Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Cell Physiol ; 236(2): 791-805, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32592235

RESUMO

Multiple myeloma (MM) is a clonal B-cell malignancy characterized by the accumulation of neoplastic proliferation of a plasma cell in the bone marrow that produces a monoclonal immunoglobulin. The immune checkpoint inhibitors against programmed death-1/programmed death-1 ligand and cytotoxic T-lymphocyte antigen 4 axis have demonstrated appropriate anticancer activity in several solid tumors and liquid cancers, and are rapidly transforming the practice of medical oncology. However, in a high percentage of patients, the efficacy of immune checkpoints blockade remains limited due to innate or primary resistance. Moreover, the malignancies progress in many patients due to acquired or secondary resistance, even after the clinical response to immune checkpoints' blockade. The evidence shows that multiple tumor-intrinsic and tumor-extrinsic factors and alterations in signaling pathways are involved in primary and secondary resistance to immune checkpoints blockade. Improved identification of intrinsic and extrinsic factors and mechanisms of resistance or response to immune checkpoints blockade may not only provide novel prognostic or predictive biomarkers but also guide the optimal combination/sequencing of immune checkpoint blockade therapy in the clinic. Here, we review the underlying biology and role of immune checkpoints blockade in patients with MM. Furthermore, we review the host and tumor-related factor effects on immune checkpoints blockade in MM immunotherapy.


Assuntos
Anticorpos Monoclonais/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Animais , Biomarcadores Tumorais/imunologia , Humanos , Imunoterapia/métodos
2.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171792

RESUMO

The low efficiency of currently-used anti-cancer therapies poses a serious challenge, especially in the case of malignant melanoma, a cancer characterized by elevated invasiveness and relatively high mortality rate. The role of the tumor microenvironment in the progression of melanoma and its acquisition of resistance to treatment seems to be the main focus of recent studies. One of the factors that, in normal conditions, aids the organism in its fight against the cancer and, following the malignant transformation, adapts to facilitate the development of the tumor is the immune system. A variety of cell types, i.e., T and B lymphocytes, macrophages, and dendritic and natural killer cells, as well as neutrophils, support the growth and invasiveness of melanoma cells, utilizing a plethora of mechanisms, including secretion of pro-inflammatory molecules, induction of inhibitory receptors expression, or depletion of essential nutrients. This review provides a comprehensive summary of the processes regulated by tumor-associated cells that promote the immune escape of melanoma cells. The described mechanisms offer potential new targets for anti-cancer treatment and should be further studied to improve currently-employed therapies.


Assuntos
Melanoma/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Linfócitos B/imunologia , Células Dendríticas/imunologia , Humanos , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Melanoma/metabolismo , Melanoma/patologia , Evasão Tumoral/fisiologia , Microambiente Tumoral/fisiologia
3.
Eur J Clin Microbiol Infect Dis ; 37(7): 1273-1279, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29675789

RESUMO

Tuberculosis (TB) remains one of the most deadly infections with approximately a quarter of cases not being identified and/or treated mainly due to a lack of resources. Rapid detection of TB or drug-resistant TB enables timely adequate treatment and is a cornerstone of effective TB management. We evaluated the analytical performance of a single-tube assay for multidrug-resistant TB (MDR-TB) on an experimental platform utilising RT-PCR and melting curve analysis that could potentially be operated as a point-of-care (PoC) test in resource-constrained settings with a high burden of TB. Firstly, we developed and evaluated the prototype MDR-TB assay using specimens extracted from well-characterised TB isolates with a variety of distinct rifampicin and isoniazid resistance conferring mutations and nontuberculous Mycobacteria (NTM) strains. Secondly, we validated the experimental platform using 98 clinical sputum samples from pulmonary TB patients collected in high MDR-TB settings. The sensitivity of the platform for TB detection in clinical specimens was 75% for smear-negative and 92.6% for smear-positive sputum samples. The sensitivity of detection for rifampicin and isoniazid resistance was 88.9 and 96.0% and specificity was 87.5 and 100%, respectively. Observed limitations in sensitivity and specificity could be resolved by adjusting the sample preparation methodology and melting curve recognition algorithm. Overall technology could be considered a promising PoC methodology especially in resource-constrained settings based on its combined accuracy, convenience, simplicity, speed, and cost characteristics.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Desnaturação de Ácido Nucleico/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Pulmonar/diagnóstico , Antituberculosos/farmacologia , Sequência de Bases , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mutação/genética , Mycobacterium tuberculosis/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , Rifampina/farmacologia , Sensibilidade e Especificidade , Análise de Sequência de DNA , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia
4.
Eur J Clin Pharmacol ; 73(4): 437-443, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28091702

RESUMO

PURPOSE: Patients with minor ischemic stroke (MIS) are at high risk of recurrent ischemic stroke (RIS). The aim of this study was to evaluate the effects of platelet receptor gene (P2Y12, P2Y1) and glycoprotein gene (GPIIIa) polymorphisms, as well as their interactions, on antiplatelet drug responsiveness and clinical outcomes in patients with acute MIS. METHODS: We prospectively enrolled 426 patients with acute MIS who had been receiving combined aspirin and clopidogrel treatment for at least 3 months. Prevalence of seven variants in P2Y12, P2Y1, and GPIIIa genes were examined using mass spectrometry. Gene-gene interactions were evaluated using generalized multifactor dimensionality reduction (GMDR) analysis. Antiplatelet drug responsiveness was assessed by platelet aggregation assay. All patients were followed for 90 days. Primary outcomes were defined as a composite of RIS, myocardial infarction (MI), and death. RESULTS: The incidence of primary outcomes was 10.8% (46/426; 40 had RIS, 2 died, and 4 had MI) during the first 90 days after stroke. No significant differences were found regarding genotype frequencies of the seven variants between those with and without incidence of primary outcomes. However, we observed significant gene-gene interaction between rs16863323 and rs2317676 polymorphisms. The high-risk interactive genotypes were independently associated with poor antiplatelet drug responsiveness and increased risk of primary outcomes. CONCLUSION: Responsiveness to antiplatelet drugs and the risks for adverse clinical events in this MIS cohort appear to be multifactorial since the outcomes were not mediated by single gene polymorphisms.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo Genético , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y1/genética , Acidente Vascular Cerebral/tratamento farmacológico , Humanos , Estudos Prospectivos , Resultado do Tratamento
5.
Expert Opin Emerg Drugs ; 20(2): 313-29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25826749

RESUMO

INTRODUCTION: Despite improvements in treatment, survival rates of head and neck squamous cell carcinoma (HNSCC) are stagnant. The existing chemotherapeutic agents are non-selective and associated with toxicities. Combinations of the only the US FDA-approved epidermal growth factor receptor (EGFR)-targeted agent, cetuximab, with chemotherapy or radiation improves overall survival. However, the response rates to cetuximab are modest. Thus, there is an urgent need for new agents that can be safely integrated into current treatment regimens to improve outcome. AREAS COVERED: Current EGFR-targeted drugs under clinical development include mAbs and tyrosine kinase inhibitors. The modest efficacy of these drugs implicates intrinsic or acquired resistance. Novel molecular agents inhibiting alternative targets to overcome anti-EGFR resistance in HNSCC are under investigation. Gene therapy and immunotherapy are also promising strategies to improve efficacy and reduce toxicity. EXPERT OPINION: To date, only six drugs have been FDA-approved for the treatment of head and neck cancer. Cetuximab is the only approved molecular targeting agent for HNSCC and despite ubiquitous expression of EGFR in HNSCC tumors, clinical responses are limited. Genetic and epigenetic characterization of HNSCC tumors, coupled with improved preclinical models, should facilitate the development of more effective drugs.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Aprovação de Drogas , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Terapia de Alvo Molecular , Taxa de Sobrevida
7.
World J Orthop ; 14(5): 275-293, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37304201

RESUMO

Pott's spine, commonly known as spinal tuberculosis (TB), is an extrapulmonary form of TB caused by Mycobacterium TB. Pott's paraplegia occurs when the spine is involved. Spinal TB is usually caused by the hematogenous spread of infection from a central focus, which can be in the lungs or another location. Spinal TB is distinguished by intervertebral disc involvement caused by the same segmental arterial supply, which can result in severe morbidity even after years of approved therapy. Neurological impairments and spine deformities are caused by progressive damage to the anterior vertebral body. The clinical, radiographic, microbiological, and histological data are used to make the diagnosis of spinal TB. In Pott's spine, combination multidrug antitubercular therapy is the basis of treatment. The recent appearance of multidrug-resistant/extremely drug-resistant TB and the growth of human immunodeficiency virus infection have presented significant challenges in the battle against TB infection. Patients who come with significant kyphosis or neurological impairments are the only ones who require surgical care. Debridement, fusion stabilization, and correction of spinal deformity are the cornerstones of surgical treatment. Clinical results for the treatment of spinal TB are generally quite good with adequate and prompt care.

8.
Cancers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230494

RESUMO

Despite the significant advances and mechanistic understanding of tumor processes, therapeutic agents against different types of cancer still have a high rate of recurrence associated with the development of resistance by tumor cells. This chemoresistance involves several mechanisms, including the programming of glucose metabolism, mitochondrial damage, and lysosome dysfunction. However, combining several anticancer agents can decrease resistance and increase therapeutic efficacy. Furthermore, this treatment can improve the effectiveness of chemotherapy. This work focuses on the recent advances in using natural bioactive molecules derived from phenolic compounds isolated from medicinal plants to sensitize cancer cells towards chemotherapeutic agents and their application in combination with conventional anticancer drugs. Dietary phenolic compounds such as resveratrol, gallic acid, caffeic acid, rosmarinic acid, sinapic acid, and curcumin exhibit remarkable anticancer activities through sub-cellular, cellular, and molecular mechanisms. These compounds have recently revealed their capacity to increase the sensitivity of different human cancers to the used chemotherapeutic drugs. Moreover, they can increase the effectiveness and improve the therapeutic index of some used chemotherapeutic agents. The involved mechanisms are complex and stochastic, and involve different signaling pathways in cancer checkpoints, including reactive oxygen species signaling pathways in mitochondria, autophagy-related pathways, proteasome oncogene degradation, and epigenetic perturbations.

9.
J Exp Clin Cancer Res ; 41(1): 245, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964058

RESUMO

BACKGROUND: Treatment with PARP inhibitors (PARPi) is primarily effective against high-grade serous ovarian cancers (HGSOC) with BRCA1/2 mutations or other deficiencies in homologous recombination (HR) repair mechanisms. However, resistance to PARPi frequently develops, mostly as a result of BRCA1/2 reversion mutations. The tumour suppressor CCDC6 is involved in HR repair by regulating the PP4c phosphatase activity on γH2AX. In this work, we reported that in ovarian cancer cells, a physical or functional loss of CCDC6 results synthetic lethal with the PARP-inhibitors drugs, by affecting the HR repair. We also unravelled a role for CCDC6 as predictive marker of PARPi sensitivity in ovarian cancer, and the impact of CCDC6 downregulation in overcoming PARPi resistance in these tumours. METHODS: A panel of HGSOC cell lines (either BRCA-wild type or mutant) were treated with PARPi after CCDC6 was attenuated by silencing or by inhibiting USP7, a CCDC6-deubiquitinating enzyme, and the effects on cell survival were assessed. At the cellular and molecular levels, the processes underlying the CCDC6-dependent modification of drugs' sensitivity were examined. Patient-derived xenografts (PDXs) were immunostained for CCDC6, and the expression of the protein was analysed statistically after digital or visual means. RESULTS: HGSOC cells acquired PARPi sensitivity after CCDC6 depletion. Notably, CCDC6 downregulation restored the PARPi sensitivity in newly generated or spontaneously resistant cells containing either wild type- or mutant-BRCA2. When in an un-phosphorylated state, the CCDC6 residue threonine 427 is crucial for effective CCDC6-PP4 complex formation and PP4 sequestration, which maintains high γH2AX levels and effective HR. Remarkably, the PP4-dependent control of HR repair is influenced by the CCDC6 constitutively phosphorylated mutant T427D or by the CCDC6 loss, favouring PARPi sensitivity. As a result, the PP4 regulatory component PP4R3α showed to be essential for both the activity of the PP4 complex and the CCDC6 dependent PARPi sensitivity. It's interesting to note that immunohistochemistry revealed an intense CCDC6 protein staining in olaparib-resistant HGSOC cells and PDXs. CONCLUSIONS: Our findings suggest that the physical loss or the functional impairment of CCDC6 enhances the PP4c complex activity, which causes BRCAness and PARPi sensitivity in HGSOC cells. Moreover, CCDC6 downregulation might overcome PARPi resistance in HGSOCs, thus supporting the potential of targeting CCDC6 by USP7 inhibitors to tackle PARPi resistance.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Fosfoproteínas Fosfatases/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Proteínas do Citoesqueleto/genética , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fenótipo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Peptidase 7 Específica de Ubiquitina/genética
10.
Epilepsy Res ; 185: 106977, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853334

RESUMO

PURPOSE: Epilepsy is a common serious brain condition characterized by the abnormal electrical activity of neurons. In most cases, epileptic patients respond to antiepileptic drugs. Approximately, one-third of patients prove medically intractable. The ABCB1 gene is a superfamily of ATP-binding cassette (ABC) transporters that encode a drug-transport protein, lead to cells and organs protects and eliminates toxic agents. We performed this meta-analysis to assess the association between G2677T/A in the ABCB1 gene and the risk of drug resistance in epileptic patients. METHODS: Two online libraries (PubMed and Scopus) were used to identify studies that report the relationship between G2677T/A polymorphism in the MDR1 gene and the risk of antiepileptic drug resistance. The meta-analysis was performed using Review Manager 5.3 software. The pooled odds ratios and 95 % confidence intervals (CIs) were calculated using a random or fixed effects model according to the heterogeneity between studies. RESULTS: A total of 33 eligible studies were included in this meta-analysis which 4192 patients were drug-resistant and 5079 patients were drug-responsive. As a result, a significant association was observed in overall population for the genetic model GG+GA vs AA (OR with 95 % CI = 0,56 [0.34,0.93]; P = 0.02). The subgroup ethnicity analysis showed a significant decrease in the risk of AEDs resistance in the Caucasian population. CONCLUSION: In conclusion, our analysis demonstrates that G2677T/A polymorphism in the ABCB1 gene decreases the risk of drug resistance. More studies are needed in the different ethnic groups to clarify the role of polymorphism in AEDs resistance.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Epilepsia Resistente a Medicamentos , Epilepsia , Anticonvulsivantes/uso terapêutico , Resistência a Medicamentos/genética , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética
11.
Microorganisms ; 9(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34683339

RESUMO

The spread of antibiotic resistance (AR) among zoonotic pathogens is a serious health problem, especially because in the last decade the massive use of antibiotics has favored the emergence of Multidrug Resistance (MDR) strains. Some species of the Salmonella genus are among the major causes of foodborne infections worldwide and could represent reservoirs of AR. For these reasons, the susceptibility to six antibiotic classes of 63 strains isolated from animals and food was determined to assess the presence of MDR strains. In addition, the detection of resistance genes was done for strains that resulted in MDR. A statistically significant difference was found when comparing the presence of Salmonella spp. MDR strains between strains isolated from animals and strains isolated from food. Our data seem to indicate that MDR occurs mostly in Salmonella strains isolated from food.

12.
Eur J Med Chem ; 221: 113520, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34029775

RESUMO

Systematic toxicity and drug resistance significantly limited FDA-approved platinum drugs for further clinical applications. In order to reverse the resistance (MDR) and enhance their anticancer efficiency, four Pt(IV) complexes (12-15) conjugating with P-glycoprotein (P-gp) inhibitors were designed and synthesized. Among them, complex 14 (IC50 = 3.37 µM) efficiently reversed cisplatin resistance in SGC-7901/CDDP cell line and increased selectivity index (6.9) against normal HL-7702 cell line. Detailed mechanisms in SGC-7901/CDDP cells assays revealed that complex 14 efficiently induced apoptosis via down-regulating expression of P-gp for enhanced intracellular uptake of platinum, arrested cells at G2/M phase, induced DNA damage and initiated mitochondrial apoptosis pathway. Further in vivo studies demonstrated that the enhanced accumulation of complex 14 contributed to tumor inhibition of 75.6% in SGC-7901/CDDP xenografts, which was much higher than cisplatin (25.9%) and oxaliplatin (43%). Moreover, the low systematic toxicity made 14 a potential novel P-gp-mediated MDR modulator.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Compostos Organoplatínicos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Iran J Microbiol ; 13(1): 65-73, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33889364

RESUMO

BACKGROUND AND OBJECTIVES: Staphylococcus aureus is frequently involved in bovine subclinical mastitis worldwide. Besides, the methicillin-resistant S. aureus (MRSA) carrier state of animals is a matter of worrisome. This study aimed to evaluate the frequency of MRSA, discriminatory geno-analysis and antibiotic resistance scheme of the strains isolated from bovine subclinical mastitis in Kurdistan province of Iran. MATERIALS AND METHODS: A total of 283 samples were collected and analyzed for S. aureus phenotypically and molecularly. SCCmec and coa types, and pvl gene were evaluated using polymerase chain reaction (PCR). Finally, the restriction fragment length polymorphism (RFLP) patterns of coa types and the antimicrobial susceptibility profile of the isolates were assessed. RESULTS: Among the 95 isolates of S. aureus, 11 (11.57%) strains were recognized as MRSA. Six, one, and four SCCmec types represented for IVa, IVc, and V were determined, respectively, among which an individual IVa and V determinant harboured pvl gene. Restriction digestion products of 490 bp, 680 bp, and 730 bp of coa bands were generated. Tobramycin, mupirocin, fusidic acid, clindamycin, and chloramphenicol were the most effective drugs against the MRSA isolates. CONCLUSION: The detrimental involvement of S. aureus in bovine subclinical mastitis is proved herein. Besides, the contribution of MRSA and potential contamination of milk and dairy products with the bacterium may impose a serious public health risk. This demands serious and long-lasting efforts to control the infection. The results may be effective in the implementation of accurate controlling strategies.

14.
Asian Pac J Cancer Prev ; 22(11): 3671-3678, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837926

RESUMO

BACKGROUND: LIN28B is functionally driving malignant transformation and relevance to the worse disease outcomes by promoting cancer aggressiveness. However, a typical role of LIN28B in cholangiocarcinoma (CCA) is primarily unknown. In this study, the tumorigenic potential of LIN28B in the cholangiocyte context was investigated. METHODS: Stable LIN28B expression in MMNK-1 cells was generated by infecting with retrovirus-containing LIN28B gene. LIN28B-overexpressing cells were further validated the amount of released cytokines by using human cytokine arrays. After treatment of chemo-drugs, cell viability was subsequently measured using MTT assay. Aldehyde dehydrogenase (ALDH) activity was determined using ALDEFLUOR assay Kit and analyzed by flow cytometry. The mRNA and protein expression levels were respectively assayed by RT-qPCR and western blot. RESULTS: Cytokine release results showed that numerous inflammatory cytokines-chemokines related to cancer initiation and development, such as IL-8, IL-6, VEGF, MCP1, TNF-α were significantly increased in LIN28B-overexpressing MMNK-1 cells. Drug sensitivity test showed that LIN28B-overexpressing MMNK-1 treated cells had a high percentage of cell viability compared to MMNK-1-control treated cells. Activity and expression level of a cancer stem cell marker, ALDH was significantly elevated in LIN28B-overexpressing MMNK-1 cells. Moreover, the activation of an oncogenic signaling pathway, signal transducer and activator of transcription 3 (STAT3) was enhanced in LIN28B-overexpressing MMNK-1 cells. Whereas, growth capacity of LIN28B-overexpressing MMNK-1 cells was found to be reduced in STAT3 inhibition. CONCLUSION: LIN28B can regulate the inflammatory response and resistance to chemotherapy of cholangiocytes through modulation of STAT3 signaling pathway.A recent study suggests that activated cholangiocytes can be induced by regulation of LIN28B/STAT3 pathway and this may partially contribute to the initiating CCA. Here, LIN28B and its downstream signaling could be considered as an attractive therapeutic target in patients with CCA.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ligação a RNA/fisiologia , Fator de Transcrição STAT3/metabolismo , Ductos Biliares/citologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citocinas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Oncogenes/genética , Transdução de Sinais/genética
15.
J Adv Vet Anim Res ; 8(1): 105-115, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33860020

RESUMO

OBJECTIVE: This work aimed to detect the frequency of pathogenic bacteria of zoonotic importance in ducks' dropping, their surrounding environment, and farmworkers in contact with them. Furthermore, the susceptibility pattern of isolated bacteria to antimicrobial drugs and the efficiency of disinfectants (CID 20, Durak® plus, and hydrogen peroxide (H2O2), nano zinc oxide (ZnO NPs), and hydrogen peroxide loaded nano zinc oxide (H2O2/ZnO NPs) composites against isolated bacteria were evaluated. MATERIALS AND METHODS: A total of 271 samples were collected from duck pens, including 35 fecal droppings, 200 environmental samples, and 36 from the hands of pen workers for isolation and identification of bacterial strains using standard microbiological procedures. After that, the antibiotic sensitivity testing of 40 bacterial isolates was carried out using disk diffusion assay. ZnO NPs and H2O2/ZnO NPs were characterized using Fourier-transform infrared spectrum and high-resolution transmission electron microscopy. The efficacy of disinfectants and nanocomposites was evaluated against enteropathogenic bacteria using the broth macro-dilution method. RESULTS: The results showed that the overall prevalence of pathogenic bacteria in duck pens was 62.73. The highest isolation rate was detected in duck fecal droppings (100%), while Escherichia coli was found to be the most isolated pathogen (56.47%), followed by Pseudomonas aeruginosa (21.8%), Proteus mirabilis (15.29), and Salmonella species (6.47%). Multidrug resistance (MDR) was detected in the majority of bacterial isolates. The efficiency of CID 20 and Durak® plus disinfectants against all bacterial isolates was highly susceptible (100%) after 120 min of exposure time compared to the effectiveness of H2O2 on enteropathogenic bacteria which did not exceeded 60% at 5% concentration. Meanwhile, the sensitivity of Salmonella spp. to Durak® plus did not exceeded 80%. CONCLUSION: The duck fecal droppings are the primary source of bacterial isolates. MDR isolates were susceptible to both CID 20 and Durak® plus disinfectants after 120 min of exposure time at a concentration of 1:100 ml. Besides, H2O2/ZnO NPs composite proved its lethal effect against all testing strains at 0.02 mg/ml after 120 min of exposure. Strict biosecurity guidelines are required to mitigate and prevent the transmission of potentially zoonotic pathogens through the farm environment and/or duck droppings.

16.
Transl Lung Cancer Res ; 9(3): 768-786, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32676338

RESUMO

Small-cell lung cancer (SCLC), the highest malignant cancer amongst different types of lung cancer, has the feature of lower differentiation, rapid growth, and poor survival rate. Despite the dramatically initial sensitivity of SCLC to various types of treatment methods, including chemotherapy, radiotherapy and immunotherapy, the emergence of drugs-resistance is still a grandly clinical challenge. Therefore, in order to improve the prognosis and develop new therapeutic approaches, having a better understanding of the complex mechanisms of resistance in SCLC is of great clinical significance. This review summarized recent advances in understanding of multiple mechanisms which are involved in the resistance during SCLC treatment, including DNA-related process, RNA-related process, apoptosis-related mechanism, and the process of drug accumulation and metabolism.

17.
J Cancer ; 11(6): 1351-1358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047542

RESUMO

Objectives: Ring finger protein 187 (RNF187) was recently demonstrated to be up-regulation and function as a promoter in multiple cancers. However, the roles of RNF187 in osteosarcoma (OS) are unclear. Here, we tried to reveal the clinicopathological and biological roles of RNF187 in OS. Materials and Methods: We employed the quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) to determine the expression of RNF187 in OS tissues and cells. Migration and invasion capacities were analyzed by wound healing and transwell assays, and colony formation and CCK8 assays were performed to investigate proliferative ability. The functional effects of RNF187 on OS drugs resistance were further determined by CCK8 and western blot assays. Then, the relationship between RNF187 expression and clinical implications was analyzed by tissue microarrays (TMAs) including 51 OS cases. Moreover, the prognostic value was also determined by Kaplan-Meier analysis. Results: We reported that RNF187 mRNA was significantly increased in OS tissues compared to matched nontumorous tissues (3.83 ±0.79 vs. 1.70 ± 0.63), which was in line with the IHC assay in TMAs. By RNA interference and cDNA transfection, we showed high level of RNF187 increased the migration, invasion and proliferation of OS cells. Moreover, we demonstrated that elevated RNF187 expression induced OS cell drugs resistance, activated the ERK1/2 molecular and markedly enhanced the BCL-2 expression. Clinically, OS patients with high level of RNF187 was associated with Histologic differentiation (p=0.001), an advanced Enneking stage (p=0.001), response to chemotherapy (p=0.004), and metastasis (p= 0.001). Clinically, our data displayed that the RNF187 overexpression in OS samples associated with shorten overall survival (p=0.001) and high tumor recurrence (p=0.001) in postoperative OS patients. Conclusions: Our results indicate that Elevated RNF187 expression is a new adverse outcomes marker for OS patients and may be used as a new therapeutic target of OS.

18.
Iran J Microbiol ; 12(3): 223-230, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32685119

RESUMO

BACKGROUND AND OBJECTIVES: Escherichia coli is known to be the pathogen commonly isolated from those infected with urinary tract infections (UTIs). The aim of this study was to investigate the presence of E. coli virulence genes and antibiotics' resistance pattern among clinical isolates in the Northeast of Iran. Relationships between virulence genes and antimicrobial resistances were studied as well. MATERIALS AND METHODS: Three hundred isolates of E. coli were isolated from patients with UTIs that referred to Ghaem and Imam Reza hospitals (Mashhad, Iran) during August 2016 to February 2017. A multiplex PCR was employed to amplify the genes encoding pyelonephritis associated pili (pap), S-family adhesions (sfa), type1fimbriae (fimH) and aerobactin (aer). Disk diffusion test was performed to test the susceptibility of isolates to ß-lactams, aminoglycosides, cephalosporins, quinolone, fluoroquinolones, carbapenems and trimethoprim-sulfamethoxazole. RESULTS: The PCR results identified the fimH in 78.4%, aer in 70.5%, sfa in 13.6% and the pap in 8.2% of isolates. The rates of antibiotic resistance of the isolates were as follows: 64.7% resistant to cephalosporins, 34% to trimethoprim-sulfamethoxazole, 31% to fluoroquinolones, 15.3% to aminoglycosides, 13.3% to ß-lactams, 7.8% to quinolones and 4.4% to carbapenems. Significant relationships existed between pap and aer, pap and sfa, aer and fluoroquinolones also pap and cephalosporins. CONCLUSION: fimH and aer were found in > 50% of isolates suggesting the importance of both genes in UPEC. The majority of isolates had fimH as adhesion factor for colonization. Determining antibiotic resistance patterns in specific geographical areas is necessary for appropriate treatment of urinary tract infection. The high rate of resistance to cephalosporins is most likely due to incorrect drug administration.

19.
Artif Cells Nanomed Biotechnol ; 46(sup1): 302-313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29301415

RESUMO

Most breast tumours are heterogeneous and not only contain the bulk of differentiated tumour cells but also a small population of highly tumorigenic and intrinsically drug-resistant cancer stem cells (CSCs). Herein, a pH-sensitive nanoparticle with simultaneous encapsulation of curcumin and doxorubicin (CURDOX-NPs) was prepared by using monomethoxy (polyethylene glycol)-b-P (D,L-lactic-co-glycolic acid)-b-P (L-glutamic acid) polymer to simultaneously target the differentiated tumor cells and CSCs. CURDOX-NPs had a mean diameter of 107.5 nm and zeta potential of -13.7 mV, determined by DLS. Drug-loading efficiency for curcumin and doxorubicin was reaching to 80.30% and 96.2%, respectively. Moreover, a cascade sustained-release profiles with the faster release of CUR followed by a slower release of DOX was observed in normal pH7.4 condition. Moreover, a pH-sensitive release profile for each cargo was seen in pH5.0 condition. The anti-tumour effect of CURDOX-NPs on CSCs-enriching MCF-7/ADR mammospheres was confirmed by in vitro. Moreover, a significant regression of tumour growth after treatment with CURDOX-NPs was also observed in Xenograft mice model. The percentage of CSCs in tumour significantly decreased from 39.9% in control group to 6.82% after treatment with CURDOX-NPs. The combinational delivery of CUR and DOX may a potentially useful therapeutic strategy for refractory breast cancer.


Assuntos
Neoplasias da Mama/patologia , Curcumina/química , Curcumina/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Ácido Poliglutâmico/análogos & derivados , Animais , Cápsulas , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Tamanho da Partícula , Ácido Poliglutâmico/química , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Biomol Struct Dyn ; 34(10): 2214-23, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26488313

RESUMO

New Delhi metallo-beta-lactamase 1 (NDM-1) has been identified as a potential target for the treatment of multi-drug resistance bacterial infections. We used molecular docking, normal MD, SIE, QM/MM MD simulations, QM/MM GBSA binding free energy, and QM/MM GBSA alanine-scanning mutagenesis techniques to investigate interactions of the NDM-1 with 11 inhibitors (Tigecycline, BAL30072, D-captopril, Penicillin G, Ampicillin, Carbenicillin, Cephalexin, Cefaclor, Nitrocefin, Meropenem, and Imipenem). From our normal MD and QM/MM simulations, the correlation coefficients between the predicted binding free energies and experimental values are .88 and .93, respectively. Then simulations, which combined QM/MM/GBSA and alanine-scanning mutagenesis techniques, were performed and our results show that two residues (Lys211 and His250) have the strongest impact on the binding affinities of the 11 NDM-1/inhibitors. Therefore, our approach theoretically suggests that the two residues (Lys211 and His250) are responsible for the selectivity of NDM-1 associated inhibitors.


Assuntos
Desenho de Fármacos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa