RESUMO
In spite of a number of studies to characterize ferredoxin (Fd):ferredoxin NADP+ reductase (FNR) interactions at limited conditions, detailed energetic investigation on how these proteins interact under near physiological conditions and its linkage to FNR activity are still lacking. We herein performed systematic Fd:FNR binding thermodynamics using isothermal titration calorimetry (ITC) at distinct pH (6.0 and 8.0), NaCl concentrations (0-200 mM), and temperatures (19-28 °C) for mimicking physiological conditions in chloroplasts. Energetically unfavorable endothermic enthalpy changes were accompanied by Fd:FNR complexation at all conditions. This energetic cost was compensated by favorable entropy changes, balanced by conformational and hydrational entropy. Increases in the NaCl concentration and pH weakened interprotein affinity due to the less contribution of favorable entropy change regardless of energetic gains from enthalpy changes, suggesting that entropy drove complexation and modulated affinity. Effects of temperature on binding thermodynamics were much smaller than those of pH and NaCl. NaCl concentration and pH-dependent enthalpy and heat capacity changes provided clues for distinct binding modes. Moreover, decreases in the enthalpy level in the Hammond's postulate-based energy landscape implicated kinetic advantages for FNR activity. All these energetic interplays were comprehensively demonstrated by the driving force plot with the enthalpy-entropy compensation which may serve as an energetic buffer against outer stresses. We propose that high affinity at pH 6.0 may be beneficial for protection from proteolysis of Fd and FNR in rest states, and moderate affinity at pH 8.0 and proper NaCl concentrations with smaller endothermic enthalpy changes may contribute to increase FNR activity.
Assuntos
Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Entropia , Cinética , Ligação Proteica , Cloreto de Sódio/metabolismo , TermodinâmicaRESUMO
Although acidic residues of ferredoxin (Fd) are known to be essential for activities of various Fd-dependent enzymes, including ferredoxin NADP(+) reductase (FNR) and sulfite reductase (SiR), through electrostatic interactions with basic residues of partner enzymes, non-electrostatic contributions such as hydrophobic forces remain largely unknown. We herein demonstrated that intermolecular hydrophobic and charge-charge interactions between Fd and enzymes were both critical for enzymatic activity. Systematic site-directed mutagenesis, which altered physicochemical properties of residues on the interfaces of Fd for FNR /SiR, revealed various changes in activities of both enzymes. The replacement of serine 43 of Fd to a hydrophobic residue (S43W) and charged residue (S43D) increased and decreased FNR activity, respectively, while S43W showed significantly lower SiR activity without affecting SiR activity by S43D, suggesting that hydrophobic and electrostatic interprotein forces affected FNR activity. Enzyme kinetics revealed that changes in FNR activity by mutating Fd correlated with Km, but not with kcat or activation energy, indicating that interprotein interactions determined FNR activity. Calorimetry-based binding thermodynamics between Fd and FNR showed different binding modes of FNR to wild-type, S43W, or S43D, which were controlled by enthalpy and entropy, as shown by the driving force plot. Residue-based NMR spectroscopy of (15)N FNR with Fds also revealed distinct binding modes of each complex based on different directions of NMR peak shifts with similar overall chemical shift differences. We proposed that subtle adjustments in both hydrophobic and electrostatic forces were critical for enzymatic activity, and these results may be applicable to protein-based electron transfer systems.