Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Bacteriol ; 205(4): e0002723, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36920204

RESUMO

The periplasmic (NAP) and membrane-associated (Nar) nitrate reductases of Paracoccus denitrificans are responsible for nitrate reduction under aerobic and anaerobic conditions, respectively. Expression of NAP is elevated in cells grown on a relatively reduced carbon and energy source (such as butyrate); it is believed that NAP contributes to redox homeostasis by coupling nitrate reduction to the disposal of excess reducing equivalents. Here, we show that deletion of either dksA1 (one of two dksA homologs in the P. denitrificans genome) or relA/spoT (encoding a bifunctional ppGpp synthetase and hydrolase) eliminates the butyrate-dependent increase in nap promoter and NAP enzyme activity. We conclude that ppGpp likely signals growth on a reduced substrate and, together with DksA1, mediates increased expression of the genes encoding NAP. Support for this model comes from the observation that nap promoter activity is increased in cultures exposed to a protein synthesis inhibitor that is known to trigger ppGpp synthesis in other organisms. We also show that, under anaerobic growth conditions, the redox-sensing RegAB two-component pair acts as a negative regulator of NAP expression and as a positive regulator of expression of the membrane-associated nitrate reductase Nar. The dksA1 and relA/spoT genes are conditionally synthetically lethal; the double mutant has a null phenotype for growth on butyrate and other reduced substrates while growing normally on succinate and citrate. We also show that the second dksA homolog (dksA2) and relA/spoT have roles in regulation of expression of the flavohemoglobin Hmp and in biofilm formation. IMPORTANCE Paracoccus denitrificans is a metabolically versatile Gram-negative bacterium that is used as a model for studies of respiratory metabolism. The organism can utilize nitrate as an electron acceptor for anaerobic respiration, reducing it to dinitrogen via nitrite, nitric oxide, and nitrous oxide. This pathway (known as denitrification) is important as a route for loss of fixed nitrogen from soil and as a source of the greenhouse gas nitrous oxide. Thus, it is important to understand those environmental and genetic factors that govern flux through the denitrification pathway. Here, we identify four proteins and a small molecule (ppGpp) which function as previously unknown regulators of expression of enzymes that reduce nitrate and oxidize nitric oxide.


Assuntos
Nitratos , Paracoccus denitrificans , Nitratos/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Guanosina Tetrafosfato/metabolismo , Óxido Nitroso/metabolismo , Óxido Nítrico/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Respiração , Butiratos/metabolismo
2.
J Biol Chem ; 298(7): 102099, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667439

RESUMO

Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo∗) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of Escherichia coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees, and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.


Assuntos
RNA Polimerases Dirigidas por DNA , Proteínas de Escherichia coli , Escherichia coli , Supressão Genética , Reparo do DNA , Replicação do DNA , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Transcrição Gênica
3.
J Biol Chem ; 298(7): 102130, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714768

RESUMO

The type III secretion system encoded in the Salmonella pathogenicity island-2 (SPI-2) gene cluster facilitates intracellular growth of nontyphoidal Salmonella by interfering with the maturation of Salmonella-containing vacuoles along the degradative pathway. SPI-2 gene products also protect Salmonella against the antimicrobial activity of reactive oxygen species (ROS) synthesized by the phagocyte NADPH oxidase 2 (NOX2). However, a potential relationship between inflammatory ROS and the activation of transcription of SPI-2 genes by intracellular Salmonella is unclear. Here, we show that ROS engendered in the innate host response stimulate SPI-2 gene transcription. We found that the expression of SPI-2 genes in Salmonella-sustaining oxidative stress conditions involves DksA, a protein otherwise known to regulate the stringent response of bacteria to nutritional stress. We also demonstrate that the J and zinc-2-oxidoreductase domains of DnaJ as well as the ATPase activity of the DnaK chaperone facilitate loading of DksA onto RNA polymerase complexed with SPI-2 promoters. Furthermore, the DksA-driven transcription of SPI-2 genes in Salmonella experiencing oxidative stress is contingent on upstream OmpR, PhoP, and SsrB signaling events that participate in the removal of nucleoid proteins while simultaneously recruiting RNA polymerase to SPI-2 promoter regions. Taken together, our results suggest the activation of SPI-2 gene transcription in Salmonella subjected to ROS produced by the respiratory burst of macrophages protects this intracellular pathogen against NOX2-mediated killing. We propose that Salmonella have co-opted inflammatory ROS to induce SPI-2-mediated protective responses against NOX2 host defenses.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana , Estresse Oxidativo , Salmonella , Ativação Transcricional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Espécies Reativas de Oxigênio/metabolismo , Salmonella/genética , Salmonella/metabolismo , Ativação Transcricional/fisiologia
4.
J Biol Chem ; 298(11): 102600, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244456

RESUMO

Bacteria engulfed by phagocytic cells must resist oxidation damage and adapt to cellular hypoxia, but the mechanisms involved in this process are not completely elucidated. Recent work by Kim et al. in the Journal of Biological Chemistry investigated how the intracellular pathogen Salmonella enterica activates gene expression required to counteract oxidative damage. The authors show that this bacterium utilizes host oxidative molecules to activate regulatory proteins that enhance the production of effector molecules, counteracting the host weapon NADPH oxidase and inducing a protective response.


Assuntos
NADPH Oxidases , Salmonella enterica , NADPH Oxidases/metabolismo , Salmonella enterica/genética , Estresse Oxidativo , Oxirredução , Fagócitos/metabolismo , Proteínas de Bactérias/metabolismo
5.
Annu Rev Microbiol ; 72: 163-184, 2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30200857

RESUMO

The stringent response to nutrient deprivation is a stress response found throughout the bacterial domain of life. Although first described in proteobacteria for matching ribosome synthesis to the cell's translation status and for preventing formation of defective ribosomal particles, the response is actually much broader, regulating many hundreds of genes-some positively, some negatively. Utilization of the signaling molecules ppGpp and pppGpp for this purpose is ubiquitous in bacterial evolution, although the mechanisms employed vary. In proteobacteria, the signaling molecules typically bind to two sites on RNA polymerase, one at the interface of the ß' and ω subunits and one at the interface of the ß' secondary channel and the transcription factor DksA. The ß' secondary channel is targeted by other transcription regulators as well. Although studies on the transcriptional outputs of the stringent response date back at least 50 years, the mechanisms responsible are only now coming into focus.


Assuntos
Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/metabolismo , Proteobactérias/genética , Proteobactérias/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Guanosina Pentafosfato/metabolismo
6.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108773

RESUMO

The stringent response is a rapid response system that is ubiquitous in bacteria, allowing them to sense changes in the external environment and undergo extensive physiological transformations. However, the regulators (p)ppGpp and DksA have extensive and complex regulatory patterns. Our previous studies demonstrated that (p)ppGpp and DksA in Yersinia enterocolitica positively co-regulated motility, antibiotic resistance, and environmental tolerance but had opposite roles in biofilm formation. To reveal the cellular functions regulated by (p)ppGpp and DksA comprehensively, the gene expression profiles of wild-type, ΔrelA, ΔrelAΔspoT, and ΔdksAΔrelAΔspoT strains were compared using RNA-Seq. Results showed that (p)ppGpp and DksA repressed the expression of ribosomal synthesis genes and enhanced the expression of genes involved in intracellular energy and material metabolism, amino acid transport and synthesis, flagella formation, and the phosphate transfer system. Additionally, (p)ppGpp and DksA inhibited amino acid utilization (such as arginine and cystine) and chemotaxis in Y. enterocolitica. Overall, the results of this study unraveled the link between (p)ppGpp and DksA in the metabolic networks, amino acid utilization, and chemotaxis in Y. enterocolitica and enhanced the understanding of stringent responses in Enterobacteriaceae.


Assuntos
Proteínas de Escherichia coli , Yersinia enterocolitica , Guanosina Pentafosfato/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Transcriptoma , Quimiotaxia/genética , Aminoácidos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569327

RESUMO

DksA is a proteobacterial regulator that binds directly to the secondary channel of RNA polymerase with (p)ppGpp and is responsible for various bacterial physiological activities. While (p)ppGpp is known to be involved in the regulation and response of fatty acid metabolism pathways in many foodborne pathogens, the role of DksA in this process has yet to be clarified. This study aimed to characterize the function of DksA on fatty acid metabolism and cell membrane structure in Yersinia enterocolitica. Therefore, comparison analysis of gene expression, growth conditions, and membrane permeabilization among the wide-type (WT), DksA-deficient mutant (YEND), and the complemented strain was carried out. It confirmed that deletion of DksA led to a more than four-fold decrease in the expression of fatty acid degradation genes, including fadADEIJ. Additionally, YEND exhibited a smaller growth gap compared to the WT strain at low temperatures, indicating that DksA is not required for the growth of Y. enterocolitica in cold environments. Given that polymyxin B is a cationic antimicrobial peptide that targets the cell membrane, the roles of DksA under polymyxin B exposure were also characterized. It was found that DksA positively regulates the integrity of the inner and outer membranes of Y. enterocolitica under polymyxin B, preventing the leakage of intracellular nucleic acids and proteins and ultimately reducing the sensitivity of Y. enterocolitica to polymyxin B. Taken together, this study provides insights into the functions of DksA and paves the way for novel fungicide development.


Assuntos
Proteínas de Escherichia coli , Yersinia enterocolitica , Polimixina B/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Guanosina Pentafosfato/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo
8.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835415

RESUMO

The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets.


Assuntos
Guanosina Pentafosfato , Guanosina Tetrafosfato , Animais , Guanosina Pentafosfato/genética , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Ligantes , Escherichia coli/metabolismo , Guanosina , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
9.
J Biol Chem ; 296: 100576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757766

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen whose virulence is dependent on quorum sensing (QS). DksA1, an RNA polymerase-binding transcriptional regulator, plays a role in determining a number of phenotypes, including QS-mediated virulence. We therefore envisioned that DksA1 inhibitors may help to control P. aeruginosa infection. Here, we screened a library of 6970 chemical compounds and identified two compounds (henceforth termed Dkstatins) that specifically suppressed DksA1 activity. Treatment with these two compounds also substantially decreased the production of elastase and pyocyanin, dominant virulence determinants of P. aeruginosa, and protected murine hosts from lethal infection from a prototype strain of P. aeruginosa, PAO1. The Dkstatins also suppressed production of homoserine lactone (HSL)-based autoinducers that activate P. aeruginosa QS. The level of 3-oxo-C12-HSL produced by Dkstatin-treated wildtype PAO1 closely resembled that of the ΔdksA1 mutant. RNA-Seq analysis showed that transcription levels of QS- and virulence-associated genes were markedly reduced in Dkstatin-treated PAO1 cells, indicating that Dkstatin-mediated suppression occurs at the transcriptional level. Importantly, Dkstatins increased the antibiotic susceptibilities of PAO1, particularly to protein synthesis inhibitors, such as tobramycin and tetracycline. Co-immunoprecipitation assays demonstrated that these Dkstatins interfered with DksA1 binding to the ß subunit of RNA polymerase, pointing to a potential mechanism of action. Collectively, our results illustrate that inhibition of P. aeruginosa QS may be achieved via DksA1 inhibitors and that Dkstatins may serve as potential lead compounds to control infection.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sequência Conservada , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Camundongos , Mutação , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 116(17): 8310-8319, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30971496

RESUMO

The second messenger nucleotide ppGpp dramatically alters gene expression in bacteria to adjust cellular metabolism to nutrient availability. ppGpp binds to two sites on RNA polymerase (RNAP) in Escherichia coli, but it has also been reported to bind to many other proteins. To determine the role of the RNAP binding sites in the genome-wide effects of ppGpp on transcription, we used RNA-seq to analyze transcripts produced in response to elevated ppGpp levels in strains with/without the ppGpp binding sites on RNAP. We examined RNAs rapidly after ppGpp production without an accompanying nutrient starvation. This procedure enriched for direct effects of ppGpp on RNAP rather than for indirect effects on transcription resulting from starvation-induced changes in metabolism or on secondary events from the initial effects on RNAP. The transcriptional responses of all 757 genes identified after 5 minutes of ppGpp induction depended on ppGpp binding to RNAP. Most (>75%) were not reported in earlier studies. The regulated transcripts encode products involved not only in translation but also in many other cellular processes. In vitro transcription analysis of more than 100 promoters from the in vivo dataset identified a large collection of directly regulated promoters, unambiguously demonstrated that most effects of ppGpp on transcription in vivo were direct, and allowed comparison of DNA sequences from inhibited, activated, and unaffected promoter classes. Our analysis greatly expands our understanding of the breadth of the stringent response and suggests promoter sequence features that contribute to the specific effects of ppGpp.


Assuntos
Sítios de Ligação/genética , RNA Polimerases Dirigidas por DNA , Escherichia coli/genética , Guanosina Tetrafosfato , Transcrição Gênica/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Regiões Promotoras Genéticas/genética , Transcriptoma
11.
J Biol Chem ; 295(12): 3851-3864, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32047111

RESUMO

The stringent response (SR) is a highly conserved stress response in bacteria. It is composed of two factors, (i) a nucleotide alarmone, guanosine tetra- and pentaphosphate ((p)ppGpp), and (ii) an RNA polymerase-binding protein, DksA, that regulates various phenotypes, including bacterial virulence. The clinically significant opportunistic bacterial pathogen Pseudomonas aeruginosa possesses two genes, dksA1 and dksA2, that encode DksA proteins. It remains elusive, however, which of these two genes plays a more important role in SR regulation. In this work, we compared genome-wide, RNA-Seq-based transcriptome profiles of ΔdksA1, ΔdksA2, and ΔdksA1ΔdksA2 mutants to globally assess the effects of these gene deletions on transcript levels coupled with phenotypic analyses. The ΔdksA1 mutant exhibited substantial defects in a wide range of phenotypes, including quorum sensing (QS), anaerobiosis, and motility, whereas the ΔdksA2 mutant exhibited no significant phenotypic changes, suggesting that the dksA2 gene may not have an essential function in P. aeruginosa under the conditions used here. Of note, the ΔdksA1 mutants displayed substantially increased transcription of genes involved in polyamine biosynthesis, and we also detected increased polyamine levels in these mutants. Because SAM is a shared precursor for the production of both QS autoinducers and polyamines, these findings suggest that DksA1 deficiency skews the flow of SAM toward polyamine production rather than to QS signaling. Together, our results indicate that DksA1, but not DksA2, controls many important phenotypes in P. aeruginosa We conclude that DksA1 may represent a potential target whose inhibition may help manage recalcitrant P. aeruginosa infections.


Assuntos
Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica/métodos , Pseudomonas aeruginosa/metabolismo , Transativadores/metabolismo , Transcriptoma , Anaerobiose , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , RNA Polimerases Dirigidas por DNA/metabolismo , Mutagênese , Fenótipo , Poliaminas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/genética , Transativadores/genética , Virulência/genética
12.
J Biol Chem ; 295(28): 9583-9595, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32439804

RESUMO

DNA lesions can severely compromise transcription and block RNA synthesis by RNA polymerase (RNAP), leading to subsequent recruitment of DNA repair factors to the stalled transcription complex. Recent structural studies have uncovered molecular interactions of several DNA lesions within the transcription elongation complex. However, little is known about the role of key elements of the RNAP active site in translesion transcription. Here, using recombinantly expressed proteins, in vitro transcription, kinetic analyses, and in vivo cell viability assays, we report that point amino acid substitutions in the trigger loop, a flexible element of the active site involved in nucleotide addition, can stimulate translesion RNA synthesis by Escherichia coli RNAP without altering the fidelity of nucleotide incorporation. We show that these substitutions also decrease transcriptional pausing and strongly affect the nucleotide addition cycle of RNAP by increasing the rate of nucleotide addition but also decreasing the rate of translocation. The secondary channel factors DksA and GreA modulated translesion transcription by RNAP, depending on changes in the trigger loop structure. We observed that although the mutant RNAPs stimulate translesion synthesis, their expression is toxic in vivo, especially under stress conditions. We conclude that the efficiency of translesion transcription can be significantly modulated by mutations affecting the conformational dynamics of the active site of RNAP, with potential effects on cellular stress responses and survival.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/biossíntese , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética
13.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33332258

RESUMO

In order to cause disease, pathogenic strains of Vibrio cholerae rely on intricate regulatory networks to orchestrate the transition between their native aquatic environment and the human host. For example, bacteria in a nutrient-starved environment undergo a metabolic shift called the stringent response, which is mediated by the alarmone ppGpp and an RNA-polymerase binding transcriptional factor, DksA. In O1 serogroup strains of V. cholerae, which use the toxin co-regulated pilus (TCP) and cholera toxin (CT) as primary virulence factors, DksA was reported to have additional functions as a mediator of virulence gene expression. However, little is known about the regulatory networks coordinating virulence phenotypes in pathogenic strains that use TCP/CT-independent virulence mechanisms. We therefore investigated whether functions of DksA outside of the stringent response are conserved in type three secretion system (T3SS)-positive V. cholerae. In using the T3SS-positive clinically isolated O39 serogroup strain AM-19226, we observed an increase in dksA expression in the presence of bile at 37 °C. However, DksA was not required for wild-type levels of T3SS structural gene expression, or for colonization in vivo. Rather, data indicate that DksA positively regulates the expression of master regulators in the motility hierarchy. Interestingly, the ΔdksA strain forms a less robust biofilm than the WT parent strain at both 30 and 37 °C. We also found that DksA regulates the expression of hapR, encoding a major regulator of biofilm formation and protease expression. Athough DksA does not appear to modulate T3SS virulence factor expression, its activity is integrated into existing regulatory networks governing virulence-related phenotypes. Strain variations therefore may take advantage of conserved ancestral proteins to expand regulons responding to in vivo signals and thus coordinate multiple phenotypes important for infection.


Assuntos
Bile/metabolismo , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Vibrio cholerae/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Locomoção/genética , Metaloendopeptidases/metabolismo , Camundongos , Fenótipo , Sorogrupo , Fatores de Transcrição/genética , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/metabolismo , Virulência
14.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33127819

RESUMO

The initial steps of Salmonella pathogenesis involve adhesion to and invasion into host epithelial cells. While well-studied for Salmonella enterica serovar Typhimurium, the factors contributing to this process in other, host-adapted serovars remains unexplored. Here, we screened clinical isolates of serovars Gallinarum, Dublin, Choleraesuis, Typhimurium, and Enteritidis for adhesion to and invasion into intestinal epithelial cell lines of human, porcine, and chicken origins. Thirty isolates with altered infectivity were used for genomic analyses, and 14 genes and novel mutations associated with high or low infectivity were identified. The functions of candidate genes included virulence gene expression regulation and cell wall or membrane synthesis and components. The role of several of these genes in Salmonella adhesion to and invasion into cells has not previously been investigated. The genes dksA (encoding a stringent response regulator) and sanA (encoding a vancomycin high-temperature exclusion protein) were selected for further analyses, and we confirmed their roles in adhesion to and invasion into host cells. Furthermore, transcriptomic analyses were performed for S Enteritidis and S Typhimurium, with two highly infective and two marginally infective isolates for each serovar. Expression profiles for the isolates with altered infection phenotypes revealed the importance of type 3 secretion system expression levels in the determination of an isolate's infection phenotype. Taken together, these data indicate a new role in cell host infection for genes or gene variants previously not associated with adhesion to and invasion into the epithelial cells.IMPORTANCESalmonella is a foodborne pathogen affecting over 200 million people and resulting in over 200,000 fatal cases per year. Its adhesion to and invasion into intestinal epithelial cells represent one of the first and key steps in the pathogenesis of salmonellosis. Still, around 35 to 40% of bacterial genes have no experimentally validated function, and their contribution to bacterial virulence, including adhesion and invasion, remains largely unknown. Therefore, the significance of this study is in the identification of new genes or gene allelic variants previously not associated with adhesion and invasion. It is well established that blocking adhesion and/or invasion would stop or hamper bacterial infection; therefore, the new findings from this study could be used in future developments of anti-Salmonella therapy targeting genes involved in these key processes. Such treatment could be a valuable alternative, as the prevalence of antibiotic-resistant bacteria is increasing very rapidly.


Assuntos
Células Epiteliais/microbiologia , Salmonella enterica/fisiologia , Animais , Aderência Bacteriana , Linhagem Celular , Galinhas , Células Epiteliais/fisiologia , Genes Bacterianos , Humanos , Mutação , Fenótipo , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Sorogrupo , Suínos
15.
RNA Biol ; 18(11): 2028-2037, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573428

RESUMO

The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.2 directly interacts with the template DNA strand upstream of the transcription start site. Here, we analysed the role of the σ finger in transcription initiation by four alternative σ factors in Escherichia coli, σ38, σ32, σ28 and σ24. We found that deletions of the σ finger to various extent compromise the activity of RNAP holoenzymes containing alternative σ factors, especially at low NTP concentrations. All four σs are able to utilize NADH as a noncanonical priming substrate but it has only mild effects on the efficiency of transcription initiation. The mediators of the stringent response, transcription factor DksA and the alarmone ppGpp decrease RNAP activity and promoter complex stability for all four σ factors on tested promoters. For all σs except σ38, deletions of the σ finger conversely increase the stability of promoter complexes and decrease their sensitivity to DksA and ppGpp. The result suggests that the σ finger plays a universal role in transcription initiation by alternative σ factors and sensitizes promoter complexes to the action of global transcription regulators DksA and ppGpp by modulating promoter complex stability.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Fator sigma/metabolismo , Sítio de Iniciação de Transcrição , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Regiões Promotoras Genéticas , RNA Bacteriano/genética , Fator sigma/genética , Transcrição Gênica
16.
Proc Natl Acad Sci U S A ; 115(50): E11604-E11613, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30463953

RESUMO

The regulation of transcription allows cells to adjust the rate of RNA polymerases (RNAPs) initiated in a promoter-specific manner. Classically, transcription factors are directed to a subset of promoters via the recognition of DNA sequence motifs. However, a unique class of regulators is recruited directly through interactions with RNAP. Surprisingly, these factors may still possess promoter specificity, and it has been postulated that the same kinetic mechanism leads to different regulatory outcomes depending on a promoter's basal rate constants. However, mechanistic studies of regulation typically report factor activity in terms of changes in the thermodynamics or kinetics of individual steps or states while qualitatively linking these observations to measured changes in transcript production. Here, I present online calculators that allow for the direct testing of mechanistic hypotheses by calculating the steady-state transcript flux in the presence and absence of a factor as a function of initiation rate constants. By evaluating how the flux ratio of a single kinetic mechanism varies across promoter space, quantitative insights into the potential of a mechanism to generate promoter-specific regulatory outcomes are obtained. Using these calculations, I predict that the mycobacterial transcription factor CarD is capable of repression in addition to its known role as an activator of ribosomal genes. In addition, a modification of the mechanism of the stringent response factors DksA/guanosine 5'-diphosphate 3'-diphosphate (ppGpp) is proposed based on their ability to differentially regulate transcription across promoter space. Overall, I conclude that a multifaceted kinetic mechanism is a requirement for differential regulation by this class of factors.


Assuntos
Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Repressão Epigenética , Guanosina Tetrafosfato/metabolismo , Cinética , Modelos Biológicos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Termodinâmica , Fatores de Transcrição/metabolismo , Ativação Transcricional
17.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072628

RESUMO

Bacteriophage P1 is among the best described bacterial viruses used in molecular biology. Here, we report that deficiency in the host cell DksA protein, an E. coli global transcription regulator, improves P1 lytic development. Using genetic and microbiological approaches, we investigated several aspects of P1vir biology in an attempt to understand the basis of this phenomenon. We found several minor improvements in phage development in the dksA mutant host, including more efficient adsorption to bacterial cell and phage DNA replication. In addition, gene expression of the main repressor of lysogeny C1, the late promoter activator Lpa, and lysozyme are downregulated in the dksA mutant. We also found nucleotide substitutions located in the phage immunity region immI, which may be responsible for permanent virulence of phage P1vir. We suggest that downregulation of C1 may lead to a less effective repression of lysogeny maintaining genes and that P1vir may be balancing between lysis and lysogeny, although finally it is able to enter the lytic pathway only. The mentioned improvements, such as more efficient replication and more "gentle" cell lysis, while considered minor individually, together may account for the phenomenon of a more efficient P1 phage development in a DksA-deficient host.


Assuntos
Bacteriófagos/fisiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/virologia , Deleção de Genes , Interações Hospedeiro-Patógeno , Regulação Viral da Expressão Gênica , Lisogenia , Mutação , Replicação Viral
18.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200430

RESUMO

The virus-host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage-host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA- hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/patogenicidade , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Interações entre Hospedeiro e Microrganismos/genética , Transcriptoma , Proteínas de Bactérias/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Virulência
19.
Proc Natl Acad Sci U S A ; 114(28): E5539-E5548, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652326

RESUMO

The Escherichia coli F element-encoded protein TraR is a distant homolog of the chromosome-encoded transcription factor DksA. Here we address the mechanism by which TraR acts as a global regulator, inhibiting some promoters and activating others. We show that TraR regulates transcription directly in vitro by binding to the secondary channel of RNA polymerase (RNAP) using interactions similar, but not identical, to those of DksA. Even though it binds to RNAP with only slightly higher affinity than DksA and is only half the size of DksA, TraR by itself inhibits transcription as strongly as DksA and ppGpp combined and much more than DksA alone. Furthermore, unlike DksA, TraR activates transcription even in the absence of ppGpp. TraR lacks the residues that interact with ppGpp in DksA, and TraR binding to RNAP uses the residues in the ß' rim helices that contribute to the ppGpp binding site in the DksA-ppGpp-RNAP complex. Thus, unlike DksA, TraR does not bind ppGpp. We propose a model in which TraR mimics the effects of DksA and ppGpp together by binding directly to the region of the RNAP secondary channel that otherwise binds ppGpp, and its N-terminal region, like the coiled-coil tip of DksA, engages the active-site region of the enzyme and affects transcription allosterically. These data provide insights into the function not only of TraR but also of an evolutionarily widespread and diverse family of TraR-like proteins encoded by bacteria, as well as bacteriophages and other extrachromosomal elements.


Assuntos
Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/metabolismo , Fatores de Transcrição/genética , Sítio Alostérico , Domínio Catalítico , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Regiões Promotoras Genéticas , Domínios Proteicos , Ribossomos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823955

RESUMO

Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.


Assuntos
Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Dosagem de Genes , Peptidilprolil Isomerase/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Sequência de Bases , Dano ao DNA , Análise Mutacional de DNA , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Genes Bacterianos , Movimento , Ácido Nalidíxico/farmacologia , Óperon/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa