Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.264
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729112

RESUMO

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Assuntos
Drosophila melanogaster , Microscopia Eletrônica , Neurotransmissores , Sinapses , Animais , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Conectoma , Drosophila melanogaster/ultraestrutura , Drosophila melanogaster/metabolismo , Ácido gama-Aminobutírico/metabolismo , Microscopia Eletrônica/métodos , Redes Neurais de Computação , Neurônios/metabolismo , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Sinapses/ultraestrutura , Sinapses/metabolismo
2.
Cell ; 186(19): 4172-4188.e18, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37633267

RESUMO

Selective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy. The E3 ubiquitin ligase Parkin functions downstream of PINK1 and is required for mitochondrial clearance while having the opposite function in ER clearance. By contrast, Keap1 and the E3 ubiquitin ligase Cullin3 function downstream of PINK1 to regulate ER clearance by influencing Rtnl1 and Atl. PINK1 regulates a change in Keap1 localization and Keap1-dependent ubiquitylation of the ER-phagy receptor Rtnl1 to facilitate ER clearance. Thus, PINK1 regulates the selective clearance of ER and mitochondria by influencing the balance of Keap1- and Parkin-dependent ubiquitylation of substrates that determine which organelle is removed by autophagy.


Assuntos
Retículo Endoplasmático , Fator 2 Relacionado a NF-E2 , Retículo Endoplasmático/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Proteínas Quinases , Ubiquitina-Proteína Ligases , Drosophila melanogaster , Animais
3.
Cell ; 186(18): 3826-3844.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37536338

RESUMO

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.


Assuntos
Cromossomos de Insetos , Drosophila , Animais , Cromatina/genética , Empacotamento do DNA , Drosophila/genética , Mamíferos/genética , Neurogênese , Neurônios , Fatores de Transcrição , Proteínas de Drosophila , Genoma de Inseto , Regulação da Expressão Gênica
4.
Cell ; 186(21): 4694-4709.e16, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832525

RESUMO

Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.


Assuntos
Citocinese , Embrião não Mamífero , Animais , Núcleo Celular , Centrossomo , Ciclinas/metabolismo , Drosophila , Mitose , Fuso Acromático/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo
5.
Cell ; 186(11): 2438-2455.e22, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37178687

RESUMO

The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system. We find that in Drosophila heads, as well as in human cerebral organoids, 3' end site choice is globally influenced by the site of transcription initiation (TSS). "Dominant promoters," characterized by specific epigenetic signatures including p300/CBP binding, impose a transcriptional constraint to define splice and polyadenylation variants. In vivo deletion or overexpression of dominant promoters as well as p300/CBP loss disrupted the 3' end expression landscape. Our study demonstrates the crucial impact of TSS choice on the regulation of transcript diversity and tissue identity.


Assuntos
Processamento Alternativo , Isoformas de RNA , Sítio de Iniciação de Transcrição , Humanos , Poliadenilação , Regiões Promotoras Genéticas , Isoformas de RNA/metabolismo , RNA Mensageiro/metabolismo
6.
Cell ; 185(17): 3214-3231.e23, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35907404

RESUMO

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.


Assuntos
Mitocôndrias , Necroptose , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Humanos , Inflamassomos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Macrófagos , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Cell ; 184(2): 507-520.e16, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33382967

RESUMO

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We have identified three cell types that regulate aggression in Drosophila: one type is sexually shared, and the other two are sex specific. Shared common aggression-promoting (CAP) neurons mediate aggressive approach in both sexes, whereas functionally downstream dimorphic but homologous cell types, called male-specific aggression-promoting (MAP) neurons in males and fpC1 in females, control dimorphic attack. These symmetric circuits underlie the divergence of male and female aggressive behaviors, from their monomorphic appetitive/motivational to their dimorphic consummatory phases. The strength of the monomorphic → dimorphic functional connection is increased by social isolation in both sexes, suggesting that it may be a locus for isolation-dependent enhancement of aggression. Together, these findings reveal a circuit logic for the neural control of behaviors that include both sexually monomorphic and dimorphic actions, which may generalize to other organisms.


Assuntos
Agressão/fisiologia , Drosophila melanogaster/fisiologia , Lógica , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Rede Nervosa/fisiologia , Neurônios/fisiologia , Isolamento Social , Taquicininas/metabolismo
8.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31955847

RESUMO

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Assuntos
Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteômica/métodos , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/metabolismo , Neurogênese/fisiologia , Nervo Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Receptores de Lipoproteínas/metabolismo , Olfato/fisiologia
9.
Cell ; 180(6): 1178-1197.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200800

RESUMO

Social impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior. We identify the regulation of GABA availability by mitochondrial activity as a biologically relevant mechanism and demonstrate its contribution to social behavior. Specifically, increased mitochondrial activity causes gamma aminobutyric acid (GABA) sequestration in the mitochondria, reducing GABAergic signaling and resulting in social deficits. Pharmacological and genetic manipulation of mitochondrial activity or GABA signaling corrects the observed abnormalities. We identify Aralar as the mitochondrial transporter that sequesters GABA upon increased mitochondrial activity. This study increases our understanding of how mitochondria modulate neuronal homeostasis and social behavior under physiopathological conditions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Masculino , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Comportamento Social , Transmissão Sináptica , Ácido gama-Aminobutírico/genética
10.
Annu Rev Cell Dev Biol ; 37: 519-547, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613817

RESUMO

Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.


Assuntos
Drosophila melanogaster , Sistema Nervoso , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Feminino , Masculino , Neurônios/fisiologia , Caracteres Sexuais
11.
Cell ; 178(4): 980-992.e17, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31353220

RESUMO

Metabolic conditions affect the developmental tempo of animals. Developmental gene regulatory networks (GRNs) must therefore synchronize their dynamics with a variable timescale. We find that layered repression of genes couples GRN output with variable metabolism. When repressors of transcription or mRNA and protein stability are lost, fewer errors in Drosophila development occur when metabolism is lowered. We demonstrate the universality of this phenomenon by eliminating the entire microRNA family of repressors and find that development to maturity can be largely rescued when metabolism is reduced. Using a mathematical model that replicates GRN dynamics, we find that lowering metabolism suppresses the emergence of developmental errors by curtailing the influence of auxiliary repressors on GRN output. We experimentally show that gene expression dynamics are less affected by loss of repressors when metabolism is reduced. Thus, layered repression provides robustness through error suppression and may provide an evolutionary route to a shorter reproductive cycle.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Olho/citologia , Feminino , Insulina/metabolismo , Mutação com Perda de Função , MicroRNAs/metabolismo , Modelos Teóricos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica
12.
Cell ; 178(6): 1403-1420.e21, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491385

RESUMO

Prion-like proteins can assume distinct conformational and physical states in the same cell. Sequence analysis suggests that prion-like proteins are prevalent in various species; however, it remains unclear what functional space they occupy in multicellular organisms. Here, we report the identification of a prion-like protein, Herzog (CG5830), through a multimodal screen in Drosophila melanogaster. Herzog functions as a membrane-associated phosphatase and controls embryonic patterning, likely being involved in TGF-ß/BMP and FGF/EGF signaling pathways. Remarkably, monomeric Herzog is enzymatically inactive and becomes active upon amyloid-like assembly. The prion-like domain of Herzog is necessary for both its assembly and membrane targeting. Removal of the prion-like domain impairs activity, while restoring assembly on the membrane using a heterologous prion-like domain and membrane-targeting motif can restore phosphatase activity. This study provides an example of a prion-like domain that allows an enzyme to gain essential functionality via amyloid-like assembly to control animal development.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário , Fosfoproteínas Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Príons/química , Domínios Proteicos
13.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474368

RESUMO

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Agmatina/metabolismo , Animais , Caenorhabditis elegans/microbiologia , Proteína Receptora de AMP Cíclico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Nutrientes/metabolismo
14.
Cell ; 178(4): 964-979.e20, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398345

RESUMO

PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline. This pathway requires Nxf3-Nxt1, a variant of the hetero-dimeric mRNA export receptor Nxf1-Nxt1. Nxf3 interacts with UAP56, a nuclear RNA helicase essential for mRNA export, and CG13741/Bootlegger, which recruits Nxf3-Nxt1 and UAP56 to heterochromatic piRNA source loci. Upon RNA cargo binding, Nxf3 achieves nuclear export via the exportin Crm1 and accumulates together with Bootlegger in peri-nuclear nuage, suggesting that after export, Nxf3-Bootlegger delivers precursor transcripts to the piRNA processing sites. These findings indicate that the piRNA pathway bypasses nuclear RNA surveillance systems to export unprocessed transcripts to the cytoplasm, a strategy also exploited by retroviruses.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , Elementos de DNA Transponíveis , Inativação Gênica , Células Germinativas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica , Proteína Exportina 1
15.
Cell ; 178(4): 901-918.e16, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398343

RESUMO

Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/fisiologia , Mucosa Intestinal/metabolismo , Caracteres Sexuais , Maturação do Esperma/fisiologia , Animais , Ácido Cítrico/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Expressão Gênica , Janus Quinases/metabolismo , Masculino , RNA-Seq , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Açúcares/metabolismo , Testículo/metabolismo
16.
Cell ; 176(4): 844-855.e15, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30712870

RESUMO

In developing organisms, spatially prescribed cell identities are thought to be determined by the expression levels of multiple genes. Quantitative tests of this idea, however, require a theoretical framework capable of exposing the rules and precision of cell specification over developmental time. We use the gap gene network in the early fly embryo as an example to show how expression levels of the four gap genes can be jointly decoded into an optimal specification of position with 1% accuracy. The decoder correctly predicts, with no free parameters, the dynamics of pair-rule expression patterns at different developmental time points and in various mutant backgrounds. Precise cellular identities are thus available at the earliest stages of development, contrasting the prevailing view of positional information being slowly refined across successive layers of the patterning network. Our results suggest that developmental enhancers closely approximate a mathematically optimal decoding strategy.


Assuntos
Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Genéticos , Fatores de Transcrição/metabolismo
17.
Cell ; 178(1): 60-75.e19, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31230716

RESUMO

Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.


Assuntos
Aprendizagem por Associação/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Plasticidade Neuronal , Odorantes , Recompensa , Olfato/fisiologia , Potenciais Sinápticos/fisiologia , Fatores de Tempo
18.
Cell ; 175(5): 1213-1227.e18, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318147

RESUMO

Neurons use two main schemes to encode information: rate coding (frequency of firing) and temporal coding (timing or pattern of firing). While the importance of rate coding is well established, it remains controversial whether temporal codes alone are sufficient for controlling behavior. Moreover, the molecular mechanisms underlying the generation of specific temporal codes are enigmatic. Here, we show in Drosophila clock neurons that distinct temporal spike patterns, dissociated from changes in firing rate, encode time-dependent arousal and regulate sleep. From a large-scale genetic screen, we identify the molecular pathways mediating the circadian-dependent changes in ionic flux and spike morphology that rhythmically modulate spike timing. Remarkably, the daytime spiking pattern alone is sufficient to drive plasticity in downstream arousal neurons, leading to increased firing of these cells. These findings demonstrate a causal role for temporal coding in behavior and define a form of synaptic plasticity triggered solely by temporal spike patterns.


Assuntos
Plasticidade Neuronal , Sono/fisiologia , Potenciais de Ação , Animais , Relógios Circadianos/fisiologia , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Optogenética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Transmissão Sináptica
19.
Cell ; 175(3): 709-722.e15, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30245010

RESUMO

Accurately predicting an outcome requires that animals learn supporting and conflicting evidence from sequential experience. In mammals and invertebrates, learned fear responses can be suppressed by experiencing predictive cues without punishment, a process called memory extinction. Here, we show that extinction of aversive memories in Drosophila requires specific dopaminergic neurons, which indicate that omission of punishment is remembered as a positive experience. Functional imaging revealed co-existence of intracellular calcium traces in different places in the mushroom body output neuron network for both the original aversive memory and a new appetitive extinction memory. Light and ultrastructural anatomy are consistent with parallel competing memories being combined within mushroom body output neurons that direct avoidance. Indeed, extinction-evoked plasticity in a pair of these neurons neutralizes the potentiated odor response imposed in the network by aversive learning. Therefore, flies track the accuracy of learned expectations by accumulating and integrating memories of conflicting events.


Assuntos
Extinção Psicológica , Memória , Animais , Comportamento Apetitivo , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Drosophila melanogaster , Feminino , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Plasticidade Neuronal
20.
Cell ; 175(3): 835-847.e25, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340044

RESUMO

How transcriptional bursting relates to gene regulation is a central question that has persisted for more than a decade. Here, we measure nascent transcriptional activity in early Drosophila embryos and characterize the variability in absolute activity levels across expression boundaries. We demonstrate that boundary formation follows a common transcription principle: a single control parameter determines the distribution of transcriptional activity, regardless of gene identity, boundary position, or enhancer-promoter architecture. We infer the underlying bursting kinetics and identify the key regulatory parameter as the fraction of time a gene is in a transcriptionally active state. Unexpectedly, both the rate of polymerase initiation and the switching rates are tightly constrained across all expression levels, predicting synchronous patterning outcomes at all positions in the embryo. These results point to a shared simplicity underlying the apparently complex transcriptional processes of early embryonic patterning and indicate a path to general rules in transcriptional regulation.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Ativação Transcricional , Animais , RNA Polimerases Dirigidas por DNA/metabolismo , Drosophila melanogaster , Embrião não Mamífero/metabolismo , Modelos Teóricos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa