Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2213795120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37220276

RESUMO

Escherichia coli coordinates replication and division cycles by initiating replication at a narrow range of cell sizes. By tracking replisomes in individual cells through thousands of division cycles in wild-type and mutant strains, we were able to compare the relative importance of previously described control systems. We found that accurate triggering of initiation does not require synthesis of new DnaA. The initiation size increased only marginally as DnaA was diluted by growth after dnaA expression had been turned off. This suggests that the conversion of DnaA between its active ATP- and inactive ADP-bound states is more important for initiation size control than the total free concentration of DnaA. In addition, we found that the known ATP/ADP converters DARS and datA compensate for each other, although the removal of them makes the initiation size more sensitive to the concentration of DnaA. Only disruption of the regulatory inactivation of DnaA mechanism had a radical impact on replication initiation. This result was corroborated by the finding that termination of one round of replication correlates with the next initiation at intermediate growth rates, as would be the case if RIDA-mediated conversion from DnaA-ATP to DnaA-ADP abruptly stops at termination and DnaA-ATP starts accumulating.


Assuntos
Replicação do DNA , Escherichia coli , Ciclo Celular , Cromossomos , Trifosfato de Adenosina
2.
J Biol Chem ; 299(7): 104888, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276959

RESUMO

Initiation of chromosomal replication requires dynamic nucleoprotein complexes. In most eubacteria, the origin oriC contains multiple DnaA box sequences to which the ubiquitous DnaA initiators bind. In Escherichia coli oriC, DnaA boxes sustain construction of higher-order complexes via DnaA-DnaA interactions, promoting the unwinding of the DNA unwinding element (DUE) within oriC and concomitantly binding the single-stranded (ss) DUE to install replication machinery. Despite the significant sequence homologies among DnaA proteins, oriC sequences are highly diverse. The present study investigated the design of oriC (tma-oriC) from Thermotoga maritima, an evolutionarily ancient eubacterium. The minimal tma-oriC sequence includes a DUE and a flanking region containing five DnaA boxes recognized by the cognate DnaA (tmaDnaA). This DUE was comprised of two distinct functional modules, an unwinding module and a tmaDnaA-binding module. Three direct repeats of the trinucleotide TAG within DUE were essential for both unwinding and ssDUE binding by tmaDnaA complexes constructed on the DnaA boxes. Its surrounding AT-rich sequences stimulated only duplex unwinding. Moreover, head-to-tail oligomers of ATP-bound tmaDnaA were constructed within tma-oriC, irrespective of the directions of the DnaA boxes. This binding mode was considered to be induced by flexible swiveling of DnaA domains III and IV, which were responsible for DnaA-DnaA interactions and DnaA box binding, respectively. Phasing of specific tmaDnaA boxes in tma-oriC was also responsible for unwinding. These findings indicate that a ssDUE recruitment mechanism was responsible for unwinding and would enhance understanding of the fundamental molecular nature of the origin sequences present in evolutionarily divergent bacteria.


Assuntos
Proteínas de Ligação a DNA , Origem de Replicação , Thermotoga maritima , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
3.
Microbiology (Reading) ; 170(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012340

RESUMO

DnaA is a widely conserved DNA-binding protein that is essential for the initiation of DNA replication in many bacterial species, including Escherichia coli. Cooperative binding of ATP-bound DnaA to multiple 9mer sites ('DnaA boxes') at the origin of replication results in local unwinding of the DNA and recruitment of the replication machinery. DnaA also functions as a transcription regulator by binding to DNA sites upstream of target genes. Previous studies have identified many sites of direct positive and negative regulation by E. coli DnaA. Here, we use a ChIP-seq to map the E. coli DnaA-binding landscape. Our data reveal a compact regulon for DnaA that coordinates the initiation of DNA replication with expression of genes associated with nucleotide synthesis, replication, DNA repair and RNA metabolism. We also show that DnaA binds preferentially to pairs of DnaA boxes spaced 2 or 3 bp apart. Mutation of either the upstream or downstream site in a pair disrupts DnaA binding, as does altering the spacing between sites. We conclude that binding of DnaA at almost all target sites requires a dimer of DnaA, with each subunit making critical contacts with a DnaA box.


Assuntos
Proteínas de Bactérias , DNA Bacteriano , Proteínas de Ligação a DNA , Escherichia coli , Ligação Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Sítios de Ligação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulon
4.
J Bacteriol ; 205(1): e0039622, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36533911

RESUMO

Borrelia burgdorferi, the spirochete agent of Lyme disease, has evolved within a consistent infectious cycle between tick and vertebrate hosts. The transmission of the pathogen from tick to vertebrate is characterized by rapid replication and a change in the outer surface protein profile. EbfC, a highly conserved nucleoid-associated protein, binds throughout the borrelial genome, affecting expression of many genes, including the Erp outer surface proteins. In B. burgdorferi, like many other bacterial species, ebfC is cotranscribed with dnaX, an essential component of the DNA polymerase III holoenzyme, which facilitates chromosomal replication. The expression of the dnaX-ebfC operon is tied to the spirochete's replication rate, but the underlying mechanism for this connection was unknown. In this work, we provide evidence that the expression of dnaX-ebfC is controlled by direct interactions of DnaA, the chromosomal replication initiator, and EbfC at the unusually long dnaX-ebfC 5' untranslated region (UTR). Both proteins bind to the 5' UTR DNA, with EbfC also binding to the RNA. The DNA binding of DnaA to this region was similarly impacted by ATP and ADP. In vitro studies characterized DnaA as an activator of dnaX-ebfC and EbfC as an antiactivator. We further found evidence that DnaA may regulate other genes essential for replication. IMPORTANCE The dual life cycle of Borrelia burgdorferi, the causative agent of Lyme disease, is characterized by periods of rapid and slowed replication. The expression patterns of many of the spirochete's virulence factors are impacted by these changes in replication rates. The connection between replication and virulence can be understood at the dnaX-ebfC operon. DnaX is an essential component of the DNA polymerase III holoenzyme, which replicates the chromosome. EbfC is a nucleoid-associated protein that regulates the infection-associated outer surface Erp proteins, as well as other transcripts. The expression of dnaX-ebfC is tied to replication rate, which we demonstrate is mediated by DnaA, the master chromosomal initiator protein and transcription factor, and EbfC.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Carrapatos , Animais , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas de Bactérias/metabolismo , DNA Polimerase III/genética , Doença de Lyme/microbiologia , Óperon , Carrapatos/microbiologia , Proteínas de Membrana/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
J Bacteriol ; 205(2): e0029622, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36692299

RESUMO

Maintaining proper chromosome inheritance after the completion of each cell cycle is paramount for bacterial survival. Mechanistic details remain incomplete for how bacteria manage to retain complete chromosomes after each cell cycle. In this study, we examined the potential roles of the partitioning protein ParA on chromosomal maintenance that go beyond triggering the onset of chromosome segregation in Caulobacter crescentus. Our data revealed that increasing the levels of ParA result in cells with multiple origins of replication in a DnaA-ATP-dependent manner. This ori supernumerary is retained even when expressing variants of ParA that are deficient in promoting chromosome segregation. Our data suggest that in Caulobacter ParA's impact on replication initiation is likely indirect, possibly through the effect of other cell cycle events. Overall, our data provide new insights into the highly interconnected network that drives the forward progression of the bacterial cell cycle. IMPORTANCE The successful generation of a daughter cell containing a complete copy of the chromosome requires the exquisite coordination of major cell cycle events. Any mistake in this coordination can be lethal, making these processes ideal targets for novel antibiotics. In this study, we focused on the coordination between the onset of chromosome replication, and the partitioning protein ParA. We demonstrate that altering the cellular levels of ParA causes cells to accumulate multiple origins of replication in Caulobacter crescentus. Our work provides important insights into the complex regulation involved in the coordination of the bacterial cell cycle.


Assuntos
Caulobacter crescentus , Caulobacter crescentus/genética , Segregação de Cromossomos , Proteínas de Bactérias/genética , Cromossomos Bacterianos/metabolismo , Divisão Celular , Ciclo Celular/genética , Replicação do DNA
6.
EMBO J ; 38(15): e101649, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31267560

RESUMO

Genome duplication is essential for cell proliferation, and DNA synthesis is generally initiated by dedicated replication proteins at specific loci termed origins. In bacteria, the master initiator DnaA binds the chromosome origin (oriC) and unwinds the DNA duplex to permit helicase loading. However, despite decades of research it remained unclear how the information encoded within oriC guides DnaA-dependent strand separation. To address this fundamental question, we took a systematic genetic approach in vivo and identified the core set of essential sequence elements within the Bacillus subtilis chromosome origin unwinding region. Using this information, we then show in vitro that the minimal replication origin sequence elements are necessary and sufficient to promote the mechanical functions of DNA duplex unwinding by DnaA. Because the basal DNA unwinding system characterized here appears to be conserved throughout the bacterial domain, this discovery provides a framework for understanding oriC architecture, activity, regulation and diversity.


Assuntos
Bacillus subtilis/genética , Cromossomos Bacterianos/genética , Origem de Replicação , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Complexo de Reconhecimento de Origem/metabolismo
7.
Virol J ; 20(1): 186, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605144

RESUMO

The genomic components of multipartite viruses are encapsidated in separate virus particles, and the frequencies of genomic components represent one of the key genetic features. Many begomoviruses of economic significance are bipartite, and the details of the association between their genomic components remain largely unexplored. We first analyzed the temporal dynamics of the quantities of DNA-A and DNA-B and the B/A ratio of the squash leaf curl China virus (SLCCNV) in plants and found that while the quantities of DNA-A and DNA-B varied significantly during infection, the B/A ratio remained constant. We then found that changes in the B/A ratio in agrobacteria inoculum may significantly alter the B/A ratio in plants at 6 days post inoculation, but the differences disappeared shortly thereafter. We next showed that while the quantities of DNA-A and DNA-B among plants infected by agrobacteria, sap transmission and whitefly-mediated transmission differed significantly, the B/A ratios were similar. Further analysis of gene expression revealed that the ratio of the expression of genes encoded by DNA-A and DNA-B varied significantly during infection. Finally, we monitored the temporal dynamics of the quantities of DNA-A and DNA-B and the B/A ratio of another bipartite begomovirus, and a constant B/A ratio was similarly observed. Our findings highlight the maintenance of a constant ratio between the two genomic components of bipartite begomoviruses during infection and transmission, and provide new insights into the biology of begomoviruses.


Assuntos
Begomovirus , Begomovirus/genética , Vacinação , Vírion , Genômica
8.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511331

RESUMO

This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Origem de Replicação , Replicação do DNA , Ciclo Celular , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/genética , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo
9.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240152

RESUMO

Over 1.2 million deaths are attributed to multi-drug-resistant (MDR) bacteria each year. Persistence of MDR bacteria is primarily due to the molecular mechanisms that permit fast replication and rapid evolution. As many pathogens continue to build resistance genes, current antibiotic treatments are being rendered useless and the pool of reliable treatments for many MDR-associated diseases is thus shrinking at an alarming rate. In the development of novel antibiotics, DNA replication is still a largely underexplored target. This review summarises critical literature and synthesises our current understanding of DNA replication initiation in bacteria with a particular focus on the utility and applicability of essential initiation proteins as emerging drug targets. A critical evaluation of the specific methods available to examine and screen the most promising replication initiation proteins is provided.


Assuntos
Proteínas de Bactérias , Replicação do DNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Bactérias/metabolismo , Ligação Proteica
10.
J Bacteriol ; 204(9): e0024322, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35943250

RESUMO

The bacterial division and cell wall (dcw) cluster is a highly conserved region of the genome which encodes several essential cell division factors, including the central divisome protein FtsZ. Understanding the regulation of this region is key to our overall understanding of the division process. mraZ is found at the 5' end of the dcw cluster, and previous studies have described MraZ as a sequence-specific DNA binding protein. In this article, we investigate MraZ to elucidate its role in Bacillus subtilis. Through our investigation, we demonstrate that increased levels of MraZ result in lethal filamentation due to repression of its own operon (mraZ-mraW-ftsL-pbpB). We observed rescue of filamentation upon decoupling ftsL expression, but not other genes in the operon, from MraZ control. Our data suggest that regulation of the mra operon may be an alternative way for cells to quickly arrest cytokinesis, potentially during entry into the stationary phase and in the event of DNA replication arrest. Furthermore, through time-lapse microscopy, we were able to identify that overexpression of mraZ or depletion of FtsL results in decondensation of the FtsZ ring (Z-ring). Using fluorescent d-amino acid labeling, we also observed that coordinated peptidoglycan insertion at the division site is dysregulated in the absence of FtsL. Thus, we reveal that the precise role of FtsL is in Z-ring maturation and focusing septal peptidoglycan synthesis. IMPORTANCE MraZ is a highly conserved protein found in a diverse range of bacteria, including genome-reduced Mycoplasma. We investigated the role of MraZ in Bacillus subtilis and found that overproduction of MraZ is toxic due to cell division inhibition. Upon further analysis, we observed that MraZ is a repressor of its own operon, which includes genes that encode the essential cell division factors FtsL and PBP2B. We noted that decoupling of ftsL alone was sufficient to abolish MraZ-mediated cell division inhibition. Using time-lapse microscopy, we showed that under conditions where the FtsL level is depleted, the cell division machinery is unable to initiate cytokinesis. Thus, our results pinpoint that the precise role of FtsL is in concentrating septal cell wall synthesis to facilitate cell division.


Assuntos
Bacillus subtilis , Proteínas de Bactérias/metabolismo , Citocinese , Aminoácidos/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Peptidoglicano/metabolismo
11.
Microbiology (Reading) ; 168(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748575

RESUMO

Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in B. subtilis the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.


Assuntos
Bacillus subtilis , Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/metabolismo , Prófagos/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Replicação do DNA
12.
Microbiology (Reading) ; 168(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301085

RESUMO

Replication and segregation of the genetic information is necessary for a cell to proliferate. In Bacillus subtilis, the Par system (ParA/Soj, ParB/Spo0J and parS) is required for segregation of the chromosome origin (oriC) region and for proper control of DNA replication initiation. ParB binds parS sites clustered near the origin of replication and assembles into sliding clamps that interact with ParA to drive origin segregation through a diffusion-ratchet mechanism. As part of this dynamic process, ParB stimulates ParA ATPase activity to trigger its switch from an ATP-bound dimer to an ADP-bound monomer. In addition to its conserved role in DNA segregation, ParA is also a regulator of the master DNA replication initiation protein DnaA. We hypothesized that in B. subtilis the location of the Par system proximal to oriC would be necessary for ParA to properly regulate DnaA. To test this model, we constructed a range of genetically modified strains with altered numbers and locations of parS sites, many of which perturbed chromosome origin segregation as expected. Contrary to our hypothesis, the results show that regulation of DNA replication initiation by ParA is maintained when a parS site is separated from oriC. Because a single parS site is sufficient for proper control of ParA, the results are consistent with a model where ParA is efficiently regulated by ParB sliding clamps following loading at parS.


Assuntos
Bacillus subtilis , Cromossomos Bacterianos , Bacillus subtilis/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA/genética , Segregação de Cromossomos , Origem de Replicação/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
13.
Biochem Biophys Res Commun ; 633: 77-80, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36344169

RESUMO

Nearly 70 years after the proposal of semiconservative replication of generic material by Watson and Crick, we now understand many of the proteins involved in the replication of host chromosomes and how they operate. The initiator and replicator, proposed in the replicon hypothesis, are now well defined in both prokaryotes and eukaryotes. On the other hand, studies in prokaryotes and Archaea indicate alternative modes of initiation, which may not depend on an initiator. Here I summarize recent progress in the field of DNA replication and discuss the evolution of replication systems.


Assuntos
Replicação do DNA , Origem de Replicação , Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicon , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , DNA Bacteriano/genética
14.
Conserv Biol ; 36(6): e13939, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35603473

RESUMO

Reptiles are increasingly of conservation concern due to their susceptibility to habitat loss, emerging disease, and harvest in the wildlife trade. However, reptile populations are often difficult to monitor given the frequency of crypsis in their life history. This difficulty has left uncertain the conservation status of many species and the efficacy of conservation actions unknown. Environmental DNA (eDNA) surveys consistently elevate the detection rate of species they are designed to monitor, and while their use is promising for terrestrial reptile conservation, successes in developing such surveys have been sparse. We tested the degree to which inclusion of surface and soil eDNA sampling into conventional artificial-cover methods elevates the detection probability of a small, cryptic terrestrial lizard, Scincella lateralis. The eDNA sampling of cover object surfaces with paint rollers elevated per sample detection probabilities for this species 4-16 times compared with visual surveys alone. We readily detected S. lateralis eDNA under cover objects up to 2 weeks after the last visual detection, and at some cover objects where no S. lateralis were visually observed in prior months. With sufficient sampling intensity, eDNA testing of soil under cover objects produced comparable per sample detection probabilities as roller surface methods. Our results suggest that combining eDNA and cover object methods can considerably increase the detection power of reptile monitoring programs, allowing more accurate estimates of population size, detection of temporal and spatial changes in habitat use, and tracking success of restoration efforts. Further research into the deposition and decay rates of reptile eDNA under cover objects, as well as tailored protocols for different species and habitats, is needed to bring the technique into widespread use.


El interés por la conservación de los reptiles es cada vez mayor debido a su susceptibilidad ante la pérdida del hábitat, enfermedades emergentes y la captura para el mercado de fauna. Sin embargo, las poblaciones de reptiles son difíciles de monitorear por lo frecuente que es la cripsis en sus historias de vida. Esta dificultad deja incierto el estado de conservación de muchas especies y desconocida la eficacia de las acciones de conservación. Los censos de ADN ambiental (DNAa) elevan sistemáticamente la tasa de detección de las especies que monitorean, y aunque su uso es prometedor para la conservación de los reptiles terrestres, han sido escasos los éxitos en el desarrollo de dichos censos. Analizamos el grado al que la inclusión del muestreo de DNAa superficial y del suelo a los métodos convencionales de cobertura artificial eleva la probabilidad de detección de una pequeña lagartija terrestre críptica: Scincella lateralis. El muestreo de DNAa de las superficies con cobertura de objetos con rodillos de pintura elevó las probabilidades de detección por muestra para esta especie 4-16 veces más que los censos visuales. Detectamos fácilmente el DNAa de S. lateralis bajo los objetos de cubierta hasta dos semanas después de la última detección visual y en algunos objetos de cubierta en donde no se había observado en los meses previos a S. lateralis. Con suficiente intensidad de muestreo, el análisis de DNAa del suelo bajo objetos de cubierta produjo probabilidades de detección por muestra comparables como métodos de rodillo superficial. Nuestros resultados sugieren que la combinación del DNAa y los métodos de objetos de cobertura puede incrementar considerablemente el poder de detección de los programas de monitoreo de reptiles, lo que permite estimaciones más precisas del tamaño poblacional, detección de los cambios espaciales y temporales en el uso de hábitat y el éxito de rastreo de los esfuerzos de restauración. Además, se necesita la investigación sobre las tasas de depósito y descomposición del DNAa de reptiles bajo objetos de cubierta, así como los protocolos hechos para diferentes especies y hábitats, para que la técnica entre al uso difundido.


Assuntos
DNA Ambiental , Animais , Solo , Conservação dos Recursos Naturais , Répteis/genética , Ecossistema , Monitoramento Ambiental/métodos
15.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563376

RESUMO

Streptomyces DNA replication starts with the DnaA binding to the origin of replication. Differently to most bacteria, cytokinesis only occurs during sporulation. Cytokinesis is modulated by the divisome, an orderly succession of proteins initiated by FtsZ. Here, we characterised SCO2102, a protein harbouring a DnaA II protein-protein interaction domain highly conserved in Streptomyces. The ΔSCO2102 knockout shows highly delayed sporulation. SCO2102-mCherry frequently co-localises with FtsZ-eGFP during sporulation and greatly reduces FtsZ-eGFP Z-ladder formation, suggesting a role of SCO2102 in sporulation. SCO2102 localises up-stream of SCO2103, a methylenetetrahydrofolate reductase involved in methionine and dTMP synthesis. SCO2102/SCO2103 expression is highly regulated, involving two promoters and a conditional transcription terminator. The ΔSCO2103 knockout shows reduced DNA synthesis and a non-sporulating phenotype. SCO2102-mCherry co-localises with SCO2103-eGFP during sporulation, and SCO2102 is essential for the SCO2103 positioning at sporulating hyphae, since SCO2103-eGFP fluorescent spots are absent in the ΔSCO2102 knockout. We propose a model in which SCO2102 positions SCO2103 in sporulating hyphae, facilitating nucleotide biosynthesis for chromosomal replication. To the best of our knowledge, SCO2102 is the first protein harbouring a DnaA II domain specifically found during sporulation, whereas SCO2103 is the first methylenetetrahydrofolate reductase found to be essential for Streptomyces sporulation.


Assuntos
Esporos Bacterianos , Streptomyces , Proteínas de Bactérias/metabolismo , Replicação do DNA/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Domínios e Motivos de Interação entre Proteínas , Origem de Replicação , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
16.
Infant Ment Health J ; 43(4): 589-596, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35619334

RESUMO

The aim of the study was to assess the contribution of negative emotionality at 3 months (T1) and serotonin transporter gene (SLC6A4) DNA methylation at 4.5 years of age (T2) to emotion regulation in pre-schoolers born very preterm and full-term. Forty one children (n = 21 born very preterm, n = 20 born full-term) participated in the study. Fretful behavior was assessed at T1 in response to the Face-to-FaceStill-Face (FFSF) paradigm. At T2, SLC6A4 DNA methylation was analyzed and emotion regulation was assessed using an observational procedure (i.e., the Pre-schooler Regulation of Emotional Stress, PRES). The very preterm group displayed higher emotion dysregulation during the PRES Reactivity phase than the full-term group. Higher levels of fretful behavior at 3 months were associated with greater emotional distress only for very preterm children with higher methylation at T2. No significant associations emerged in the full-term group. Despite current findings cannot be generalized owing to the relatively small sample size, this work provides preliminary longitudinal evidence about the link between negative emotionality during infancy, stress-linked epigenetic status at 4.5 years and emotion dysregulation in preschoolers born preterm.


El propósito del estudio fue evaluar la contribución de la emocionalidad negativa a los 3 meses (T1) y la metilación del ADN en el gen transportador de la serotonina (SLC6A4) a los 4 años y medio de edad (T2) a la regulación de la emoción en prescolares nacidos muy antes de la gestación completa o de gestación completa. Cuarenta y un niños (n = 21 nacidos muy antes de la gestación completa, n = 20 nacidos de gestación completa) participaron en el estudio. El comportamiento irritable se evaluó a T1 como respuesta al Cara-a-Cara del paradigma de la Cara Inmóvil (FFSF). A T2, se analizó la metilación de ADN SLC6A4 y se evaluó la regulación de la emoción usando un procedimiento de observación (v.g. La Regulación del Estrés Emocional del Prescolar, PRES). El grupo nacido muy antes de la gestación completa mostró una más alta desregulación durante la fase de Reactividad PRES que el grupo nacido de gestación completa. Los niveles más altos de comportamiento irritable a los 3 meses se asociaron con una mayor angustia emocional solamente para los niños nacidos muy antes de la gestación completa con más alta metilación al T2. Ninguna asociación significativa surgió del grupo nacido de gestación completa. A pesar de que los actuales resultados no se pueden generalizar debido al tamaño relativamente pequeño del grupo muestra, este trabajo ofrece aporta evidencia longitudinal preliminar acerca de la conexión entre la emocionalidad negativa durante la infancia, el estado epigenético relacionado con el estrés a los 4 años y medio y la desregulación de la emoción en prescolares nacidos antes de la completa gestación.


Le but de cette étude était d'évaluer la contribution de l'émotivité négative à 3 mois (T1) et du gène vecteur de la sérotonine (SLC6A4) méthylation de l'ADN à l'âge de 4,5 ans (T2) à la régulation de l'émotion chez les enfants d'âge préscolaire nés très prématurés et à plein terme. Quarante et un enfant (n = 21 nés très prématurés, n = 20 nés à plein terme) ont participé à l'étude. Le comportement agité a été évalué au T1 en réponse au paradigme face-à-face visage inexpressif (abrégé FFSF en anglais). Au T2, la méthylation de l'ADN SLC6A4 a été analysée et la régulation de l'émotion a été évaluée en utilisant un protocole d'observation (à savoir, la Régulation du Stress Emotionnel de l'Enfant d'Age Préscolaire, abrégé en anglais PRES). Le groupe très prématuré a fait état d'une dysrégulation de l'émotion plus élevée durant la phase de Réactivité PRES que le groupe né à plein terme. Des niveaux plus élevés de comportement agité à 3 mois étaient liés à une détresse émotionnelle plus grande uniquement pour les enfants très prématurés avec une méthylation plus élevée au T2. Aucune association importante n'a émergé dans le groupe à plein terme. En dépit du fait que les résultats actuels ne peuvent pas être généralisés à cause de la taille relativement petite de l'échantillon, ce travail offre des preuves longitudinales préliminaires sur le lien entre l'émotivité négative durant la petite enfant, le statut épigénétique lié au stress à 4,5 ans et la dysrégulation de l'émotion chez les enfants d'âge préscolaires nés avant terme.


Assuntos
Regulação Emocional , Proteínas da Membrana Plasmática de Transporte de Serotonina , Pré-Escolar , Metilação de DNA , Emoções , Feminino , Humanos , Recém-Nascido , Parto , Gravidez , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
17.
J Bacteriol ; 203(23): e0030421, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34543109

RESUMO

Expression of the Escherichia coli dnaN-encoded ß clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. A mutant clamp (ßE202K bearing a glutamic acid-to-lysine substitution at residue 202) binds to DNA polymerase III (Pol III) with higher affinity than the wild-type clamp, suggesting that its failure to impede growth is independent of its ability to sequester Pol III away from the replication fork. Our results demonstrate that the dnaNE202K strain underinitiates DNA replication due to insufficient levels of DnaA-ATP and expresses several DnaA-regulated genes at altered levels, including nrdAB, that encode the class 1a ribonucleotide reductase (RNR). Elevated expression of nrdAB was dependent on hda function. As the ß clamp-Hda complex regulates the activity of DnaA by stimulating its intrinsic ATPase activity, this finding suggests that the dnaNE202K allele supports an elevated level of Hda activity in vivo compared with the wild-type strain. In contrast, using an in vitro assay reconstituted with purified components the ßE202K and wild-type clamp proteins supported comparable levels of Hda activity. Nevertheless, co-overexpression of the nrdAB-encoded RNR relieved the growth defect caused by elevated levels of the ß clamp. These results support a model in which increased cellular levels of DNA precursors relieve the ability of elevated ß clamp levels to impede growth and suggest either that multiple effects stemming from the dnaNE202K mutation contribute to elevated nrdAB levels or that Hda plays a noncatalytic role in regulating DnaA-ATP by sequestering it to reduce its availability. IMPORTANCE DnaA bound to ATP acts in initiation of DNA replication and regulates the expression of several genes whose products act in DNA metabolism. The state of the ATP bound to DnaA is regulated in part by the ß clamp-Hda complex. The dnaNE202K allele was identified by virtue of its inability to impede growth when expressed ≥10-fold higher than chromosomally expressed levels. While the dnaNE202K strain exhibits several phenotypes consistent with heightened Hda activity, the wild-type and ßE202K clamp proteins support equivalent levels of Hda activity in vitro. Taken together, these results suggest that ßE202K-Hda plays a noncatalytic role in regulating DnaA-ATP. This, as well as alternative models, is discussed.


Assuntos
DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformação Proteica , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/genética
18.
J Biol Chem ; 295(32): 11131-11143, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540966

RESUMO

The DNA replication protein DnaA in Escherichia coli constructs higher-order complexes on the origin, oriC, to unwind this region. DnaB helicase is loaded onto unwound oriC via interactions with the DnaC loader and the DnaA complex. The DnaB-DnaC complex is recruited to the DnaA complex via stable binding of DnaB to DnaA domain I. The DnaB-DnaC complex is then directed to unwound oriC via a weak interaction between DnaB and DnaA domain III. Previously, we showed that Phe46 in DnaA domain I binds to DnaB. Here, we searched for the DnaA domain I-binding site in DnaB. The DnaB L160A variant was impaired in binding to DnaA complex on oriC but retained its DnaC-binding and helicase activities. DnaC binding moderately stimulated DnaA binding of DnaB L160A, and loading of DnaB L160A onto oriC was consistently and moderately inhibited. In a helicase assay with partly single-stranded DNA bearing a DnaA-binding site, DnaA stimulated DnaB loading, which was strongly inhibited in DnaB L160A even in the presence of DnaC. DnaB L160A was functionally impaired in vivo On the basis of these findings, we propose that DnaB Leu160 interacts with DnaA domain I Phe46 DnaB Leu160 is exposed on the lateral surface of the N-terminal domain, which can explain unobstructed interactions of DnaA domain I-bound DnaB with DnaC, DnaG primase, and DnaA domain III. We propose a probable structure for the DnaA-DnaB-DnaC complex, which could be relevant to the process of DnaB loading onto oriC.


Assuntos
DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Origem de Replicação , Sequência de Aminoácidos , Sítios de Ligação , DnaB Helicases/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Domínios Proteicos
19.
Mol Microbiol ; 113(2): 338-355, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715026

RESUMO

The main roles of the DnaA protein are to bind the origin of chromosome replication (oriC), to unwind DNA and to provide a hub for the step-wise assembly of a replisome. DnaA is composed of four domains, with each playing a distinct functional role in the orisome assembly. Out of the four domains, the role of domain I is the least understood and appears to be the most species-specific. To better characterise Helicobacter pylori DnaA domain I, we have constructed a series of DnaA variants and studied their interactions with H. pylori bipartite oriC. We show that domain I is responsible for the stabilisation and organisation of DnaA-oriC complexes and provides cooperativity in DnaA-DNA interactions. Domain I mediates cross-interactions between oriC subcomplexes, which indicates that domain I is important for long-distance DnaA interactions and is essential for orisosme assembly on bipartite origins. HobA, which interacts with domain I, increases the DnaA binding to bipartite oriC; however, it does not stimulate but rather inhibits DNA unwinding. This suggests that HobA helps DnaA to bind oriC, but an unknown factor triggers DNA unwinding. Together, our results indicate that domain I self-interaction is important for the DnaA assembly on bipartite H. pylori oriC.


Assuntos
Proteínas de Bactérias , Cromossomos Bacterianos/metabolismo , Proteínas de Ligação a DNA , Helicobacter pylori , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/química , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Ligação Proteica , Origem de Replicação
20.
Mol Microbiol ; 114(6): 906-919, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32458540

RESUMO

Initiation of Escherichia coli chromosome replication is controlled by the DnaA initiator protein. Both rifampicin-mediated inhibition of transcription and ppGpp-induced changes in global transcription stops replication at the level of initiation. Here, we show that continued DnaA protein synthesis allows for replication initiation both during the rifampicin treatment and during the stringent response when the ppGpp level is high. A reduction in or cessation of de novo DnaA synthesis, therefore, causes the initiation arrest in both cases. In accordance with this, inhibition of translation with chloramphenicol also stops initiations. The initiation arrest caused by rifampicin was faster than that caused by chloramphenicol, despite of the latter inhibiting DnaA accumulation immediately. During chloramphenicol treatment transcription is still ongoing and we suggest that transcriptional events in or near the origin, that is, transcriptional activation, can allow for a few extra initiations when DnaA becomes limiting. We suggest, for both rifampicin treated cells and for cells accumulating ppGpp, that a turn-off of initiation from oriC requires a stop in de novo DnaA synthesis and that an additional lack of transcriptional activation enhances this process, that is, leads to a faster initiation stop.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Guanosina Tetrafosfato/metabolismo , Rifampina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cloranfenicol/farmacologia , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Origem de Replicação , Estresse Fisiológico , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa