RESUMO
MAIN CONCLUSION: AtPLC1 plays a critical role in plant growth, development, and response to drought stress. Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes substrates to generate secondary messengers crucial for plant growth, development, and stress responses. Drought escape (DE) response is an adaptive strategy that plants employ under drought conditions. The expression levels of the flower meristem-specific gene APETALA 1 and flowering regulatory genes FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 were downregulated in plc1, and FLOWERING LOCUS C was upregulated. The flowering time of the plc1flc double mutant was earlier than that of the wild type. Transcriptome analysis revealed that the Gene Ontology of differentially expressed genes (DEGs) was enriched in abscisic acid (ABA) response signaling, and Kyoto Encyclopedia of Genes and Genomes analysis revealed differential gene expression annotated to plant hormone signaling pathways. Our experiments show that AtPLC1 is upregulated by ABA in Arabidopsis. Under ABA induction and water stress, wild-type plants exhibit a DE response, and the DE response in plc1 disappears. Expression levels of ABA signaling pathway transcription factors ABA-responsive element-binding factors 3 (ABF3) and ABF4 were downregulated in plc1. In conclusion, our study suggests that AtPLC1 participates in regulating plant growth and development and participates in the DE response through the regulation of ABA signaling pathway transcription factors ABF3/ABF4. The study enhances our comprehension of the role of AtPLC1 in plant development and drought stress, providing a theoretical foundation for further investigation into DE responses.
Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Resistência à SecaRESUMO
Plants are sensitive to photoperiods and are also equipped with systems to adjust their flowering time in response to various changes in the environment and developmental hormones. In the present study, previously generated rice OsWOX13 overexpression and newly generated OsWOX13 knockout lines constructed via CRISPR/Cas9 technology flowered 10 days earlier and 4-6 days later than the wild type, respectively. Quantitative real-time polymerase chain reaction analyses revealed that OsWOX13 might be involved in drought escape responses through the b-ZIP TRANSCRIPTION FACTOR 23 signaling pathway during rice flowering via photoperiod signaling genes such as Grain number, plant height and heading date 7, Early heading date 1, RICE FLOWERING LOCUS T1, Heading date 3a, and MADS14. Future investigations of OsWOX13 may provide insight into how plants adjust their flowering under stress conditions and how OsWOX13 could be precisely controlled to achieve maximum productivity in rice breeding.
Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Oryza , Fotoperíodo , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Plantas Geneticamente Modificadas/genética , SecasRESUMO
PREMISE: Changes in climate can impose selection on populations and may lead to rapid evolution. One such climatic stress is drought, which plant populations may respond to with escape (rapid growth and early flowering) or avoidance (slow growth and efficient water-use). However, it is unclear if drought escape would be a viable strategy for populations that already flower early from prior selection. METHODS: In an experimental evolution study, we subjected rapid-cycling Brassica rapa (RCBr), which was previously selected for early flowering, to four generations of experimental drought or watered conditions. We then grew ancestral and descendant populations concurrently under drought and watered conditions to assess evolution, plasticity, and adaptation. RESULTS: The RCBr populations that evolved under drought had earlier flowering and lower water-use efficiency than the populations that evolved under watered conditions, indicating evolutionary divergence. The drought descendants also had a trend of earlier flowering compared to ancestors, indicating evolution. Evolution of earlier flowering under drought followed the direction of selection and increased fitness and was consistent with studies in natural and experimental populations of this species, suggesting adaptive evolution. CONCLUSIONS: We found rapid adaptive evolution of drought escape in RCBr and little evidence for constraints on flowering time evolution, even though RCBr already flowers extremely early. Our results suggest that some populations may harbor sufficient genetic variation for evolution even after strong selection has occurred. Our study also illustrates the utility of combining artificial selection, experimental evolution, and the resurrection approach to study the evolution of functional traits.
Assuntos
Brassica rapa , Secas , Brassica rapa/genética , Evolução Biológica , Flores/genética , ÁguaRESUMO
BACKGROUND AND AIMS: In water-limited landscapes, some plants build structures that enable them to survive with minimal water (drought resistance). Instead of making structures that allow survival through times of water limitation, annual plants may invoke a drought escape strategy where they complete growth and reproduction when water is available. Drought escape and resistance each require a unique combination of traits and therefore plants are likely to have a suite of trait values that are consistent with a single drought response strategy. In environments where conditions are variable, plants may additionally evolve phenotypically plastic trait responses to water availability. Invasive annual species commonly occur in arid and semi-arid environments and many will be subject to reduced water availability associated with climate change. Assessing intraspecific trait variation across environmental gradients is a valuable tool for understanding how invasive plants establish and persist in arid environments. METHODS: In this study, we used a common garden experiment with two levels of water availability to determine how traits related to carbon assimilation, water use, biomass allocation and flowering phenology vary in California wild radish populations across an aridity gradient. KEY RESULTS: We found that populations from arid environments have rapid flowering and increased allocation to root biomass, traits associated with both drought escape and tolerance. Early flowering was associated with higher leaf nitrogen concentration and lower leaf mass per area, traits associated with high resource acquisition. While trait values varied across low- and high-water treatments, these shifts were consistent across populations, indicating no differential plasticity across the aridity gradient. CONCLUSIONS: While previous studies have suggested that drought escape and drought resistance are mutually exclusive drought response strategies, our findings suggest that invasive annuals may employ both strategies to succeed in novel semi-arid environments. As many regions are expected to become more arid in the future, investigations of intraspecific trait variation within low water environments help to inform our understanding of potential evolutionary responses to increased aridity in invasive species.
Assuntos
Secas , Água , Biomassa , Mudança Climática , FenótipoRESUMO
PREMISE: Whether drought-adaptation mechanisms tend to evolve together, evolve independently, or evolve constrained by genetic architecture is incompletely resolved, particularly for water-relations traits besides gas exchange. We addressed this issue in two subspecies of Clarkia xantiana (Onagraceae), California winter annuals that separated approximately 65,000 years ago and are adapted, partly by differences in flowering time, to native ranges differing in precipitation. METHODS: In these subspecies and in recombinant inbred lines (RILs) from a cross between them, we scored traits related to drought adaptation (timing of seed germination and of flowering, succulence, pressure-volume curve variables) in common environments. RESULTS: The subspecies native to more arid environments (parviflora) exhibited slower seed germination in saturated conditions, earlier flowering, and greater succulence, likely indicating superior drought avoidance, drought escape, and dehydration resistance via water storage. The other subspecies (xantiana) had lower osmotic potential at full turgor and lower water potential at turgor loss, implying superior dehydration tolerance. Genetic correlations among RILs suggest facilitated evolution of some trait combinations and independence of others. Where genetic correlations exist, subspecies differences fell along them, with the exception of differences in succulence and turgor loss point. In that case, subspecies difference overcame genetic correlations, possibly reflecting strong selection and/or antagonistic genetic correlations with other traits. CONCLUSIONS: Clarkia xantiana subspecies' differ in multiple mechanisms of drought adaptation. Genetic architecture generally does not seem to have constrained the evolution of these mechanisms, and it may have facilitated the evolution of some of trait combinations.
Assuntos
Clarkia , Secas , Adaptação Fisiológica , Evolução Biológica , Fenótipo , ÁguaRESUMO
PREMISE: Due to climate change, more frequent and intense periodic droughts are predicted to increasingly pose major challenges to the persistence of plant populations. When a severe drought occurs over a broad geographical region, independent responses by individual populations provide replicated natural experiments for examining the evolution of drought resistance and the potential for evolutionary rescue. METHODS: We used a resurrection approach to examine trait evolution in populations of the common monkeyflower, Mimulus guttatus, exposed to a record drought in California from 2011 to 2017. Specifically, we compared variation in traits related to drought escape and avoidance from seeds collected from 37 populations pre- and post-drought in a common garden. In a parallel experiment, we evaluated fitness in two populations, one which thrived and one which was nearly extirpated during the drought, under well-watered and dry-down conditions. RESULTS: We observed substantial variation among populations in trait evolution. In the subset of populations where phenotypes changed significantly, divergence proceeded along trait correlations with some populations flowering rapidly with less vegetative tissue accumulation and others delaying flowering with greater vegetative tissue accumulation. The degree of trait evolution was only weakly correlated with drought intensity but strongly correlated with initial levels of standing variation. Fitness was higher in the post-drought than pre-drought accessions in both treatments for the thriving population, but lower in both treatments for the nearly extirpated population. CONCLUSIONS: Together, our results indicate that evolutionary responses to drought are context dependent and reflect the standing genetic variation and genetic correlations present within populations.
Assuntos
Mimulus , Mudança Climática , Secas , Mimulus/genética , Fenótipo , ÁguaRESUMO
Plants can react to drought stress by anticipating flowering, an adaptive strategy for plant survival in dry climates known as drought escape (DE). In Arabidopsis, the study of DE brought to surface the involvement of abscisic acid (ABA) in controlling the floral transition. A central question concerns how and in what spatial context can ABA signals affect the floral network. In the leaf, ABA signaling affects flowering genes responsible for the production of the main florigen FLOWERING LOCUS T (FT). At the shoot apex, FD and FD-like transcription factors interact with FT and FT-like proteins to regulate ABA responses. This knowledge will help separate general and specific roles of ABA signaling with potential benefits to both biology and agriculture.
Assuntos
Ácido Abscísico/farmacologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Magnoliopsida/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Flores/efeitos dos fármacos , Flores/metabolismo , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/metabolismo , Proteínas de Plantas/genéticaRESUMO
BACKGROUND: Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. RESULTS: Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. CONCLUSIONS: Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.
Assuntos
Brassica rapa/metabolismo , Gases/metabolismo , Biomassa , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Secas , Meio Ambiente , Variação Genética , Genótipo , Fenótipo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Água/metabolismoRESUMO
BACKGROUND AND AIMS: Evidence suggests drought severity is increasing due to climate change, but strategies promoting severe drought survival in perennial grasses have been seldom explored. This is particularly true of summer dormancy, an adaptation common in summer-dry Mediterranean-type climates. In addition, though theory predicts superior drought survival results in lower potential productivity, studies rarely measure both drought survival and growth under optimal conditions. METHODS: Physiological and functional ecological approaches were integrated to quantify interspecific variation in foliar and root traits in a suite of eight California perennial grass species. In a glasshouse experiment, summer dormancy, foliar functional trait variation, and seasonal growth and phenology under non-limiting water conditions and dehydration tolerance under progressive drought were quantified. In a second glasshouse study, root functional traits were quantified under non-limiting water conditions in rhizotrons. KEY RESULTS: Summer dormancy was associated with higher dehydration tolerance, and negatively associated with traits conferring dehydration avoidance. Species with greater summer dormancy were characterized by greater springtime productivity, earlier reproduction, and a shallow and fine root system, which are indicative of dehydration escape. Summer dormancy was associated with an acquisitive, competitive functional strategy in spring, and a conservative strategy in summer. CONCLUSIONS: Both the escape and acquisitive springtime strategies observed in summer dormant perennial taxa are typically associated with annual grasses. California grasslands were once dominated by perennial species, but have been overtaken by non-native Mediterranean annual grasses, which are expected to be further favoured by climate change. Owing to functional similarity with these exotic annuals, it is suggested that native summer dormant taxa may play an important ecological role in the future of both natural and restored California grasslands.
Assuntos
Adaptação Fisiológica , Dormência de Plantas/fisiologia , Poaceae/fisiologia , California , Secas , Pradaria , Fenótipo , Raízes de Plantas/fisiologia , Estações do Ano , Água/fisiologiaRESUMO
Background and Aims Mating systems of plants are diverse and evolutionarily labile. Abiotic environmental factors, such as seasonal drought, may impose selection on physiological traits that could lead to transitions in mating system if physiological traits are genetically correlated with traits that influence mating system. Within Clarkia, self-fertilizing taxa have higher photosynthetic rates, earlier flowering phenology, faster individual floral development and more compressed flowering periods than their outcrossing sister taxa, potentially reducing the selfing taxa's exposure to drought. In theory, this contrast in trait combinations between sister taxa could have arisen via correlated evolution due to pleiotropy or genetic linkage. Alternatively, each trait may evolve independently as part of a life history that is adaptive in seasonally dry environments. Methods To evaluate these hypotheses, we examined relationships between photosynthetic rates (adjusted for plant height and leaf node position) and outcrossing rates (estimated by allozyme variation in progeny arrays) during two consecutive years in multiple wild populations of two mixed-mating Clarkia taxa, each of which is sister to a derived selfing taxon. If the negative association between photosynthetic rate and outcrossing previously observed between sister taxa reflects correlated evolution due to a strong negative genetic correlation between these traits, then a similarly negative relationship would be observed within populations of each taxon. By contrast, if the combination of elevated photosynthetic rates and reduced outcrossing evolved independently within taxa, we predicted no consistent relationship between photosynthetic rate and outcrossing rate. Key Results We found no significant difference in outcrossing rates within populations between groups of plants with high versus low photosynthetic rates. Conclusions Overall, these results provide support for the hypothesis that the joint divergence in photosynthetic rate and mating system observed between Clarkia sister taxa is the result of independent evolutionary transitions.
RESUMO
Examining how morphology, life history and physiology vary along environmental clines can reveal functional insight into adaptations to climate and thus inform predictions about evolutionary responses to global change. Widespread species occurring over latitudinal and altitudinal gradients in seasonal water availability are excellent systems for investigating multivariate adaptation to drought stress. Under common garden conditions, we characterized variation in 27 traits for 52 annual populations of Mimulus guttatus sampled from 10 altitudinal transects. We also assessed variation in the critical photoperiod for flowering and surveyed neutral genetic markers to control for demography when analyzing clinal patterns. Many drought escape (e.g. flowering time) and drought avoidance (e.g. specific leaf area, succulence) traits exhibited geographic or climatic clines, which often remained significant after accounting for population structure. Critical photoperiod and flowering time in glasshouse conditions followed distinct clinal patterns, indicating different aspects of seasonal phenology confer adaptation to unique agents of selection. Although escape and avoidance traits were negatively correlated range-wide, populations from sites with short growing seasons produced both early flowering and dehydration avoidance phenotypes. Our results highlight how abundant genetic variation in the component traits that build multivariate adaptations to drought stress provides flexibility for intraspecific adaptation to diverse climates.
Assuntos
Adaptação Fisiológica , Mimulus/fisiologia , Estresse Fisiológico , Altitude , Evolução Biológica , Clima , Secas , Meio Ambiente , Flores/genética , Flores/fisiologia , Flores/efeitos da radiação , Marcadores Genéticos/genética , Variação Genética , Mimulus/genética , Mimulus/efeitos da radiação , Fenótipo , Fotoperíodo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estações do Ano , Seleção GenéticaRESUMO
Plants use the regulation of their circadian clock to adapt to daily environmental challenges, particularly water scarcity. During drought, plants accelerate flowering through a process called drought escape (DE) response, which is promoted by the circadian clock component GIGANTEA (GI). GI up-regulates the flowering inducer gene FLOWERING LOCUS T (FT). Phytohormone Abscisic acid (ABA) is also required for drought escape, and both GIGANTEA and Abscisic acid are interdependent in the transition. Recent research has revealed a new mechanism by which GIGANTEA and the protein ENHANCED EM LEVEL form a heterodimer complex that turns on ABA biosynthesis during drought stress by regulating the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3). This highlights the close connection between the circadian clock and ABA regulation and reveals a new adaptive strategy for plants to cope with drought and initiates the DE response.
Assuntos
Arabidopsis , Relógios Circadianos , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Resistência à Seca , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , SecasRESUMO
The rhizomes and tubers of Curcuma kwangsiensis have extensive medicinal value in China. However, the inflorescences of C. kwangsiensis are rarely known in horticulture, because of its low field flowering rate. In order to improve the flowering rate of C. kwangsiensis, we conducted drought stress treatment on the rhizome of C. kwangsiensis. The flowering rate of rhizome was the highest after 4d of drought stress treatment, and the buds on the rhizome could be obviously swell on the 4th day of rehydration culture. In order to identify the genes regulating the flowering time of Curcuma kwangsiensis, comparative transcriptome analysis was performed on the buds on rhizomes before drought stress treatment, 4 d after drought stress treatment and 4 d after rehydration culture. During this process, a total of 20 DEGs controlling flowering time and 23 DEGs involved in ABA synthesis and signal transduction were identified, which might regulate the flowering of C. kwangsiensis under drought stress. Some floral integration factors, such as SOC1 and FTIP, were up-regulated under drought stress for 4 d, indicating that C. kwangsiensis had flowering trend under drought stress. The results of the present study will provide theoretical support for the application of Curcuma kwangsiensis in gardening.
Assuntos
Curcuma , Secas , Curcuma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Rizoma/genética , Transcriptoma/genéticaRESUMO
Climate change is driving evolutionary and plastic responses in populations, but predicting these responses remains challenging. Studies that combine experimental evolution with ancestor-descendant comparisons allow assessment of the causes, parallelism, and adaptive nature of evolutionary responses, although such studies remain rare, particularly in a climate change context. Here, we created experimental populations of Brassica rapa derived from the same natural population and exposed these replicated populations to experimental drought or watered conditions for four generations. We then grew ancestors and descendants concurrently, following the resurrection approach. Experimental populations under drought showed rapid evolution of earlier flowering time and increased specific leaf area, consistent with a drought escape strategy and observations in natural populations. Evolutionary shifts followed the direction of selection and increased fitness under drought, indicative of adaptive evolution. Evolution to drought also occurred largely in parallel among replicate populations. Further, traits showed phenotypic plasticity to drought, but the direction and effect size of plasticity varied. Our results demonstrate parallel evolution to experimental drought, suggesting that evolution to strong, consistent selection may be predictable. Broadly, our study demonstrates the utility of combining experimental evolution with the resurrection approach to investigate responses to climate change.
Assuntos
Brassica rapa , Secas , Adaptação Fisiológica , Brassica rapa/genética , Mudança Climática , FenótipoRESUMO
PREMISE OF THE STUDY: As global climate change alters drought regimes, rapid evolution of traits that facilitate adaptation to drought can rescue populations in decline. The evolution of phenological advancement can allow plant populations to escape drought, but evolutionary responses in phenology can vary across a species' range due to differences in drought intensity and standing genetic variation. METHODS: Mimulus cardinalis, a perennial herb spanning a broad climatic gradient, recently experienced a period of record drought. Here, we used a resurrection study comparing flowering time and stem height at first flower of pre-drought ancestors and post-drought descendants from northern-edge, central, and southern-edge populations in a common environment to examine the evolution of drought escape across the latitudinal range. KEY RESULTS: Contrary to the hypothesis of the evolution of advanced phenology in response to recent drought, flowering time did not advance between ancestors and descendants in any population, though storage condition and maternal effects could have impacted these results. Stem height was positively correlated with flowering time, such that plants that flowered earlier were shorter at first flower. This correlation could constrain the evolution of earlier flowering time if selection favors flowering early at a large size. CONCLUSIONS: These findings suggest that rapid evolution of phenology will not rescue these populations from recent climate change. Future work is needed to examine the potential for the evolution of alternative drought strategies and phenotypic plasticity to buffer M. cardinalis populations from changing climate.
RESUMO
The drought-escape response accelerates flowering in response to drought stress, allowing plants to adaptively shorten their life cycles. Abscisic acid (ABA) mediates plant responses to drought, but the role of ABA-responsive element (ABRE)-binding factors (ABFs) in the drought-escape response is poorly understood. Here, we show that Arabidopsis thaliana ABF3 and ABF4 regulate flowering in response to drought through transcriptional regulation of the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The abf3 abf4 mutant displayed ABA-insensitive late flowering under long-day conditions. Ectopic expression of ABF3 or ABF4 in the vasculature, but not in the shoot apex, induced early flowering, whereas expression of ABF3 fused with the SRDX transcriptional repressor domain delayed flowering. We identified SOC1 as a direct downstream target of ABF3/4, and found that SOC1 mRNA levels were lower in abf3 abf4 than in wild-type plants. Moreover, induction of SOC1 by ABA was hampered in abf3 abf4 mutants. ABF3 and ABF4 were enriched at the -1028- to -657-bp region of the SOC1 promoter, which does not contain canonical ABF-ABRE-binding motifs but has the NF-Y binding element. We found that ABF3 and ABF4 interact with nuclear factor Y subunit C (NF-YC) 3/4/9 in vitro and in planta, and induction of SOC1 by ABA was hampered in nf-yc3 yc4 yc9 mutants. Interestingly, the abf3 abf4, nf-yc3 yc4 yc9, and soc1 mutants displayed a reduced drought-escape response. Taken together, these results suggest that ABF3 and ABF4 act with NF-YCs to promote flowering by inducing SOC1 transcription under drought conditions. This mechanism might contribute to adaptation by enabling plants to complete their life cycles under drought stress.
Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Secas , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica/genética , MutaçãoRESUMO
Water limits global agricultural production. Increases in global aridity, a growing human population, and the depletion of aquifers will only increase the scarcity of water for agriculture. Water is essential for plant growth and in areas that are prone to drought, the use of drought-resistant crops is a long-term solution for growing more food for more people with less water. Sorghum is well adapted to hot and dry environments and has been used as a dietary staple for millions of people. Increasing the drought resistance in sorghum hybrids with no impact on yield is a continual objective for sorghum breeders. In this review, we describe the loci, quantitative trait loci (QTLs), or genes that have been identified for traits involved in drought avoidance (water-use efficiency, cuticular wax synthesis, trichome development and morphology, root system architecture) and drought tolerance (compatible solutes, pre- and post-flowering drought tolerance). Many of these identified genes and QTL regions have not been tested in hybrids and the effect of these genes, or their interactions, on yield must be understood in normal and drought-stressed conditions to understand the strength and weaknesses of their utility.
Assuntos
Produtos Agrícolas/genética , Genes de Plantas/genética , Locos de Características Quantitativas/genética , Sorghum/genética , Estresse Fisiológico/genética , SecasRESUMO
Many plants have evolved a drought escape (DE) mechanism to shorten their life cycle when facing water-deficit conditions. While drought tolerance has been intensively investigated, the genetic and molecular mechanisms of DE remain elusive. In this study, we found that low water-deficit treatment (LWT) at the early stage of rice development can trigger early flowering and reduced tiller numbers. LWT induced the accumulation of abscisic acid (ABA), which in turn has feed-back effects on light perception and circadian clock by synchronously regulating many flowering-related genes to promote early flowering. Moreover, some of light receptors, circadian components, and flowering-related genes including OsTOC1, Ghd7, and PhyB were found to be involved in LWT in an ABA-dependent manner, whereas some of the other flowering-related genes including OsGI, OsELF3, OsPRR37, and OsMADS50 were involved in the regulation of DE independent of ABA. In addition, we found that strigolactones and OsTB1 are involved in the tillering inhibition under LWT, which is independent of the flowering pathway in rice. Taken together, our findings provide compelling evidence that DE in rice is coordinately regulated by multiple pathways during the reproduction (flowering) switch.
Assuntos
Ácido Abscísico/metabolismo , Secas , Oryza/metabolismo , Ritmo Circadiano , Flores/crescimento & desenvolvimento , Lactonas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/metabolismoRESUMO
As climate changes at unprecedented rates, understanding population responses is a major challenge. Resurrection studies can provide crucial insights into the contemporary evolution of species to climate change. We used a seed collection of two Californian populations of the annual plant Brassica rapa made over two decades of dramatic precipitation fluctuations, including increasingly severe droughts. We compared flowering phenology, other drought response traits, and seed production among four generations, grown under drought and control conditions, to test for evolutionary change and to characterize the strength and direction of selection. Postdrought generations flowered earlier, with a reduced stem diameter, and lower water-use efficiency (WUE), while intervening wet seasons reversed these adaptations. There was selection for earlier flowering, which was adaptive, but delayed flowering after wet years resulted in reduced total seed mass, indicating a maladaptive response caused by brief wet periods. Furthermore, evolutionary changes and plastic responses often differed in magnitude between populations and drought periods, suggesting independent adaptive pathways. While B. rapa rapidly evolved a drought escape strategy, plant fitness was reduced in contemporary generations, suggesting that rapid shifts in flowering time may no longer keep up with the increasing severity of drought periods, especially when drought adaptation is slowed by occasional wet seasons.
Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Brassica rapa/genética , Brassica rapa/fisiologia , Secas , Chuva , Mudança Climática , Estações do Ano , Fatores de Tempo , ÁguaRESUMO
Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance.