Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Int J Phytoremediation ; : 1-12, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992938

RESUMO

Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.


The research addresses the contamination of water resources in developing countries by landfill leachate and domestic wastewater discharges. It proposes treatment through Partially Saturated Vertical Constructed Wetlands (PSV-CWs), which, despite the limited information available, have been shown to be effective in removing pollutants in effluents with high concentrations. In addition to evaluating PSV-CWs, the study examines the impact of different types of vegetation on pollutant removal efficiency, concluding that PSV-CWs are a promising and viable option for the treatment of these effluents.

2.
J Environ Manage ; 351: 119712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070427

RESUMO

This study presents a novel treatment system using a submerged anaerobic membrane bioreactor (SAnMBR) followed by adsorption onto thermally treated biowaste, and ending with a final treatment using powdered activated carbon (PAC). Despite limited phosphate and ammonium ion removal during SAnMBR operation, thermally treated eggshell (EGSL) and seagrass (SG) received SAnMBR effluent and enhanced phosphate recovery, achieving removal rates of 71.8-99.9% and 60.5-78.0%, respectively. The SAnMBR achieved an 85% COD removal, which was slightly reduced further by biowaste treatment. However, significant further reductions in COD to 20.2 ± 5.2 mg/L for EGSL effluent and 57.0 ± 13.3 mg/L for SG effluent were achieved with PAC. Phytotoxicity tests showed the SAnMBR effluent after PAC treatment notably improved seed growth compared to untreated wastewater. In addition, volatile organic compounds (VOCs) were significantly reduced in the system, including common wastewater contaminants such as dimethyl disulfide, dimethyl trisulfide, phenol, p-cresol, nonanal, and decanal. Fractionation analysis of the solid fraction, post-adsorption from both synthetic and domestic wastewater, indicated that for SG, 77.3%-94% of the total phosphorus (TP) was inorganically bound, while for EGSL, it ranged from 94% to 95.3%. This study represents the first attempt at a proof-of-concept for simultaneous treatment of domestic wastewater and phosphorus recovery using this integrated system.


Assuntos
Águas Residuárias , Purificação da Água , Carvão Vegetal , Fosfatos , Eliminação de Resíduos Líquidos , Pós , Anaerobiose , Reatores Biológicos , Fósforo , Membranas Artificiais
3.
Environ Monit Assess ; 196(5): 454, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622372

RESUMO

This work presents a sensitive and accurate analytical method for the determination of phenytoin at trace levels in domestic wastewater and synthetic urine samples by gas chromatography-mass spectrometry (GC-MS) after the metal sieve-linked double syringe liquid-phase microextraction (MSLDS-LPME) method. A metal sieve was produced in our laboratory in order to disperse water-immiscible extraction solvents into aqueous media. Univariate optimization studies for the selection of proper extraction solvent, extraction solvent volume, mixing cycle, and initial sample volume were carried out. Under the optimum MSLDS-LPME conditions, mass-based dynamic range, limit of quantitation (LOQ), limit of detection (LOD), and percent relative standard deviation (%RSD) for the lowest concentration in calibration plot were figured out to be 100.5-10964.2 µg kg-1, 150.6 µg kg-1, 45.2 µg kg-1, and 9.4%, respectively. Detection power was improved as 187.7-folds by the developed MSLDS-LPME-GC-MS system while enhancement in calibration sensitivity was recorded as 188.0-folds. In the final step of this study, the accuracy and applicability of the proposed system were tested by matrix matching calibration strategy. Percent recovery results for domestic wastewater and synthetic urine samples were calculated as 95.6-110.3% and 91.7-106.6%, respectively. These results proved the accuracy and applicability of the proposed preconcentration method, and the obtained analytical results showed the efficiency of the lab-made metal sieve apparatus.


Assuntos
Microextração em Fase Líquida , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas/métodos , Águas Residuárias , Fenitoína/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Solventes/química , Água/análise , Microextração em Fase Líquida/métodos , Limite de Detecção
4.
Environ Sci Technol ; 57(9): 3571-3580, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36811889

RESUMO

Anammox granulation is an efficient solution proffered to enrich slow-growing anammox bacteria (AnAOB), but the lack of effective granulation strategies for low-strength domestic wastewater impedes its application. In this study, a novel granulation model regulated by Epistylis spp. for highly enriched AnAOB was revealed for the first time. Notably, anammox granulation was achieved within 65 d of domestic wastewater treatment. The stalks of Epistylis spp. were found to act as the skeleton of granules and provide attachment points for bacterial colonization, and the expanded biomass layer in turn provided more area for the unstalked free-swimming zooids. Additionally, Epistylis spp. exerted much less predation stress on AnAOB than on nitrifying bacteria, and AnAOB tended to grow in aggregates in the interior of granules, thus favoring the growth and retention of AnAOB. Ultimately, the relative abundance of AnAOB reached up to a maximum of 8.2% in granules (doubling time of 9.9 d) compared to 1.1% in flocs (doubling time of 23.1 d), representing the most substantial disparity between granules and flocs. Overall, our findings advance the current understanding of interactions involved in granulation between protozoa and microbial communities and offer new insight into the specific enrichment of AnAOB under the novel granulation model.


Assuntos
Compostos de Amônio , Purificação da Água , Esgotos/microbiologia , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Oxirredução
5.
Environ Sci Technol ; 57(11): 4522-4532, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36897644

RESUMO

Chemically enhanced primary treatment (CEPT) followed by partial nitritation and anammox (PN/A) and anaerobic digestion (AD) is a promising roadmap to achieve energy-neutral wastewater treatment. However, the acidification of wastewater caused by ferric hydrolysis in CEPT and how to achieve stable suppression of nitrite-oxidizing bacteria (NOB) in PN/A challenge this paradigm in practice. This study proposes a novel wastewater treatment scheme to overcome these challenges. Results showed that, by dosing FeCl3 at 50 mg Fe/L, the CEPT process removed 61.8% of COD and 90.1% of phosphate and reduced the alkalinity as well. Feeding by low alkalinity wastewater, stable nitrite accumulation was achieved in an aerobic reactor operated at pH 4.35 aided by a novel acid-tolerant ammonium-oxidizing bacteria (AOB), namely, Candidatus Nitrosoglobus. After polishing in a following anoxic reactor (anammox), a satisfactory effluent, containing COD at 41.9 ± 11.2 mg/L, total nitrogen at 5.1 ± 1.8 mg N/L, and phosphate at 0.3 ± 0.2 mg P/L, was achieved. Moreover, the stable performances of this integration were well maintained at an operating temperature of 12 °C, and 10 investigated micropollutants were removed from the wastewater. An energy balance assessment indicated that the integrated system could achieve energy self-sufficiency in domestic wastewater treatment.


Assuntos
Compostos de Amônio , Purificação da Água , Águas Residuárias , Nitritos , Amônia , Oxirredução , Reatores Biológicos/microbiologia , Compostos de Amônio/análise , Nitrogênio , Fosfatos , Esgotos
6.
Environ Res ; 220: 115241, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621547

RESUMO

Large volumes of iron-containing sludge (Fe-Sludge) would be generated with the application of iron salts in drinking water treatment plants, which must be disposed appropriately. One of the common disposal solutions for Fe-Sludge is through direct disposal into the municipal sewer system, whereby it would be mixed with domestic wastewater and treated in the wastewater treatment plant. To better understand the properties of Fe-Sludge and the effect of dosing Fe-Sludge to the real domestic wastewater (WW) on the wastewater characteristics, a serial batch tests were conducted on a local wastewater reclamation plant (WRP). It was found that the impact of dosing Fe-Sludge at a Fe/P ratio of 5 did not vary with the types of WW, i.e., filtered or non-filtered by the 5 mm screen. In addition, the soluble organic, phosphate and total soluble iron concentrations mostly decreased with the dosing of Fe-Sludge within the dosage range of 0-5 (Fe/P ratio). In contrast, the suspended solid (SS) and volatile suspended solid (VSS) concentrations increased with the dosage of Fe-Sludge within the dosage range of 0-5 (Fe/P ratio). Furthermore, the pH condition of the domestic wastewater affected the phosphate removal efficiency by Fe-Sludge and influenced the total soluble iron concentration and iron species distribution. These findings will provide fundamental support for the further study of the effect of Fe-Sludge on the biological treatment performance and membrane filtration performance of the membrane bioreactor (MBR) system.


Assuntos
Esgotos , Águas Residuárias , Ferro/química , Eliminação de Resíduos Líquidos , Fosfatos/química , Reatores Biológicos , Concentração de Íons de Hidrogênio
7.
Environ Res ; 231(Pt 2): 116159, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211179

RESUMO

Microbial fuel cell (MFC) operation under similar conditions to conventional methods will support the use of this technology in large-scale wastewater treatment. The operation of scaled-up air-cathode MFC (2 L) fed with synthetic wastewater (similar to domestic) in a continuous flow was evaluated using three different hydraulic retention times (HRT), 12, 8, and 4 h. We found that electricity generation and wastewater treatment could be enhanced under an HRT of 12 h. Additionally, the longer HRT led to greater coulombic efficiency (5.44%) than MFC operating under 8 h and 4 h, 2.23 and 1.12%, respectively. However, due to the anaerobic condition, the MFC was unable to remove nutrients. Furthermore, an acute toxicity test with Lactuca sativa revealed that MFC could reduce wastewater toxicity. These outcomes demonstrated that scaled-up MFC could be operated as a primary effluent treatment and transform a wastewater treatment plant (WWTP) into a renewable energy producer.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Águas Residuárias/toxicidade , Eletricidade , Purificação da Água/métodos , Eletrodos
8.
Environ Res ; 231(Pt 1): 116109, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178751

RESUMO

The scarcity of carbon sources presents a significant challenge for the bio-treatment of rural domestic wastewater (RDW). This paper presented an innovative approach to address this issue by investigating the supplementary carbon source through in-situ degradation of particulate organic matter (POM) facilitated by ferric sulfate modified sludge-based biochar (SBC). To prepare SBC, five different contents of ferric sulfate (0%, 10%, 20%, 25%, and 33.3%) were added to sewage sludge. The results revealed that the pore and surface of SBC were enhanced, providing active sites and functional groups to accelerate the biodegradation of protein and polysaccharide. During the 8-day hydrolysis period, the concentration of soluble chemical oxidation demand (SCOD) increased and peaked (1087-1156 mg L-1) on the fourth day. The C/N ratio increased from 3.50 (control) to 5.39 (25% ferric sulfate). POM was degraded the five dominant phyla, which were Actinobacteriota, Firmicutes, Synergistota, Proteobacteria, and Bacteroidetes. Although the relative abundance of dominant phyla changed, the metabolic pathway remained unchanged. The leachate of SBC (<20% ferric sulfate) was beneficial for microbes, but an excessive amount of ferric sulfate (33.3% ferric sulfate) could have inhibition effects on bacteria. In conclusion, ferric sulfate modified SBC holds the potential for the carbon degradation of POM in RDW, and further improvements should be made in future studies.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Carbono , Bactérias
9.
J Environ Manage ; 344: 118653, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478716

RESUMO

With the unprecedented exhaustion of natural phosphorus (P) resource and the high eutrophication potential of the associated-P discharge, P recovery from the domestic wastewater is a promising way and has been putting on agenda of wastewater industry. To address the concern of P resource recovery in an environmentally sustainable way is indispensable especially in the carbon neutrality-oriented wastewater treatment plants (WWTPs). Therefore, this review aims to offer a critical view and a holistic analysis of different P removal/recovery process in current WWTPs and more P reclaim options with the focus on the energy consumption and greenhouse gas (GHG) emission. Unlike P mostly flowing out in the planned/semi-planned P removal/recovery process in current WWTPs, P could be maximumly sequestered via the A-2B- centered process, direct reuse of P-bearing permeate from anaerobic membrane bioreactor, nano-adsorption combined with anaerobic membrane and electrochemical P recovery process. The A-2B- centered process, in which the anaerobic fixed bed reactor was designated for COD capture for energy efficiency while P was enriched and recovered with further P crystallization treating, exhibited the lowest specific energy consumption and GHG emission on the basis of P mass recovered. P resource management in WWTPs tends to incorporate issues related to environmental protection, energy efficiency, GHG emission and socio-economic benefits. This review offers a holistic view with regard to the paradigm shift from "simple P removal" to "P reuse/recovery" and offers in-depth insights into the possible directions towards the P-recovery in the "water-energy-resource-GHG nexus" plant.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Águas Residuárias , Pegada de Carbono , Eliminação de Resíduos Líquidos
10.
J Environ Manage ; 330: 117232, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610197

RESUMO

Pyrite-based autotrophic denitrification (PAD) is an emerging biological process to diminish nitrate pollution, but the relatively low NO3--N removal rate limits its practical application. In this research, a pyrite-intensified hybrid sequencing batch biofilm reactor (PIHSBBR) was designed to treat low C/N ratio domestic wastewater. The results showed that PIHSBBR could achieve optimal removal of COD, NH4+-N, and TN under the aeration rate of 1.0 L/L∙min and the hydraulic retention time (HRT) of 8 h, with removal rates of 69.67 ± 4.37%, 77.04 ± 4.84%, and 63.92 ± 6.66%, respectively. The PAD efficiency in PIHSBBR during the stable operation was not high (13.05-31.01%), and the main nitrogen removal pathway in PIHSBBR, especially in the aerobic zone, was simultaneous nitrification and denitrification (SND). High-throughput sequencing analysis unraveled that Planctomycetota (3.65%) had a high abundance in the anoxic zone of PIHSBBR, implying that anaerobic ammonium oxidation (anammox) might have occurred in the anoxic zone. In addition, the nitrogen cycle function gene with the highest abundance was nirBD, indicating the possible presence of dissimilatory nitrate reduction to ammonium (DNRA) within the system (aerobic and anoxic zones). Our research can provide useful information for the improvement and future application of PIHSBBR.


Assuntos
Compostos de Amônio , Desnitrificação , Nitratos , Reatores Biológicos , Nitrificação , Biofilmes , Nitrogênio , Oxirredução , Esgotos
11.
Environ Monit Assess ; 195(11): 1384, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889346

RESUMO

This review aims to perform an updated bibliographical survey on the cultivation of microalgae in domestic wastewater with a focus on biotechnological aspects. It was verified that the largest number of researches developed was about cultures in microalgae-bacteria consortium and mixed cultures of microalgae, followed by researches referring to the species Chlorella vulgaris and to the family Scenedesmaceae. According to published studies, these microorganisms are efficient in the biological treatment of domestic wastewater, as well as in the production of high value-added biomass, as they are capable of biosorbing the organic and inorganic compounds present in the culture medium, thus generating cells with high levels of lipids, proteins, and carbohydrates. These compounds are of great importance for different industry sectors, such as pharmaceuticals, food, and also for agriculture and aquaculture. In addition, biomolecules produced by microalgae can be extracted for several biotechnological applications; however, most studies focus on the production of biofuels, with biodiesel being the main one. There are also other emerging applications that still require more in-depth research, such as the use of biomass as a biofertilizer and biostimulant in the production of bioplastic. Therefore, it is concluded that the cultivation of microalgae in domestic wastewater is a sustainable way to promote effluent bioremediation and produce valuable biomass for the biobased industry, contributing to the development of technology for the green economy.


Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Biomassa , Biodegradação Ambiental , Monitoramento Ambiental , Biocombustíveis
12.
Environ Monit Assess ; 195(3): 420, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809517

RESUMO

This paper presents an assessment of the start-up performance of aerobic granular sludge (AGS) for the treatment of low-strength (chemical oxygen demand, COD < 200 mg/L) domestic wastewater by the application of a diatomite carrier. The feasibility was evaluated in terms of the start-up period and stability of the aerobic granules as well as COD and phosphate removal efficiencies. A single pilot-scale sequencing batch reactor (SBR) was used and operated separately for the control granulation and granulation with diatomite. Complete granulation (granulation rate ≥ 90%) was achieved within 20 days for the case of diatomite with an average influent COD concentration of 184 mg/L. In comparison, control granulation required 85 days to accomplish the same feat with a higher average influent COD concentration (253 mg/L). The presence of diatomite solidifies the core of the granules and enhances physical stability. AGS with diatomite recorded the strength and sludge volume index of 18 IC and 53 mL/g suspended solids (SS) which is superior to control AGS without diatomite (19.3 IC, 81 mL/g SS). Quick start-up and achievement of stable granules lead to an efficient COD (89%) and phosphate removal (74%) in 50 days of bioreactor operation. Interestingly, this study revealed that diatomite has some special mechanism in enhancing the removal of both COD and phosphate. Also, diatomite has a significant influence on microbial diversity. The result of this research implies that the advanced development of granular sludge by using diatomite can provide promising low-strength wastewater treatment.


Assuntos
Esgotos , Purificação da Água , Eliminação de Resíduos Líquidos , Aerobiose , Monitoramento Ambiental , Fosfatos , Reatores Biológicos , Nitrogênio
13.
Environ Monit Assess ; 195(11): 1358, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870665

RESUMO

In this study, detection sensitivity of the conventional flame atomic absorption spectrophotometer (FAAS) for the determination of manganese (Mn2+) was enhanced by employing a preconcentration method from wastewater samples. Flower-shaped Ni(OH)2 nanomaterials were synthesized and used as sorbent material in preconcentration procedure. With the aim of attaining optimum experimental conditions, effective parameters of extraction method were optimized and these included pH of buffer solution, desorption solvent concentration and volume, mixing type and period, nanoflower amount, and sample volume. The detection limit of the optimized method was determined to be 2.2 µg L-1, and this correlated to about 41-fold enhancement in detection power relative to direct FAAS measurement. Domestic wastewater was used to test the feasibility of the proposed method to real samples by performing spike recovery experiments. The wastewater sample was spiked at four different concentrations of manganese, and the percent recoveries determined were in the range of 95-120%.


Assuntos
Manganês , Níquel , Níquel/análise , Manganês/análise , Águas Residuárias , Monitoramento Ambiental/métodos , Solventes , Espectrofotometria Atômica/métodos
14.
Environ Sci Technol ; 56(9): 5849-5859, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35420788

RESUMO

Efficient separation of harmful contaminants (e.g., per- and polyfluoroalkyl substances, PFASs) from valuable components (water and nutrients) is essential to the resource recovery from domestic wastewater for agricultural purposes. Such selective recovery requires precise separation at the angstrom scale. Although nanofiltration (NF) has the potential to achieve solute-solute separation, the state-of-the-art polyamide (PA) membranes are typically constrained by limited precision of solute-solute selectivity and their well-documented permeability-selectivity trade-off. Herein, we present a novel capillary-assisted interfacial polymerization (CAIP) approach to generate metal-organic framework (MOF)-PA nanocomposite membranes with reduced surface charges and more uniform pore sizes that favor solute selectivity by enhanced size exclusion. By uniquely regulating the PA-MOF interactions using the capillary force, CAIP results in effective exposure of MOF nanochannels on the membrane surface and a PA matrix with a high cross-linking gradient in the vertical direction, both of which contribute to an exceptional water permeance of ∼18.7 LMH/bar and an unprecedentedly high selectivity between nutrient ions and PFASs. Our CAIP approach breaks new ground for utilizing nanoparticles with nanochannels in fabricating the next-generation, fit-for-purpose NF membranes for improved solute-solute separations.


Assuntos
Fluorocarbonos , Nanocompostos , Membranas Artificiais , Nylons , Águas Residuárias , Água
15.
Environ Sci Technol ; 56(12): 8712-8721, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35656915

RESUMO

Treatment of domestic wastewater can recover valuable resources, including clean water, energy, and ammonia. Important metrics for these systems are greenhouse gas (GHG) emissions and embodied energy, both of which are location- and technology-dependent. Here, we determine the embodied energy and GHG emissions resulting from a conventional process train, and we compare them to a nonconventional process train. The conventional train assumes freshwater conveyance from a pristine source that requires energy for pumping (US average of 0.29 kWh/m3), aerobic secondary treatment with N removal as N2, and Haber-Bosch synthesis of ammonia. Overall, we find that this process train has an embodied energy of 1.02 kWh/m3 and a GHG emission of 0.77 kg-CO2eq/m3. We compare these metrics to those of a nonconventional process train that features anaerobic secondary treatment technology followed by further purification of the effluent by reverse osmosis and air stripping for ammonia recovery. This "short-cut" process train reduces embodied energy to 0.88 kWh/m3 and GHG emissions to 0.42 kg-CO2eq/m3, while offsetting demand for ammonia from the Haber-Bosch process and decreasing reliance upon water transported over long distances. Finally, to assess the potential impacts of nonconventional nitrogen removal technology, we compared the embodied energy and GHG emissions resulting from partial nitritation/anammox coupled to anaerobic secondary treatment. The resulting process train enabled a lower embodied energy but increased GHG emissions, largely due to emissions of N2O, a potent greenhouse gas.


Assuntos
Gases de Efeito Estufa , Águas Residuárias , Amônia , Efeito Estufa , Eliminação de Resíduos Líquidos , Água
16.
Environ Res ; 211: 113003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35227677

RESUMO

The membranes of a Membrane Aerated Biofilm Reactor (MABR) function as bubble-less air diffusers and bio-carriers. Recent bench-scale experiments reported that the shape of membranes influenced the oxygen transfer and utilization rates, which in turn affected the pollutant removal performance of the MABR. In this study, two pilot-scale MABRs using multi-layer hollow fiber membranes with the relaxation rates of 0.1-1.8% (MABR 1) and 1.0-2.8% (MABR 2) were used for the treatment of organics and nitrogen in real medium-strength domestic wastewater. Higher-relaxation-rate membranes have loose and more curved fiber bunch that may allow biofilm to grow more easily and let air diffuse more efficiently. MABR 2 had achieved better performance than MABR 1 at 12- and 6-h Hydraulic Retention Time (HRT), with respectively 0.7-4.3%, 17.7-18.1%, and 5.5-9.0% higher removal efficiencies for Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH4+), and Total Nitrogen (TN). The highest COD, NH4+, and TN removal efficiencies were 94.7%, 81.1%, and 57.1%, respectively, at 12 h HRT in MABR 2. The addition of Polyvinyl Alcohol (PVA) gel beads carrying denitrifying bacteria had enhanced the denitrification in both the reactors. Increments of 5.0-9.0% and 6.6-12.3% were reported for TN removal efficiencies of MABR 1 and 2 combined with PVA gel, sequentially.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Biofilmes , Reatores Biológicos/microbiologia , Nitrogênio
17.
J Environ Manage ; 303: 114159, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861499

RESUMO

Vertical Flow Treatment Wetland (VF-TW) systems achieve high efficiencies in terms of carbon related parameters removals from domestic wastewaters. Nitrogen removal is also efficient but optimisations are still needed. This article reports and discusses experimental data collected from 24-h monitoring campaigns of 29 full-scale VF-TWs, having different configurations and operation time up to 13 years. All monitored systems gathered 1 or 2 stage(s) of unsaturated or partially saturated VF-TW. Additionally, some of those included an aerobic biological Tricking Filter (TF) prior to TW stage(s). Results firstly showed that the implementation of a TF improved TSS, COD and BOD5 removal rates in the monitored systems. Regarding nitrogen removal, the association of TF with one stage of partially saturated vertical TW was found to achieve around 79% of nitrification in average and up to 92% in some cases. In the configurations where TF was associated to 2 successive stages of TW, almost all total nitrogen removal by nitrification/denitrification was achieved at the outlet of the first-stage TW. The contribution of the second-stage TW in denitrification was found very low due to limited availability of organic carbon to support heterotrophic denitrification. Specific solutions to enhance the contribution of the second stage in the denitrification process are discussed.


Assuntos
Nitrogênio , Áreas Alagadas , Carbono , Desnitrificação , Nitrificação , Nitrogênio/análise , Eliminação de Resíduos Líquidos , Águas Residuárias
18.
J Environ Manage ; 317: 115406, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661880

RESUMO

Constructed wetlands (CWs) are among the fastest emerging treatment methods for wastewater treatment. Unlike their organics and nitrogen removal capacities, the potential of CWs as a sink for phosphorous is still debatable. In this study, the secondary data from several CWs treating domestic sewage were compiled and assessed. Curves were plotted between orthophosphate-phosphorous (PO43--P) loading and the corresponding removal rates. Other factors affecting PO43--P removal like depth of the CW, surface area, organic loading rate etc. Were also analyzed. Removal rates of PO43--P were conforming to a linear positive relation with the loading rates. Pea gravel as a CW medium performed consistently well (60-80% removal) for a wide range of influent PO43--P loading (0.5-1.5 g/m3-d). The increased depth of the wetland appears to favor phosphate removal. PO43--P removal was found to be correlated with outlet dissolved oxygen, total Kjeldahl nitrogen removal and effluent nitrate. The study suggests that proper design, optimal organic loading and suitable pre-treatment may increase the applicability of CWs for phosphate removal from domestic wastewater. Larger area requirements can also be avoided by increasing their depth while keeping the volume of the filter media the same.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Nitrogênio/análise , Fosfatos , Fósforo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
19.
J Environ Manage ; 311: 114858, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35287082

RESUMO

There is limited understanding of how constructed wetland (CW) water quality may change over time in response to increased wastewater nutrient and hydraulic loadings. We evaluated long-term water quality trends and drivers for a full-scale (8.19 ha) free water surface CW that was developed in 2001 for the treatment of increasing amounts of pre-treated domestic wastewater from the township of Mount Barker, South Australia. Water quality parameter concentrations and loads, hydraulic loadings rates, trend direction assessments (TDAs), and water quality parameter removal efficiencies were analysed over the study period. The wetland received an annual average loading rate of 947, 19644, 31039, 18140, 2985, and 807 kg year-1 for BOD5, TN, NH4-N, TKN-N, NOx-N, and TP respectively and removed on average 8%, 72%, 73%, 78%, 12% and -246% of these loadings respectively. The average influent concentrations for the study period were 2.6, 42.3, 40.6, 35.9, 9.0, and 1.9 mg L-1 for BOD5, TN, NH4-N, TKN-N, NOx-N, and TP respectively. Average concentration removal rates over the study period were 50%, 39%, 40%, 15%, -216% and -600.5% for TN, NH4-N, TKN-N, NOx-N, BOD5 and TP respectively, suggesting that nitrogen was only partly assimilated by the wetland and it was a source of organic material and phosphorus. Using seasonally and inflow rate adjusted data, TDAs predicted virtually certain increases in TN, NH4-N, and TKN-N influent concentrations over time, a decline in NOx-N, no trend in BOD5, and a possible decreasing trend in TP. The inflow explained variance accounted for approximately 50% of the variation in TN, NH4-N and TKN-N effluent concentrations. Annual removal efficiencies of N declined with increasing hydraulic loads, and hydraulic loading rates varied with management practices. Seasonal analysis showed that N removal was greater during summer and lower in winter. Due to local population growth and various management practices, hydraulic loading is variable and has often exceeded design targets. Our findings indicate the long-term performance of CWs need to be closely monitored, as water quality can deteriorate due to increased hydraulic loadings.

20.
Appl Microbiol Biotechnol ; 105(14-15): 6073-6086, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34302200

RESUMO

Complex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor. Chromogenic substrates were used under fully mixed anaerobic conditions to determine lipase, protease, α-glucosidase, and ß-glucosidase activities in large granules (>1 mm in diameter), small granules (0.2-1 mm), flocculent sludge (0.045-0.2 mm), and bulk liquid. Furthermore, composition and hydrolytic activity of influent wastewater samples were determined. Our results showed an overcapacity of the sludge to hydrolyze wastewater soluble and colloidal polymeric substrates. The highest specific hydrolytic activity was associated with the flocculent sludge fraction (1.5-7.5 times that of large and smaller granules), in agreement with its large available surface area. However, the biomass in the full-scale reactor consisted of 84% large granules, making the large granules account for 55-68% of the total hydrolytic activity potential in the reactor. These observations shine a new light on the contribution of large granules to the conversion of polymeric COD and suggest that large granules can hydrolyze a significant amount of this influent fraction. The anaerobic removal of polymeric soluble and colloidal substrates could clarify the stable granule formation that is observed in full-scale installations, even when those are fed with complex wastewaters. KEY POINTS: • Large and small granules contain >70% of the hydrolysis potential in an AGS reactor. • Flocculent sludge has high hydrolytic activity but constitutes <10% VS in AGS. • AGS has an overcapacity to hydrolyze complex substrates in domestic wastewater.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Hidrólise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa