RESUMO
Itch is an uncomfortable and complex sensation that elicits the desire to scratch. The nucleus accumbens (NAc) activity is important in driving sensation, motivation, and emotion. Excitatory afferents from the medial prefrontal cortex (mPFC), amygdala, and hippocampus are crucial in tuning the activity of dopamine receptor D1-expressing and D2-expressing medium spiny neurons (Drd1-MSN and Drd2-MSN) in the NAc. However, a cell-type and neural circuity-based mechanism of the NAc underlying acute itch remains unclear. We found that acute itch induced by compound 48/80 (C48/80) decreased the intrinsic membrane excitability in Drd1-MSNs, but not in Drd2-MSNs, in the NAc core of male mice. Chemogenetic activation of Drd1-MSNs alleviated C48/80-induced scratching behaviors but not itch-related anxiety-like behaviors. In addition, C48/80 enhanced the frequency of spontaneous EPSCs (sEPSCs) and reduced the paired-pulse ratio (PPR) of electrical stimulation-evoked EPSCs in Drd1-MSNs. Furthermore, C48/80 increased excitatory synaptic afferents to Drd1-MSNs from the mPFC, not from the basolateral amygdala (BLA) or ventral hippocampus (vHipp). Consistently, the intrinsic excitability of mPFC-NAc projecting pyramidal neurons was increased after C48/80 treatment. Chemogenetic inhibition of mPFC-NAc excitatory synaptic afferents relieved the scratching behaviors. Moreover, pharmacological activation of κ opioid receptor (KOR) in the NAc core suppressed C48/80-induced scratching behaviors, and the modulation of KOR activity in the NAc resulted in the changes of presynaptic excitatory inputs to Drd1-MSNs in C48/80-treated mice. Together, these results reveal the neural plasticity in synapses of NAc Drd1-MSNs from the mPFC underlying acute itch and indicate the modulatory role of the KOR in itch-related scratching behaviors.SIGNIFICANCE STATEMENT Itch stimuli cause strongly scratching desire and anxiety in patients. However, the related neural mechanisms remain largely unclear. In the present study, we demonstrated that the pruritogen compound 48/80 (C48/80) shapes the excitability of dopamine receptor D1-expressing medium spiny neurons (Drd1-MSNs) in the nucleus accumbens (NAc) core and the glutamatergic synaptic afferents from medial prefrontal cortex (mPFC) to these neurons. Chemogenetic activation of Drd1-MSNs or inhibition of mPFC-NAc excitatory synaptic afferents relieves the scratching behaviors. In addition, pharmacological activation of κ opioid receptor (KOR) in the NAc core alleviates C48/80-induced itch. Thus, targeting mPFC-NAc Drd1-MSNs or KOR may provide effective treatments for itch.
Assuntos
Núcleo Accumbens , Receptores Opioides kappa , Camundongos , Masculino , Animais , Núcleo Accumbens/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Receptores de Dopamina D1/metabolismo , Córtex Pré-Frontal/metabolismoRESUMO
Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.
Assuntos
Dopamina , Miopia , Masculino , Camundongos , Animais , Dopamina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Camundongos Endogâmicos C57BL , Miopia/genética , Miopia/metabolismo , Retina/metabolismo , Receptores de Dopamina D1/metabolismoRESUMO
BACKGROUND: We recently reported that the dopamine (DA) analogue CA140 modulates neuroinflammatory responses in lipopolysaccharide-injected wild-type (WT) mice and in 3-month-old 5xFAD mice, a model of Alzheimer's disease (AD). However, the effects of CA140 on Aß/tau pathology and synaptic/cognitive function and its molecular mechanisms of action are unknown. METHODS: To investigate the effects of CA140 on cognitive and synaptic function and AD pathology, 3-month-old WT mice or 8-month-old (aged) 5xFAD mice were injected with vehicle (10% DMSO) or CA140 (30 mg/kg, i.p.) daily for 10, 14, or 17 days. Behavioral tests, ELISA, electrophysiology, RNA sequencing, real-time PCR, Golgi staining, immunofluorescence staining, and western blotting were conducted. RESULTS: In aged 5xFAD mice, a model of AD pathology, CA140 treatment significantly reduced Aß/tau fibrillation, Aß plaque number, tau hyperphosphorylation, and neuroinflammation by inhibiting NLRP3 activation. In addition, CA140 treatment downregulated the expression of cxcl10, a marker of AD-associated reactive astrocytes (RAs), and c1qa, a marker of the interaction of RAs with disease-associated microglia (DAMs) in 5xFAD mice. CA140 treatment also suppressed the mRNA levels of s100ß and cxcl10, markers of AD-associated RAs, in primary astrocytes from 5xFAD mice. In primary microglial cells from 5xFAD mice, CA140 treatment increased the mRNA levels of markers of homeostatic microglia (cx3cr1 and p2ry12) and decreased the mRNA levels of a marker of proliferative region-associated microglia (gpnmb) and a marker of lipid-droplet-accumulating microglia (cln3). Importantly, CA140 treatment rescued scopolamine (SCO)-mediated deficits in long-term memory, dendritic spine number, and LTP impairment. In aged 5xFAD mice, these effects of CA140 treatment on cognitive/synaptic function and AD pathology were regulated by dopamine D1 receptor (DRD1)/Elk1 signaling. In primary hippocampal neurons and WT mice, CA140 treatment promoted long-term memory and dendritic spine formation via effects on DRD1/CaMKIIα and/or ERK signaling. CONCLUSIONS: Our results indicate that CA140 improves neuronal/synaptic/cognitive function and ameliorates Aß/tau pathology and neuroinflammation by modulating DRD1 signaling in primary hippocampal neurons, primary astrocytes/microglia, WT mice, and aged 5xFAD mice.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos Transgênicos , Doenças Neuroinflamatórias , Receptores de Dopamina D1 , Transdução de Sinais , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptores de Dopamina D1/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Cognição/efeitos dos fármacos , Dopamina/metabolismo , Camundongos Endogâmicos C57BL , Masculino , HumanosRESUMO
A number of different receptors are distributed in glutamatergic neurons of the lateral habenula (LHb). These glutamatergic neurons are involved in different neural pathways, which may identify how the LHb regulates various physiological functions. However, the role of dopamine D1 receptor (D1R)-expressing habenular neurons projecting to the ventral tegmental area (VTA) (LHbD1R-VTA) remains not well understood. In the current study, to determine the activity of D1R-expressing neurons in LHb, D1R-Cre mice were used to establish the chronic restraint stress (CRS) depression model. Adeno-associated virus was injected into bilateral LHb in D1R-Cre mice to examine whether optogenetic activation of the LHb D1R-expressing neurons and their projections could induce depression-like behavior. Optical fibers were implanted in the LHb and VTA, respectively. To investigate whether optogenetic inhibition of the LHbD1R-VTA circuit could produce antidepressant-like effects, the adeno-associated virus was injected into the bilateral LHb in the D1R-Cre CRS model, and optical fibers were implanted in the bilateral VTA. The D1R-expressing neuronal activity in the LHb was increased in the CRS depression model. Optogenetic activation of the D1R-expressing neurons in LHb induced behavioral despair and anhedonia, which could also be induced by activation of the LHbD1R-VTA axons. Conversely, optogenetic inhibition of the LHbD1R-VTA circuit improved behavioral despair and anhedonia in the CRS depression model. D1R-expressing glutamatergic neurons in the LHb and their projections to the VTA are involved in the occurrence and regulation of depressive-like behavior.
Assuntos
Depressão , Modelos Animais de Doenças , Habenula , Vias Neurais , Optogenética , Receptores de Dopamina D1 , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/fisiopatologia , Área Tegmentar Ventral/fisiologia , Habenula/fisiologia , Camundongos , Masculino , Receptores de Dopamina D1/metabolismo , Depressão/fisiopatologia , Depressão/etiologia , Vias Neurais/fisiopatologia , Camundongos Transgênicos , Estresse Psicológico/fisiopatologia , Camundongos Endogâmicos C57BL , Restrição Física , Neurônios/fisiologiaRESUMO
Alloparenting refers to the practice of caring for the young by individuals other than their biological parents. The relationship between the dynamic changes in psychological functions underlying alloparenting and the development of specific neuroreceptors remains unclear. Using a classic 10-day pup sensitization procedure, together with a pup preference and pup retrieval test on the EPM (elevated plus maze), we showed that both male and female adolescent rats (24 days old) had significantly shorter latency than adult rats (65 days old) to be alloparental, and their motivation levels for pups and objects were also significantly higher. In contrast, adult rats retrieved more pups than adolescent rats even though they appeared to be more anxious on the EPM. Analysis of mRNA expression using real-time-PCR revealed a higher dopamine D2 receptor (DRD2) receptor expression in adult hippocampus, amygdala, and ventral striatum, along with higher dopamine D1 receptor (DRD1) receptor expression in ventral striatum compared to adolescent rats. Adult rats also showed significantly higher levels of 5-hydroxytryptamine receptor 2A (HTR2A) receptor expression in the medial prefrontal cortex, amygdala, ventral striatum, and hypothalamus. These results suggest that the faster onset of alloparenting in adolescent rats compared to adult rats, along with the psychological functions involved, may be mediated by varying levels of dopamine DRD1, DRD2, and HTR2A in different forebrain regions.
Assuntos
Prosencéfalo , RNA Mensageiro , Receptor 5-HT2A de Serotonina , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animais , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Masculino , Ratos , Feminino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/genética , Prosencéfalo/metabolismo , Empatia/fisiologia , Fatores Etários , Caracteres Sexuais , Ratos Sprague-Dawley , Comportamento Animal/fisiologia , Tonsila do Cerebelo/metabolismoRESUMO
The orbitofrontal cortex (OFC)-dorsal striatum (DS) is an important neural circuit that contributes to addictive behavior, including compulsive reinforcement, yet the specific types of neurons that play a major role still need to be further elucidated. Here, we used a place conditioning paradigm to measure the conditioned responses to methamphetamine (MA). The results demonstrated that MA increases the expression of c-Fos, synaptic plasticity in OFC and DS. Patch-clamp recording showed that MA activated projection neurons from the OFC to the DS, and chemogenetic manipulation of neuronal activity in OFC-DS projection neurons affects conditioned place preference (CPP) scores. And the combined patch-electrochemical technique was used to detect the DA release in OFC, the data indicated that the DA release was increased in MA group. Additionally, SCH23390, a D1R antagonist, was used to verify the function of D1R projection neurons, showing that SCH23390 reversed MA addiction-like behavior. Collectively, these findings provide evidence for the D1R neuron is sufficient to regulate MA addiction in the OFC-DS pathway, and the study provides new insight into the underlying mechanism of pathological changes in MA addiction.
Assuntos
Corpo Estriado , Metanfetamina , Corpo Estriado/metabolismo , Córtex Pré-Frontal/metabolismo , Metanfetamina/farmacologia , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismoRESUMO
Exercise has been recommended as a nonpharmaceutical therapy to treat insulin resistance (IR). Previous studies showed that dopamine D1-like receptor agonists, such as fenoldopam, could improve peripheral insulin sensitivity, while antipsychotics, which are dopamine receptor antagonists, increased susceptibility to Type 2 diabetes mellitus (T2DM). Meanwhile, exercise has been proved to stimulate dopamine receptors. However, whether the dopamine D1 receptor (D1R) is involved in exercise-mediated amelioration of IR remains unclear. We found that the D1-like receptor antagonist, SCH23390, reduced the effect of exercise on lowering blood glucose and insulin in insulin-resistant mice and inhibited the contraction-induced glucose uptake in C2C12 myotubes. Similarly, the opposite was true for the D1-like receptor agonist, fenoldopam. Furthermore, the expression of D1R was decreased in skeletal muscles from streptozotocin (STZ)- and high-fat intake-induced T2DM mice, accompanied by increased D1R phosphorylation, which was reversed by exercise. A screening study showed that G protein-coupled receptor kinase 4 (GRK4) may be the candidate kinase for the regulation of D1R function, because, in addition to the increased GRK4 expression in skeletal muscles of T2DM mice, GRK4 transgenic T2DM mice exhibited lower insulin sensitivity, accompanied by higher D1R phosphorylation than control mice, whereas the AAV9-shGRK4 mice were much more sensitive to insulin than AAV9-null mice. Mechanistically, the up-regulation of GRK4 expression caused by increased reactive oxygen species (ROS) in IR was ascribed to the enhanced expression of c-Myc, a transcriptional factor of GRK4. Taken together, the present study shows that exercise, via regulation of ROS/c-Myc/GRK4 pathway, ameliorates D1R dysfunction and improves insulin sensitivity.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Fenoldopam , Insulina , Músculo Esquelético , Espécies Reativas de Oxigênio , Receptores de Dopamina D1/genéticaRESUMO
There are general inhibitory effects of exo-cannabinoids on dopamine-mediated behaviors. Many studies suggested the interaction between cannabinoid receptors and dopamine receptors in the brain that affect cognition behaviors. In this paper, we investigate the effects of marijuana on 6-OHDA-induced cognitive impairments and the expression of dopamine and cannabinoid receptors in the hippocampus of male rats. 42 rats were divided into six groups. 6-hydroxy dopamine (6-OHDA) was administrated into the substantia nigra. Marijuana (60 mg/kg; i.p.) was administered 28 days, one week after the 6-OHDA injection. Morris water maze (MWM) and novel object recognition tests were performed. The hippocampal expression levels of cannabinoid receptors and D1 and D2 dopamine receptors evaluate by real-time PCR. The results showed marijuana improved the spatial learning and memory disorders caused by 6-OHDA in the MVM task and novel object recognition test. Additionally, the level of both D1 and D2 mRNA was decreased in 6-OHDA-treated animals and marijuana consumption only increased the hippocampal level of D1 mRNA. Moreover, the level of hippocampal CB1 mRNA in 6-OHDA- treated rats was higher than in control rats. However, the hippocampal level of CB2 mRNA was decreased in 6-OHDA- treated rats. Marijuana consumption caused a significant decrease in CB1 mRNA level and an increase in CB2 mRNA level in 6-OHDA + marijuana group. Therefore, marijuana may be helpful for learning & memory disorders, D1, and D2 dopamine receptors, and cannabinoid receptor alteration in patients with Parkinson's disease.
Assuntos
Cannabis , Dopamina , Ratos , Masculino , Animais , Dopamina/metabolismo , Oxidopamina/toxicidade , Cannabis/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transtornos da Memória , Aprendizagem Espacial , Hipocampo/metabolismo , CogniçãoRESUMO
The dopamine D1 receptor (D1R), is a class A G protein coupled-receptor (GPCR) which has been a promising drug target for psychiatric and neurological disorders such as Parkinson's disease (PD). Previous studies have suggested that therapeutic effects can be realized by targeting the ß-arrestin signaling pathway of dopamine receptors, while overactivation of the G protein-dependent pathways leads to side effects, such as dyskinesias. Therefore, it is highly desirable to develop a D1R ligand that selectively regulates the ß-arrestin pathway. Currently, most D1R agonists are signaling-balanced and stimulate both G protein and ß-arrestin pathways, with a few reports of G protein biased ligands. However, identification and characterization of ß-arrestin biased D1R agonists has been a challenge thus far. In this study, we implemented Gaussian accelerated molecular dynamics (GaMD) simulations to provide valuable computational insights into the possible underlying molecular mechanism of the different signaling properties of two catechol and two non-catechol D1R agonists that are either G protein biased or signaling-balanced. Dynamic network analysis further identified critical residues in the allosteric signaling network of D1R for each ligand at different conformational or binding states. Some of these residues are crucial for G protein or arrestin signals of GPCRs based on previous studies. Finally, we provided a molecular design strategy which can be utilized by medicinal chemists to develop potential ß-arrestin biased D1R ligands. The proposed hypotheses are experimentally testable and can guide the development of safer and more effective medications for a variety of CNS disorders.
Assuntos
Proteínas de Ligação ao GTP , Transdução de Sinais , beta-Arrestinas/metabolismo , Ligantes , Proteínas de Ligação ao GTP/metabolismo , Agonistas de Dopamina/química , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D1/metabolismoRESUMO
The dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues. Based on the cryo-EM structures of the D1R, we conducted molecular dynamics simulations to investigate the binding and allosteric mechanisms of LY3154207. Our simulations revealed that LY3154207 preferred the horizontal orientation above intracellular loop 2 (IL2) and stabilized the helical conformation of IL2. Moreover, LY3154207 binding induced subtle yet significant changes in key structural motifs and their neighboring residues. Notably, a cluster of residues centered around the Na+-binding site became more compact, while interactions involving the PIF motif and its neighboring residues were loosened upon LY3154207 binding, consistent with their role in opening the intracellular crevice for receptor activation. Additionally, we identified an allosteric pathway likely responsible for the positive allosteric effect of LY3154207 in enhancing Gs protein coupling. This mechanistic understanding of LY3154207's allosteric action at the D1R paves the way for the rational design of more potent and effective allosteric modulators.
Assuntos
Interleucina-2 , Transtornos Mentais , Humanos , Receptores de Dopamina D1 , Sítios de Ligação , Simulação de Dinâmica MolecularRESUMO
Abnormalities of auditory steady-state responses (ASSRs) and the effects of antipsychotic drugs on ASSRs have been investigated in patients with schizophrenia. It is presumed that drugs do not directly affect ASSRs because its abnormalities are associated with schizophrenia. Therefore, to investigate the direct effect of drugs on ASSRs, we established an ASSR evaluation system for common marmosets in a naïve state. Dopamine D1 receptor stimulation (SKF-81297, 2 mg/kg ip) significantly increased evoked power (EP) at 40 Hz. The phase locking factor (PLF) was increased significantly at 20, 30, 40, and 80 Hz. However, administration of a dopamine D1 receptor antagonist (SCH-39166, 0.3 mg/kg ip) resulted in a significant decrease in EP and PLF at 30 Hz. Dopamine D2 receptor stimulation (quinpirole, 1 mg/kg im) tended to increase EP and induced power (IP) at all frequencies, and a significant difference was observed at 30 Hz IP. There was no change in PLF at all frequencies. In addition, dopamine D2 receptor blockade (raclopride, 3 mg/kg ip) reduced EP and PLF at 30 Hz. Subcutaneous administration of the serotonin dopamine antagonist, risperidone (0.3 mg/kg), tended to increase IP and decrease PLF, but not significantly. Taken together, it is possible to compare the differences in the mode of action of drugs on ASSRs using naïve nonhuman primates.NEW & NOTEWORTHY We measured the effects of dopamine receptor-related compounds on ASSR in marmosets. D1 receptor stimulation increased the phase locking factor (PLF) and evoked power (EP), and reduced the induced power (IP). D2 receptor stimulation increased the IP. D1 and D2 receptor blockers reduced the PLF and EP at 30 Hz. Different modes of action of various drugs related to psychiatric disorders were evaluated by administering antipsychotic drugs to naïve marmosets.
Assuntos
Antipsicóticos , Callithrix , Estimulação Acústica/métodos , Animais , Antipsicóticos/farmacologia , Antagonistas de Dopamina/farmacologia , Potenciais Evocados Auditivos/fisiologia , Humanos , Receptores de Dopamina D1 , Receptores de Dopamina D2RESUMO
BACKGROUND: Mevidalen is a selective positive allosteric modulator (PAM) of the dopamine D1 receptor subtype. OBJECTIVE: To assess the safety and efficacy of mevidalen for treatment of cognition in patients with Lewy body dementia (LBD). METHODS: PRESENCE was a phase 2, 12-week study in participants with LBD (N = 344) randomly assigned (1:1:1:1) to daily doses of mevidalen (10, 30, or 75 mg) or placebo. The primary outcome measure was change from baseline on Cognitive Drug Research Continuity of Attention (CoA) composite score. Secondary outcomes included Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS-cog13 ), Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), and Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change (ADCS-CGIC). Numerous safety measures were collected. RESULTS: Mevidalen failed to meet primary or secondary cognition endpoints. Mevidalen resulted in significant, dose-dependent improvements of MDS-UPDRS total score (sum of Parts I-III, 10 mg P < 0.05, 30 mg P < 0.05, 75 mg P < 0.01, compared to placebo). The 30 mg and 75 mg mevidalen doses significantly improved ADCS-CGIC scores compared to placebo (minimal or better improvement: 30 mg P < 0.01, 75 mg P < 0.01; moderate or better improvement: 30 mg P < 0.05, 75 mg P < 0.001). Increases in blood pressure, adverse events, and cardiovascular serious adverse events were most pronounced at the 75 mg dose. CONCLUSIONS: Mevidalen harnesses a novel mechanism of action that improves motor symptoms associated with LBD on top of standard of care while improving or not worsening non-motor symptoms associated with traditional dopaminergic therapy. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Fármacos Neuroprotetores , Cognição , Método Duplo-Cego , Humanos , Doença por Corpos de Lewy/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêuticoRESUMO
A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.
Assuntos
Discinesias , Levodopa , Animais , Ratos , Camundongos , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D1/agonistas , Dopamina , Receptores Acoplados a Proteínas G , LigantesRESUMO
Breast cancer is the second leading cause of cancer-related mortality in women, mainly due to metastasis, which is strongly associated with cancer stemness. Our previous studies showed that the eradication of cancer stem-like cells (CSCs) may be related to the activation of dopamine D1 receptor (D1DR). This study aimed to explicitly demonstrate the target-role of D1DR activation in antimetastatic therapy and to investigate the potential efficacy and the underlying D1DR-related mechanisms of QAP14, a new oral compound. 4T1, MDA-MB-231, and D1DR-knockout 4T1 (4T1-D1DR) cells were selected for in vitro study, while 4T1 and 4T1-D1DR cells were further used to establish a mouse allograft model for in vivo study. Our results showed that D1DR is abundantly expressed in both 4T1 and MDA-MB-231 cells and that knocking out D1DR in 4T1 cells accelerated migration and invasion in vitro as well as lung metastasis in vivo. QAP14 inhibited colony formation, cell motility, mammosphere formation and CSC frequency, induced CSC apoptosis and D1DR expression, and increased cAMP/cGMP levels. Additionally, QAP14 showed inhibitory effects on tumor growth and lung metastasis with acceptable safety in vivo. Knocking out D1DR almost completely abolished the efficacy, confirming that QAP14 exhibits its anti-CSC and antimetastatic effects through D1DR activation. The underlying mechanisms involved suppression of the nuclear factor κB (NF-κB)/protein kinase B (Akt) pathway and consequent downregulation of both epithelial-to-mesenchymal transition (EMT) process and cancer stemness. In summary, our findings suggest a potential candidate compound, QAP14, as well as a potential target, D1DR, for metastatic breast cancer therapy.
Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Células-Tronco Neoplásicas , Receptores de Dopamina D1/metabolismoRESUMO
Diabetes mellitus (DM) and insulinoma are mainly affected by the status of pancreatic ß-cell mass (BCM). Development of imaging agents for BCM allows to study pancreatic ß cells and the relationship between ß cells and DM or insulinoma. In this study, we investigated the density of dopamine D1 receptor on the ß cells and measured BCM by statistical image processing. The pancreatic uptakes of [125 I]I-R-(+)-7-chloro-8-hydroxy-1-(3'-iodopheny1)-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine ([125 I]I-R-(+)-TISCH), dopamine D1 receptor tracer, in normal and diabetic rats displayed significant differences at 30 min (1.11 ± 0.08% ID/g vs. 0.63 ± 0.09% ID/g, p < 0.0001). In the presence of SCH23390, the pancreatic uptake of [125 I]I-R-(+)-TISCH at 30 min in normal rats was lower (1.01 ± 0.04% ID/g, p < 0.05). Although the blocking was not complete, [125 I]I-R-(+)-TISCH showed specific binding signals to the pancreas. Furthermore, the uptakes of [125 I]I-R-(+)-TISCH in INS-1 cells were reduced in the presence of SCH23390 at different concentrations. [125 I]I-R-(+)-TISCH displayed a respectable uptake in insulinoma. Overall, [125 I]I-R-(+)-TISCH provided specific binding signals to pancreatic ß cells. Although the specific signal may not be sufficient for imaging in vivo, the dopamine D1 receptor can still be considered as a potential target for studying BCM. Further investigation will be required to optimize the ligand.
Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulinoma , Neoplasias Pancreáticas , Animais , Ratos , Dopamina , Receptores de Dopamina D1/metabolismo , Ligantes , Células Secretoras de Insulina/metabolismo , Benzazepinas/metabolismoRESUMO
Doxorubicin (DOX) is a broad-spectrum antineoplastic drug; however, its serious cardiotoxic side effects in inflammatory responses limit its use in clinical applications. Dopamine D1 receptor (DRD1), a G protein-coupled receptor, is crucial for the development and function of the nervous system; additionally, it also play a role in immune regulation. However, the specific role of DRD1 in DOX-induced cardiac inflammation has not yet been clarified. Here, we discovered that DRD1 expression was induced by DOX treatment in H9C2 cardiomyocytes. DRD1 activation by A-68930, a DRD1-specific agonist, decreased DOX-induced nucleotide-binding domain-like receptor protein 3 (NLRP3) expression, caspase-1 activation, and IL-1ß maturation in H9C2 cells. Expression of the cytokines IL-1ß and IL-18 in the supernatants was also inhibited by A-68930 treatment. DRD1 knockdown, using siRNA, abolished the effects of A-68930 on the DOX-induced NLRP3 inflammasome. Furthermore, we found that DRD1 signaling downregulated the NLRP3 inflammasome in H9C2 cells through cyclic adenosine monophosphate (cAMP). Moreover, application of A-68930 to activate DRD1 reduced cardiac injury and fibrosis in a DOX-treated mouse model by suppressing the NLRP3 inflammasome in the heart. These findings indicate that DRD1 signaling may protect against DOX-induced cardiac injury by inhibiting the NLRP3 inflammasome-mediated inflammation.
Assuntos
Cardiotoxicidade/prevenção & controle , Cromanos/farmacologia , Doxorrubicina/toxicidade , Inflamassomos/antagonistas & inibidores , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Receptores de Dopamina D1/agonistas , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Células Cultivadas , Citocinas/metabolismo , Agonistas de Dopamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Receptores de Dopamina D1/metabolismo , Transdução de Sinais , Inibidores da Topoisomerase II/toxicidadeRESUMO
It has been reported that systemic activation of D1 receptors promotes emergence from isoflurane-induced unconsciousness, suggesting that the central dopaminergic system is involved in the process of recovering from general anesthesia. The nucleus accumbens (NAc) contains abundant GABAergic medium spiny neurons (MSNs) expressing the D1 receptor (D1R), which plays a key role in sleep-wake behavior. However, the role of NAc D1 receptors in the process of emergence from general anesthesia has not been identified. Here, using real-time in vivo fiber photometry, we found that neuronal activity in the NAc was markedly disinhibited during recovery from propofol anesthesia. Subsequently, microinjection of a D1R selective agonist (chloro-APB hydrobromide) into the NAc notably reduced the time to emerge from propofol anesthesia with a decrease in δ-band power and an increase in ß-band power evident in the cortical electroencephalogram. These effects were prevented by pretreatment with a D1R antagonist (SCH-23390). Whole-cell patch clamp recordings were performed to further explore the cellular mechanism underlying the modulation of D1 receptors on MSNs under propofol anesthesia. Our data primarily demonstrated that propofol increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) of MSNs expressing D1 receptors. A D1R agonist attenuated the effect of propofol on the frequency of sIPSCs and mIPSCs, and the effects of the agonist were eliminated by preapplication of SCH-23390. Collectively, these results indicate that modulation of the D1 receptor on the activity of NAc MSNs is vital for emergence from propofol-induced unconsciousness.
Assuntos
Anestésicos Intravenosos/farmacologia , Nível de Alerta/fisiologia , Núcleo Accumbens/metabolismo , Propofol/farmacologia , Receptores de Dopamina D1/metabolismo , Animais , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Ratos Sprague-DawleyRESUMO
Activation of dopamine (DA) neurons is essential for the transition from sleep to wakefulness and maintenance of awakening, and sufficient to accelerate the emergence from general anesthesia in animals. Dopamine receptors (DR) are involve in arousal mediation. In the present study, we showed that the olfactory tubercle (OT) was active during emergence from isoflurane anesthesia, local injection of dopamine D1 receptor (D1R) agonist chloro-APB (1 mg/mL) and D2 receptor (D2R) agonist quinpirole (1 mg/mL) into OT enhanced behavioural and cortical arousal from isoflurane anesthesia, while D1R antagonist SCH-23390 (1 mg/mL) and D2R antagonist raclopride (2.5 mg/mL) prolonged recovery time. Optogenetic activation of DAergic terminals in OT also promoted behavioural and cortical arousal from isoflurane anesthesia. However, neither D1R/D2R agonists nor D1R/D2R antagonists microinjection had influences on the induction of isoflurane anesthesia. Optogenetic stimulation on DAergic terminals in OT also had no impact on the anesthesia induction. Our results indicated that DA signals in OT accelerated emergence from isoflurane anesthesia. Furthermore, the induction of general anesthesia, different from the emergence process, was not mediated by the OT DAergic pathways.
Assuntos
Anestésicos Inalatórios/farmacologia , Nível de Alerta/fisiologia , Isoflurano/farmacologia , Tubérculo Olfatório/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Nível de Alerta/efeitos dos fármacos , Benzazepinas/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Quimpirol/farmacologia , Racloprida/farmacologia , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D2/agonistasRESUMO
Research progress on dopamine D1 receptors indicates that signaling no longer is limited to G protein-dependent cyclic adenosine monophosphate phosphorylation but also includes G protein-independent ß-arrestin-related mitogen-activated protein kinase activation, regulation of ion channels, phospholipase C activation, and possibly more. This review summarizes recent studies revealing the complexity of D1 signaling and its clinical implications, and suggests functional selectivity as a promising strategy for drug discovery to magnify the merit of D1 signaling. Functional selectivity/biased receptor signaling has become a major research front because of its potential to improve therapeutics through precise targeting. Retrospective pharmacological review indicated that many D1 ligands have some degree of mild functional selectivity, and novel compounds with extreme bias at D1 signaling were reported recently. Behavioral and neurophysiological studies inspired new methods to investigate functional selectivity and gave insight into the biased signaling of several drugs. Results from recent clinical trials also supported D1 functional selectivity signaling as a promising strategy for discovery and development of better therapeutics.
Assuntos
Transtornos Mentais/fisiopatologia , Receptores de Dopamina D1/metabolismo , Animais , Humanos , Transdução de SinaisRESUMO
Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose-response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.