Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Stat ; 46(4): 1742-1778, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30258255

RESUMO

We show that in a common high-dimensional covariance model, the choice of loss function has a profound effect on optimal estimation. In an asymptotic framework based on the Spiked Covariance model and use of orthogonally invariant estimators, we show that optimal estimation of the population covariance matrix boils down to design of an optimal shrinker η that acts elementwise on the sample eigenvalues. Indeed, to each loss function there corresponds a unique admissible eigenvalue shrinker η* dominating all other shrinkers. The shape of the optimal shrinker is determined by the choice of loss function and, crucially, by inconsistency of both eigenvalues and eigenvectors of the sample covariance matrix. Details of these phenomena and closed form formulas for the optimal eigenvalue shrinkers are worked out for a menagerie of 26 loss functions for covariance estimation found in the literature, including the Stein, Entropy, Divergence, Fréchet, Bhattacharya/Matusita, Frobenius Norm, Operator Norm, Nuclear Norm and Condition Number losses.

2.
Diagnostics (Basel) ; 13(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685290

RESUMO

Acute lymphoblastic leukemia (ALL) is a life-threatening hematological malignancy that requires early and accurate diagnosis for effective treatment. However, the manual diagnosis of ALL is time-consuming and can delay critical treatment decisions. To address this challenge, researchers have turned to advanced technologies such as deep learning (DL) models. These models leverage the power of artificial intelligence to analyze complex patterns and features in medical images and data, enabling faster and more accurate diagnosis of ALL. However, the existing DL-based ALL diagnosis suffers from various challenges, such as computational complexity, sensitivity to hyperparameters, and difficulties with noisy or low-quality input images. To address these issues, in this paper, we propose a novel Deep Skip Connections-Based Dense Network (DSCNet) tailored for ALL diagnosis using peripheral blood smear images. The DSCNet architecture integrates skip connections, custom image filtering, Kullback-Leibler (KL) divergence loss, and dropout regularization to enhance its performance and generalization abilities. DSCNet leverages skip connections to address the vanishing gradient problem and capture long-range dependencies, while custom image filtering enhances relevant features in the input data. KL divergence loss serves as the optimization objective, enabling accurate predictions. Dropout regularization is employed to prevent overfitting during training, promoting robust feature representations. The experiments conducted on an augmented dataset for ALL highlight the effectiveness of DSCNet. The proposed DSCNet outperforms competing methods, showcasing significant enhancements in accuracy, sensitivity, specificity, F-score, and area under the curve (AUC), achieving increases of 1.25%, 1.32%, 1.12%, 1.24%, and 1.23%, respectively. The proposed approach demonstrates the potential of DSCNet as an effective tool for early and accurate ALL diagnosis, with potential applications in clinical settings to improve patient outcomes and advance leukemia detection research.

3.
PeerJ Comput Sci ; 7: e694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616885

RESUMO

The emergence of the novel coronavirus pneumonia (COVID-19) pandemic at the end of 2019 led to worldwide chaos. However, the world breathed a sigh of relief when a few countries announced the development of a vaccine and gradually began to distribute it. Nevertheless, the emergence of another wave of this pandemic returned us to the starting point. At present, early detection of infected people is the paramount concern of both specialists and health researchers. This paper proposes a method to detect infected patients through chest x-ray images by using the large dataset available online for COVID-19 (COVIDx), which consists of 2128 X-ray images of COVID-19 cases, 8,066 normal cases, and 5,575 cases of pneumonia. A hybrid algorithm is applied to improve image quality before undertaking neural network training. This algorithm combines two different noise-reduction filters in the image, followed by a contrast enhancement algorithm. To detect COVID-19, we propose a novel convolution neural network (CNN) architecture called KL-MOB (COVID-19 detection network based on the MobileNet structure). The performance of KL-MOB is boosted by adding the Kullback-Leibler (KL) divergence loss function when trained from scratch. The KL divergence loss function is adopted for content-based image retrieval and fine-grained classification to improve the quality of image representation. The results are impressive: the overall benchmark accuracy, sensitivity, specificity, and precision are 98.7%, 98.32%, 98.82% and 98.37%, respectively. These promising results should help other researchers develop innovative methods to aid specialists. The tremendous potential of the method proposed herein can also be used to detect COVID-19 quickly and safely in patients throughout the world.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa