number and nature of alkyl or aryl substituents within the organotin structure. Ligands target and react with molecules while preventing unwanted changes in the biomolecules. Organotin (IV) dithiocarbamate compounds have also been shown to have a broad range of cellular, biochemical, and molecular effects, with their toxicity largely determined by their structure. Continuing the investigation of the cytotoxicity of organotin (IV) dithiocarbamates, this mini-review delves into the appropriate method for synthesis and discusses the elemental and spectroscopic analyses and potential cytotoxic effects of these compounds from articles published since 2010.
Assuntos
Antineoplásicos , Compostos Orgânicos de Estanho , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Orgânicos de Estanho/farmacologia , Compostos Orgânicos de Estanho/químicaRESUMO
Mixed ligand complexes of Pd(II) and Cd(II) with N-picolyl-amine dithiocarbamate (PAC-dtc) as primary ligand and tertiary phosphine ligand as secondary ligands have been synthesized and characterized via elemental analysis, molar conductance, NMR (1H and 31P), and IR techniques. The PAC-dtc ligand displayed in a monodentate fashion via sulfur atom whereas diphosphine ligands coordinated as a bidentate mode to afford a square planner around the Pd(II) ion or tetrahedral around the Cd(II) ion. Except for complexes [Cd(PAC-dtc)2(dppe)] and [Cd(PAC-dtc)2(PPh3)2], the prepared complexes showed significant antimicrobial activity when evaluated against Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Moreover, DFT calculations were performed to investigate three complexes {[Pd(PAC-dtc)2(dppe)](1), [Cd(PAC-dtc)2(dppe)](2), [Cd(PAC-dtc)2(PPh3)2](7)}, and their quantum parameters were evaluated using the Gaussian 09 program at the B3LYP/Lanl2dz theoretical level. The optimized structures of the three complexes were square planar and tetrahedral geometry. The calculated bond lengths and bond angles showed a slightly distorted tetrahedral geometry for [Cd(PAC-dtc)2(dppe)](2) compared to [Cd(PAC-dtc)2(PPh3)2](7) due to the ring constrain in the dppe ligand. Moreover, the [Pd(PAC-dtc)2(dppe)](1) complex showed higher stability compared to Cd(2) and Cd(7) complexes which can be attributed to the higher back-donation of Pd(1) complex.