Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Appl Clin Med Phys ; 24(8): e13993, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37071500

RESUMO

PURPOSE: To determine the effect of megavoltage (MV) scatter on the accuracy of markerless tumor tracking (MTT) for lung tumors using dual energy (DE) imaging and to consider a post-processing technique to mitigate the effects of MV scatter on DE-MTT. METHODS: A Varian TrueBeam linac was used to acquire a series of interleaved 60/120 kVp images of a motion phantom with simulated tumors (10 and 15 mm diameter). Two sets of consecutive high/low energy projections were acquired, with and without MV beam delivery. The MV field sizes (FS) ranged from 2 × 2 cm2 -6 × 6 cm2 in steps of 1 × 1 cm2 . Weighted logarithmic subtraction was performed on sequential images to produce soft-tissue images for kV only (DEkV ) and kV with MV beam on (DEkV+MV ). Wavelet and fast Fourier transformation filtering (wavelet-FFT) was used to remove stripe noise introduced by MV scatter in the DE images ( DE kV + MV Corr ${\rm{DE}}_{{\rm{kV}} + {\rm{MV}}}^{{\rm{Corr}}}$ ). A template-based matching algorithm was then used to track the target on DEkV, DEkV+MV , and DE kV + MV Corr ${\rm{DE}}_{{\rm{kV}} + {\rm{MV}}}^{{\rm{Corr}}}$ images. Tracking accuracy was evaluated using the tracking success rate (TSR) and mean absolute error (MAE). RESULTS: For the 10 and 15 mm targets, the TSR for DEkV images was 98.7% and 100%, and MAE was 0.53 and 0.42 mm, respectively. For the 10 mm target, the TSR, including the effects of MV scatter, ranged from 86.5% (2 × 2 cm2 ) to 69.4% (6 × 6 cm2 ), while the MAE ranged from 2.05 mm to 4.04 mm. The application of wavelet-FFT algorithm to remove stripe noise ( DE kV + MV Corr ${\rm{DE}}_{{\rm{kV}} + {\rm{MV}}}^{{\rm{Corr}}}$ ) resulted in TSR values of 96.9% (2 × 2 cm2 ) to 93.4% (6 × 6 cm2 ) and subsequent MAE values were 0.89 mm to 1.37 mm. Similar trends were observed for the 15 mm target. CONCLUSION: MV scatter significantly impacts the tracking accuracy of lung tumors using DE images. Wavelet-FFT filtering can improve the accuracy of DE-MTT during treatment.


Assuntos
Neoplasias Pulmonares , Humanos , Raios X , Radiografia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Algoritmos
2.
J Appl Clin Med Phys ; 23(12): e13821, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36350280

RESUMO

PURPOSE: To evaluate the impact of various noise reduction algorithms and template matching parameters on the accuracy of markerless tumor tracking (MTT) using dual-energy (DE) imaging. METHODS: A Varian TrueBeam linear accelerator was used to acquire a series of alternating 60 and 120 kVp images (over a 180° arc) using fast kV switching, on five early-stage lung cancer patients. Subsequently, DE logarithmic weighted subtraction was performed offline on sequential images to remove bone. Various noise reduction techniques-simple smoothing, anticorrelated noise reduction (ACNR), noise clipping (NC), and NC-ACNR-were applied to the resultant DE images. Separately, tumor templates were generated from the individual planning CT scans, and band-pass parameter settings for template matching were varied. Template tracking was performed for each combination of noise reduction techniques and templates (based on band-pass filter settings). The tracking success rate (TSR), root mean square error (RMSE), and missing frames (percent unable to track) were evaluated against the estimated ground truth, which was obtained using Bayesian inference. RESULTS: DE-ACNR, combined with template band-pass filter settings of σlow  = 0.4 mm and σhigh  = 1.6 mm resulted in the highest TSR (87.5%), RMSE (1.40 mm), and a reasonable amount of missing frames (3.1%). In comparison to unprocessed DE images, with optimized band-pass filter settings of σlow  = 0.6 mm and σhigh  = 1.2 mm, the TSR, RMSE, and missing frames were 85.3%, 1.62 mm, and 2.7%, respectively. Optimized band-pass filter settings resulted in improved TSR values and a lower missing frame rate for both unprocessed DE and DE-ACNR as compared to the use previously published band-pass parameters based on single energy kV images. CONCLUSION: Noise reduction strategies combined with the optimal selection of band-pass filter parameters can improve the accuracy and TSR of MTT for lung tumors when using DE imaging.


Assuntos
Neoplasias Pulmonares , Humanos , Teorema de Bayes , Imagens de Fantasmas , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão , Algoritmos
3.
J Appl Clin Med Phys ; 22(8): 243-254, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34312979

RESUMO

PURPOSE: To compare the spectral performance of four combinations of kVp available in a third generation dual-source CT (DSCT) on abdominal imaging. METHODS: An image-quality phantom was scanned with a DSCT using four kVp pairs (tube "A" voltage/tube "B" voltage): 100/Sn150 kVp, 90/Sn150 kVp, 80/Sn150 kVp, and 70/Sn150 kVp, classic parameters and dose level for abdomen examination (CTDIvol : 11 mGy). The noise power spectrum (NPS) and the task-based transfer function (TTF) of two inserts were computed on virtual monochromatic images (VMIs) at 40/50/60/70 keV and for mixed, low-, and high-kVp images. Detectability index (d') was computed on VMIs and mixed images to model the detection task of liver metastasis (LM) and hepatocellular carcinoma (HCC). Iodine quantification accuracy was assessed using the Root Mean Square Deviation (RMSDiodine ) and the iodine bias (IB). RESULTS: Noise magnitude decreased by -55%± 0% between 40 and 70 keV for all kVp pairs. Compared to 70/Sn150 kVp, noise magnitude was increased by 9% ± 0% with 80/Sn150 kVp, by 16% ± 1% with 90/Sn150 kVp and by 24%± 1% with 100/Sn150 kVp. The average NPS spatial frequency (fav ) shifted toward higher frequencies as energy level increased for all kVp pairs. Lowest fav values were found for 70/Sn150 kVp and highest for 100/Sn150 kVp. The value of TTF at 50% (f50 ) shifted toward lower frequencies with increasing energy level. The highest f50  values occurred for 100/Sn150 kVp and the lowest for 80/Sn150 kVp. For both lesions, d' was highest for 70/Sn150 kVp and lowest for 100/Sn150 kVp. Compared to 70/Sn150 kVp, d' decreased by -6% ± 3% with 80/Sn150 kVp, by -11% ± 2% with 90/Sn150 kVp and by -13%± 2% with 100/Sn150 kVp. For all acquisitions, the RSMDiodine and IB were the lowest for 100/Sn150 kVp (0.29 ± 0.10 mg/ml and 0.88 ± 0.30 mg/ml, respectively) and increased when the tube "A" voltage decreased (2.34 ± 0.29 mg/ml for 70/Sn150 kVp and 7.42 ± 0.51 mg/ml respectively). CONCLUSION: 70/Sn150 kVp presented the lowest image noise and highest detectability in VMIs of two small focal liver lesions. 100/Sn150 kVp presented the lowest image noise on mixed images and highest accuracy of iodine quantification in iodine images.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Abdome/diagnóstico por imagem , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imagens de Fantasmas , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X
4.
Radiologe ; 60(12): 1162-1168, 2020 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-33237385

RESUMO

OBJECTIVE: Contrast-enhanced computed tomography (CT) is a convenient method to visualize left atrial appendage (LAA) thrombi. We determined whether diagnostic accuracy improves by including dual-energy as compared to transesophageal echocardiography (TEE). Furthermore, the influence of protocol parameters on radiation dose were quantified. METHODS: Patients were assigned to the different CT protocols. All CTs were assessed qualitatively for presence of LAA thrombi and dual-energy CT scans quantitatively for iodine concentration. TEE was assessed qualitatively for the presence of thrombi. RESULTS: Of 32 enrolled patients, 6 had a thrombus in TEE. Qualitative CT assessment yielded 83% sensitivity and 88% specificity. In the 26 patients who underwent dual-energy CT, median iodine concentration was 8.6 mg/cm3 and significantly lower in patients with than without LAA thrombi ; furthermore, it provided value for detecting LAA thrombi (AUC: 0.950 vs 0.867 for combined vs. only qualitative assessment, p = 0.04). The median radiation dose was 1.83 mSv; independently lower in scanning only LAA and with prospective gating , while arrhythmia and dual-energy did not contribute independently. CONCLUSION: CT provides good diagnostic accuracy for detecting LAA thrombi, which can further be improved if iodine density measurements by dual-energy are incorporated. With an optimized protocol, reasonably low radiation dose can be achieved.


Assuntos
Apêndice Atrial , Ecocardiografia Transesofagiana , Trombose , Tomografia Computadorizada por Raios X , Apêndice Atrial/diagnóstico por imagem , Humanos , Estudos Prospectivos , Trombose/diagnóstico por imagem
5.
J Synchrotron Radiat ; 25(Pt 6): 1797-1802, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407192

RESUMO

Unlike large-scale and expensive synchrotron radiation facilities, the Thomson scattering X-ray source can provide quasi-monochromatic, energy-tunable and high-brightness X-ray pulses with a small footprint and moderate cost, making it an excellent candidate for dual-energy and multi-energy imaging at laboratories and hospitals. Here, the first feasibility study on dual-energy computed tomography (CT) based on this type of light source is reported, and the effective atomic number and electron-density distribution of a standard phantom consisting of polytetrafluoroethylene, water and aluminium is derived. The experiment was carried out at the Tsinghua Thomson scattering X-ray source with peak energies of 29 keV and 68 keV. Both the reconstructed effective atomic numbers and the retrieved electron densities of the three materials were compared with their theoretical values. It was found that these values were in agreement by 0.68% and 2.60% on average for effective atomic number and electron density, respectively. These results have verified the feasibility of dual-energy CT based on the Thomson scattering X-ray source and will further expand the scope of X-ray imaging using this type of light source.

6.
Med Phys ; 51(2): 1509-1530, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846955

RESUMO

BACKGROUND: Dual-energy (DE) chest radiography (CXR) enables the selective imaging of two relevant materials, namely, soft tissue and bone structures, to better characterize various chest pathologies (i.e., lung nodule, bony lesions, etc.) and potentially improve CXR-based diagnosis. Recently, deep-learning-based image synthesis techniques have attracted considerable attention as alternatives to existing DE methods (i.e., dual-exposure-based and sandwich-detector-based methods) because software-based bone-only and bone-suppression images in CXR could be useful. PURPOSE: The objective of this study was to develop a new framework for DE-like CXR image synthesis from single-energy computed tomography (CT) based on a cycle-consistent generative adversarial network. METHODS: The core techniques of the proposed framework are divided into three categories: (1) data configuration from the generation of pseudo CXR from single energy CT, (2) learning of the developed network architecture using pseudo CXR and pseudo-DE imaging using a single-energy CT, and (3) inference of the trained network on real single-energy CXR. We performed a visual inspection and comparative evaluation using various metrics and introduced a figure of image quality (FIQ) to consider the effects of our framework on the spatial resolution and noise in terms of a single index through various test cases. RESULTS: Our results indicate that the proposed framework is effective and exhibits potential synthetic imaging ability for two relevant materials: soft tissue and bone structures. Its effectiveness was validated, and its ability to overcome the limitations associated with DE imaging techniques (e.g., increase in exposure dose owing to the requirement of two acquisitions, and emphasis on noise characteristics) via an artificial intelligence technique was presented. CONCLUSIONS: The developed framework addresses X-ray dose issues in the field of radiation imaging and enables pseudo-DE imaging with single exposure.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Radiografia , Tomografia Computadorizada por Raios X/métodos , Tórax/diagnóstico por imagem
7.
Phys Med Biol ; 69(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39214125

RESUMO

Objective.Photon-counting x-ray detectors (PCDs) can produce dual-energy (DE) x-ray images of lung cancer in a single x-ray exposure. It is important to understand the factors that affect contrast, noise and the contrast-to-noise ratio (CNR). This study quantifies the dependence of CNR on tube voltage, energy threshold and patient thickness in single exposure, DE, bone-suppressed thoracic imaging with PCDs, and elucidates how the fundamental processes inherent in x-ray detection by PCDs contribute to CNR degradation.Approach.We modeled the DE CNR for five theoretical PCDs, ranging from an ideal PCD that detects every primary photon in the correct energy bin while rejecting all scattered radiation to a non-ideal PCD that suffers from charge-sharing and electronic noise, and detects scatter. CNR was computed as a function of tube voltage and high energy threshold for average and larger-than-average patients. Model predictions were compared with experimental data extracted from images acquired using a cadmium telluride (CdTe) PCD with two energy bins and analog charge summing for charge-sharing suppression. The imaging phantom simulated attenuation, scatter and contrast in lung nodule imaging. We quantified CNR improvements achievable with anti-correlated noise reduction (ACNR) and measured the range of exposure rates over which pulse pile-up is negligible.Main Results.The realistic model predicted overall trends observed in the experimental data. CNR improvements with ACNR were approximately five-fold, and modeled CNR-enhancements were on average within 10% of experiment. CNR increased modestly (i.e.<20%) when increasing the tube voltage from 90 kV to 130 kV. Optimal energy thresholds ranged from 50 keV to 70 keV across all tube voltages and patient thicknesses with and without ACNR. Quantum efficiency, electronic noise, charge sharing and scatter degraded CNR by ~50%. Charge sharing and scatter had the largest effect on CNR, degrading it by ~30% and ~15% respectively. Dead-time losses were less than 5% for patient exposure rates within the range of clinical exposure rates.Significance.In this study, we (1) employed analytical and computational models to assess the impact of different factors on CNR in single-exposure DE imaging with PCDs, (2) evaluated the accuracy of these models in predicting experimental trends, (3) quantified improvements in CNR achievable through ACNR and (4) determined the range of patient exposure rates at which pulse pile-up can be considered negligible. To the best of our knowledge, this study represents the first systematic investigation of single-exposure DE imaging of lung nodules with PCDs.


Assuntos
Imagens de Fantasmas , Fótons , Radiografia Torácica , Razão Sinal-Ruído , Humanos , Radiografia Torácica/instrumentação , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia
8.
Med Phys ; 51(4): 2621-2632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37843975

RESUMO

BACKGROUND: Conventional x-ray imaging and fluoroscopy have limitations in quantitation due to several challenges, including scatter, beam hardening, and overlapping tissues. Dual-energy (DE) imaging, with its capability to quantify area density of specific materials, is well-suited to address such limitations, but only if the dual-energy projections are acquired with perfect spatial and temporal alignment and corrected for scatter. PURPOSE: In this work, we propose single-shot quantitative imaging (SSQI) by combining the use of a primary modulator (PM) and dual-layer (DL) detector, which enables motion-free DE imaging with scatter correction in a single exposure. METHODS: The key components of our SSQI setup include a PM and DL detector, where the former enables scatter correction for the latter while the latter enables beam hardening correction for the former. The SSQI algorithm allows simultaneous recovery of two material-specific images and two scatter images using four sub-measurements from the PM encoding. The concept was first demonstrated using simulation of chest x-ray imaging for a COVID patient. For validation, we set up SSQI geometry on our tabletop system and imaged acrylic and copper slabs with known thicknesses (acrylic: 0-22.5 cm; copper: 0-0.9 mm), estimated scatter with our SSQI algorithm, and compared the material decomposition (MD) for different combinations of the two materials with ground truth. Second, we imaged an anthropomorphic chest phantom containing contrast in the coronary arteries and compared the MD with and without SSQI. Lastly, to evaluate SSQI in dynamic applications, we constructed a flow phantom that enabled dynamic imaging of iodine contrast. RESULTS: Our simulation study demonstrated that SSQI led to accurate scatter correction and MD, particularly for smaller focal blur and finer PM pitch. In the validation study, we found that the root mean squared error (RMSE) of SSQI estimation was 0.13 cm for acrylic and 0.04 mm for copper. For the anthropomorphic phantom, direct MD resulted in incorrect interpretation of contrast and soft tissue, while SSQI successfully distinguished them quantitatively, reducing RMSE in material-specific images by 38%-92%. For the flow phantom, SSQI was able to perform accurate dynamic quantitative imaging, separating contrast from the background. CONCLUSIONS: We demonstrated the potential of SSQI for robust quantitative x-ray imaging. The integration of SSQI is straightforward with the addition of a PM and upgrade to a DL detector, which may enable its widespread adoption, including in techniques such as radiography and dynamic imaging (i.e., real-time image guidance and cone-beam CT).


Assuntos
Cobre , Tomografia Computadorizada por Raios X , Humanos , Raios X , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Algoritmos , Espalhamento de Radiação
9.
Med Phys ; 50(2): 763-777, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36326010

RESUMO

BACKGROUND: Photon-counting x-ray detectors may enable single-exposure dual-energy (DE) x-ray angiography. PURPOSE: The purpose of this paper is to experimentally optimize the energy thresholds and tube voltage for single-exposure DE x-ray angiography. METHODS: We optimized single-exposure DE x-ray angiography using the iodine signal-difference-to-noise ratio (SDNR) per root patient air kerma (κ) as a figure of merit. We measured the iodine SDNR by imaging an iodine stepwedge immersed in a water tank with a depth of 30 cm in the direction of x-ray propagation. The stepwedge was imaged using tube voltages ranging from 90 to 150 kV and a cadmium telluride (CdTe) x-ray detector with two energy bins and analog charge summing for charge sharing suppression. The energy threshold that separates the two energy bins was varied from approximately 35 keV to approximately 75% of the maximum energy of the x-ray beam. Curve fitting was used to determine the threshold that maximized SDNR / κ $\mathrm{SDNR}/\sqrt {\kappa }$ . The effect of scatter was determined from measurements of the scatter-to-primary ratios (SPRs) of the low-energy and high-energy images and a semi-empirical model of the relationship between SDNR and SPR. Using the optimal parameters, we imaged a phantom with vessel-simulating structures and background clutter. RESULTS: The optimal energy thresholds increased monotonically from ∼50 to ∼85 keV over the range of tube voltages considered. For tube voltages greater than 90 kV, the optimal energy thresholds consistently allocated approximately two thirds of all detected primary photons to the low energy bin; this ratio was preserved without scatter. Consistent with prior modeling studies, SDNR / κ $\mathrm{SDNR}/\sqrt {\kappa }$ increased monotonically with tube voltage from 90 to 150 kV; SDNR / κ $\mathrm{SDNR}/\sqrt {\kappa }$ at 150 kV was approximately 38% higher than that at 90 kV for an iodine area density of ∼50 mg/cm2 . Scatter reduced SDNR by approximately 25% for SPRs of ∼1 and 0.4 in low-energy and high-energy images, respectively. CONCLUSIONS: Achieving optimal image quality in single-exposure DE angiography with photon-counting x-ray detectors will require high tube voltages (i.e., >130 kV) and, for thick patients, energy thresholds that allocate approximately two thirds of all primary photons to the low-energy image. Future work will compare the image quality of singe-exposure photon-counting and kV-switching approaches to DE x-ray angiography.


Assuntos
Compostos de Cádmio , Iodo , Pontos Quânticos , Humanos , Raios X , Fótons , Telúrio , Angiografia , Imagens de Fantasmas
10.
Phys Med Biol ; 68(18)2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37619587

RESUMO

Objective. This study proposes and evaluates a new figure of merit (FOMn) for dose optimization of Dual-energy cone-beam CT (DE-CBCT) scanning protocols based on size-dependent modeling of radiation dose and multi-scale image quality.Approach. FOMn was defined using Z-score normalization and was proportional to the dose efficiency providing better multi-scale image quality, including comprehensive contrast-to-noise ratio (CCNR) and electron density (CED) for CatPhan604 inserts of various materials. Acrylic annuluses were combined with CatPhan604 to create four phantom sizes (diameters of the long axis are 200 mm, 270 mm, 350 mm, and 380 mm, respectively). DE-CBCT was decomposed using image-domain iterative methods based on Varian kV-CBCT images acquired using 25 protocols (100 kVp and 140 kVp combined with 5 tube currents).Main results. The accuracy of CED was approximately 1% for all protocols, but degraded monotonically with the increased phantom sizes. Combinations of lower voltage + higher current and higher voltage + lower current were optimal protocols balancing CCNR and dose. The most dose-efficient protocols for CED and CCNR were inconsistent, underlining the necessity of including multi-scale image quality in the evaluation and optimization of DE-CBCT. Pediatric and adult anthropomorphic phantom tests confirmed dose-efficiency of FOMn-recommended protocols.Significance. FOMn is a comprehensive metric that collectively evaluates radiation dose and multi-scale image quality for DE-CBCT. The models and data can also serve as lookup tables, suggesting personalized dose-efficient protocols for specific clinical imaging purposes.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Adulto , Humanos , Criança , Imagens de Fantasmas
11.
Med Phys ; 50(12): 7400-7414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877679

RESUMO

BACKGROUND: Dual-energy (DE) x-ray angiography with photon-counting detectors (PCDs) may enable single-exposure DE imaging of coronary vasculature. PURPOSE: To compare the iodine signal-difference-to-noise ratio (SDNR) of single-exposure DE angiography with digital subtraction angiography (DSA) and kV-switching DE angiography for matched patient x-ray exposure. METHODS: In a phantom study, we determined the technique parameters that maximized the iodine SDNR per root entrance air kerma for DSA, kV-switching DE angiography and single-exposure DE angiography. We measured SDNR from images of a phantom consisting of an iodine step-wedge immersed in a water tank of either 20  or 30 cm in thickness. We also imaged a phantom with simulated vessels embedded in background clutter and measured vessel SDNR. For this second phantom, we also applied anti-correlated noise reduction (ACNR) and calculated the resulting iodine SDNR. All images were acquired using a cadmium telluride PCD with two energy bins and analog charge summing for charge sharing suppression. The energy-discrimination capabilities were only used for the single-exposure DE approach. Optimized techniques were compared in terms of SDNR per root air kerma for two levels of x-ray scatter. RESULTS: For the same patient x-ray exposure, the SDNR of single-exposure DE imaging without ACNR was 75% to 85% of that of kV-switching DE imaging (also without ACNR) and DSA, the latter two of which had nearly equal SDNR. The single-exposure DE approach required ∼50% of the tube load of the kV-switching approach to achieve the same SDNR. For matched patient air kermas, the single exposure approach required only ∼25% of the tube load of the kV-switching approach. ACNR increased SDNR by 2.4 and 3.0 for kV-switching and single-exposure DE imaging, respectively. CONCLUSIONS: Photon-counting, single-exposure DE angiography can suppress soft tissues and provide iodine SDNR levels comparable to DSA and kV-switching DE angiography for matched patient radiation exposures. When ACNR is used to reduce DE image noise, the SDNR of single-exposure DE imaging and kV-switching DE imaging exceed that of DSA by more than a factor of two. Compared to kV-switching DE imaging, single-exposure DE imaging requires substantially lower tube loading to achieve the same SDNR.


Assuntos
Angiografia , Iodo , Humanos , Raios X , Radiografia , Razão Sinal-Ruído , Imagens de Fantasmas
12.
Phys Med Biol ; 69(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38048627

RESUMO

Objective.This study aims at investigating a novel super resolution CBCT imaging approach with a dual-layer flat panel detector (DL-FPD).Approach.With DL-FPD, the low-energy and high-energy projections acquired from the top and bottom detector layers contain over-sampled spatial information, from which super-resolution CT images can be reconstructed. A simple mathematical model is proposed to explain the signal formation procedure in DL-FPD, and a dedicated recurrent neural network, named suRi-Net, is developed based upon the above imaging model to nonlinearly retrieve the high-resolution dual-energy information. Physical benchtop experiments are conducted to validate the performance of this newly developed super-resolution CBCT imaging method.Main Results.The results demonstrate that the proposed suRi-Net can accurately retrieve high spatial resolution information from the low-energy and high-energy projections of low spatial resolution. Quantitatively, the spatial resolution of the reconstructed CBCT images from the top and bottom detector layers is increased by about 45% and 54%, respectively.Significance.In the future, suRi-Net will provide a new approach to perform high spatial resolution dual-energy imaging in DL-FPD-based CBCT systems.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
13.
Quant Imaging Med Surg ; 13(4): 2208-2217, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37064393

RESUMO

Background: To evaluate the diagnostic performance of split-bolus single-phase dual-energy computed tomography (DECT) with virtual non-contrast computed tomography (VNCT) compared to three-phase computed tomography (CT) urography in patients with urinary calculi, and to examine the performance of split-bolus single-phase DECT when reducing the effective dose. Methods: A total of 48 patients with abdominal pain or hematuria suggestive of unilateral urinary calculi were enrolled and randomly divided into the experimental and control groups, with 24 cases in each group. Patients in the experimental group underwent split-bolus single-phase DECT to obtain a mixed nephrographic excretory phase. Patients in the control group accepted a single-bolus three-phase CT urography scan (non-contrast, nephrographic phase, and excretory phase). The CT values and the contrast-to-noise ratio (CNR) of 7 segments of the urinary tract were measured and compared between the two groups by using the Mann-Whitney U test. The dose-length product (DLP) and effective dose of each patient were compared between the two groups using an independent t-test. Results: Among all 48 patients, 35 calculi were detected in the experimental group (n=24), and 47 calculi were detected in the control group (n=24). There was no significant difference between the two groups in both CT value measurements and the CNR. The mean DLP and mean effective dose of the experimental group were significantly lower than those of the control group, and the effective dose in the experimental group was decreased by 40% compared with the control group. Conclusions: The application of DECT combined with split-bolus nephrographic excretory phase CT urography can reveal the urinary calculi covered by a contrast medium and also reduce the effective dose exposure to patients.

14.
Med Phys ; 50 Suppl 1: 109-116, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36542332

RESUMO

Image quality models based on cascaded systems analysis and task-based imaging performance were an important aspect of the emergence of 2D and 3D digital x-ray systems over the last 25 years. This perspective vignette offers cursory review of such developments and personal insights that may not be obvious within previously published scientific literature. The vignette traces such models to the mid-1990s, when flat-panel x-ray detectors were emerging as a new base technology for digital radiography and benefited from the rigorous, objective characterization of imaging performance gained from such models. The connection of models for spatial resolution and noise to spatial-frequency-dependent descriptors of imaging task provided a useful framework for system optimization that helped to accelerate the development of new technologies to first clinical use. Extension of the models to new technologies and applications is also described, including dual-energy imaging, photon-counting detectors, phase contrast imaging, tomosynthesis, cone-beam CT, 3D image reconstruction, and image registration.


Assuntos
Imageamento Tridimensional , Intensificação de Imagem Radiográfica , Raios X , Radiografia , Imageamento Tridimensional/métodos , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas
15.
Phys Med Biol ; 68(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37820686

RESUMO

Part II of this study describes constancy tests for artefacts and image uniformity, exposure time, and phantom-based dosimetry; these are applied to four mammography systems equipped with contrast enhanced mammography (CEM) capability. Artefacts were tested using a breast phantom that simulated breast shape and thickness change at the breast edge. Image uniformity was assessed using rectangular poly(methyl)methacrylate PMMA plates at phantom thicknesses of 20, 40 and 60 mm, for the low energy (LE), high energy (HE) images and the recombined CEM image. Uniformity of signal and of the signal to noise ratio was quantified. To estimate CEM exposure times, breast simulating blocks were imaged in automatic exposure mode. The resulting x-ray technique factors were then set manually and exposure time for LE and HE images and total CEM acquisition time was measured with a multimeter. Mean glandular dose (MGD) was assessed as a function of simulated breast thickness using three different phantom compositions: (i) glandular and adipose breast tissue simulating blocks combined to give glandularity values that were typical of those in a screening population, as thickness was changed (ii) PMMA sheets combined with polyethylene blocks (iii) PMMA sheets with spacers. Image uniformity was superior for LE compared to HE images. Two systems did not generate recombined images for the uniformity test when the detector was fully covered. Acquisition time for a CEM image pair for a 60 mm thick breast equivalent phantom ranged from 3.4 to 10.3 s. Phantom composition did not have a strong influence on MGD, with differences generally smaller than 10%. MGD for the HE images was lower than for the LE images, by a factor of between 1.3 and 4.0, depending on system and simulated breast thickness. When combined with the iodine signal assessment in part I, these tests provide a comprehensive assessment of CEM system imaging performance.


Assuntos
Artefatos , Polimetil Metacrilato , Mamografia/métodos , Radiometria , Fenômenos Físicos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos
16.
Phys Med ; 95: 32-40, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35085907

RESUMO

The feasibility of single-exposure dual-energy imaging (DEI) was investigated in pursuit of motion-artifact-free subtraction angiography. To acquire low- and high-energy images simultaneously from a single X-ray exposure, a sandwich-like multilayered detector was fabricated by configuring two phosphor-coupled photodiode array layers in tandem. A simple analytic model describing the signal in DE-reconstructed images was derived. For the feasibility test, two plastic phantoms with linear arrays of cylindrical holes were prepared to contain iodinated water. One consisted of the same-diameter cylinders with different iodine concentrations, whereas the other had the different-diameter cylinders with the same iodine concentration. The concentration and size discrimination capabilities of single-exposure DEI were evaluated by investigating the phantom images. While the image noise relative to the signal was almost independent of the mass thickness of iodine, the iodine detectability improved with the mass thickness. The detectability performance at a lower tube voltage (e.g. 60 kV) outperformed those at higher voltages, as expected from the model. The results obtained in this study demonstrate the potential applicability of the single-exposure approach to motion-artifact-free subtraction angiography.


Assuntos
Iodo , Angiografia , Imagens de Fantasmas , Radiografia , Raios X
17.
J Appl Crystallogr ; 53(Pt 3): 781-788, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684892

RESUMO

In the present work, a method for adjusting a crystal analyzer to separate two characteristic lines from the spectrum of a conventional X-ray tube for simultaneous registration of tomographic projections is proposed. The experimental implementation of this method using radiation of a molybdenum anode (Kα1, Kß lines) and a silicon Si(111) crystal analyzer in Laue geometry is presented. Projection images at different wavelengths are separated in space and can be recorded independently for further processing. Potential uses of this scheme are briefly discussed.

18.
Med Phys ; 47(2): 672-680, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31797397

RESUMO

PURPOSE: To present a novel method, based on convolutional neural networks (CNN), to automate weighted log subtraction (WLS) for dual-energy (DE) fluoroscopy to be used in conjunction with markerless tumor tracking (MTT). METHODS: A CNN was developed to automate WLS (aWLS) of DE fluoroscopy to enhance soft tissue visibility. Briefly, this algorithm consists of two phases: training a CNN architecture to predict pixel-wise weighting factors followed by application of WLS subtraction to reduce anatomical noise. To train the CNN, a custom phantom was built consisting of aluminum (Al) and acrylic (PMMA) step wedges. Per-pixel ground truth (GT) weighting factors were calculated by minimizing the contrast of Al in the step wedge phantom to train the CNN. The pretrained model was then utilized to predict pixel-wise weighting factors for use in WLS. For comparison, the weighting factor was manually determined in each projection (mWLS). A thorax phantom with five simulated spherical targets (5-25 mm) embedded in a lung cavity, was utilized to assess aWLS performance. The phantom was imaged with fast-kV dual-energy (120 and 60 kVp) fluoroscopy using the on-board imager of a commercial linear accelerator. DE images were processed offline to produce soft tissue images using both WLS methods. MTT was compared using soft tissue images produced with both mWLS and aWLS techniques. RESULTS: Qualitative evaluation demonstrated that both methods achieved soft tissue images with similar quality. The use of aWLS increased the number of tracked frames by 1-5% compared to mWLS, with the largest increase observed for the smallest simulated tumors. The tracking errors for both methods produced agreement to within 0.1 mm. CONCLUSIONS: A novel method to perform automated WLS for DE fluoroscopy was developed. Having similar soft tissue quality as well as bone suppression capability as mWLS, this method allows for real-time processing of DE images for MTT.


Assuntos
Fluoroscopia , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Redes Neurais de Computação , Técnica de Subtração , Calibragem , Imagens de Fantasmas
19.
Med Phys ; 47(7): 2881-2901, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32239517

RESUMO

PURPOSE: We present a new framework for theoretical analysis of the noise power spectrum (NPS) of photon-counting x-ray detectors, including simple photon-counting detectors (SPCDs) and spectroscopic x-ray detectors (SXDs), the latter of which use multiple energy thresholds to discriminate photon energies. METHODS: We show that the NPS of SPCDs and SXDs, including spatio-energetic noise correlations, is determined by the joint probability density function (PDF) of deposited photon energies, which describes the probability of recording two photons of two different energies in two different elements following a single-photon interaction. We present an analytic expression for this joint PDF and calculate the presampling and digital NPS of CdTe SPCDs and SXDs. We calibrate our charge sharing model using the energy response of a cadmium zinc telluride (CZT) spectroscopic x-ray detector and compare theoretical results with Monte Carlo simulations. RESULTS: Our analysis shows that charge sharing increases pixel signal-to-noise ratio (SNR), but degrades the zero-frequency signal-to-noise performance of SPCDs and SXDs. In all cases considered, this degradation was greater than 10%. Comparing the presampling NPS with the sampled NPS showed that degradation in zero-frequency performance is due to zero-frequency noise aliasing induced by charge sharing. CONCLUSIONS: Noise performance, including spatial and energy correlations between elements and energy bins, are described by the joint PDF of deposited energies which provides a method of determining the photon-counting NPS, including noise-aliasing effects and spatio-energetic effects in spectral imaging. Our approach enables separating noise due to x-ray interactions from that associated with sampling, consistent with cascaded systems analysis of energy-integrating systems. Our methods can be incorporated into task-based assessment of image quality for the design and optimization of spectroscopic x-ray detectors.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Fótons , Telúrio , Raios X
20.
Med Phys ; 46(7): 3235-3244, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059124

RESUMO

PURPOSE: To evaluate markerless tumor tracking (MTT) using fast-kV switching dual-energy (DE) fluoroscopy on a bench top system. METHODS: Fast-kV switching DE fluoroscopy was implemented on a bench top which includes a turntable stand, flat panel detector, and x-ray tube. The customized generator firmware enables consecutive x-ray pulses that alternate between programmed high and low energies (e.g., 60 and 120 kVp) with a maximum frame rate of 15 Hz. In-house software was implemented to perform weighted DE subtraction of consecutive images to create an image sequence that removes bone and enhances soft tissues. The weighting factor was optimized based on gantry angle. To characterize this system, a phantom was used that simulates the chest anatomy and tumor motion in the lung. Five clinically relevant tumor sizes (5-25 mm diameter) were considered. The targets were programmed to move in the inferior-superior direction of the phantom, perpendicular to the x-ray beam, using a cos4 waveform to mimic respiratory motion. Target inserts were then tracked with MTT software using a template matching method. The optimal computed tomography (CT) slice thickness for template generation was also evaluated. Tracking success rate and accuracy were calculated in regions of the phantom where the target overlapped ribs vs spine, to compare the performance of single energy (SE) and DE imaging methods. RESULTS: For the 5 mm target, a CT slice thickness of 0.75 mm resulted in the lowest tracking error. For the larger targets (≥10 mm) a CT slice thickness ≤2 mm resulted in comparable tracking errors for SE and DE images. Overall DE imaging improved MTT accuracy, relative to SE imaging, for all tumor targets in a rotational acquisition. Compared to SE, DE imaging increased tracking success rate of small target inserts (5 and 10 mm). For fast motion tracking, success rates improved from 23% to 64% and 74% to 90% for 5 and 10 mm targets inserts overlapping ribs, respectively. For slow moving targets success rates improved from 19% to 59% and 59% to 91% in 5 and 10 mm targets overlapping the ribs, respectively. Similar results were observed when the targets overlapped the spine. For larger targets (≥15 mm) tracking success rates were comparable using SE and DE imaging. CONCLUSION: This work presents the first results of MTT using fast-kV switching DE fluoroscopy. Using DE imaging has improved the tracking accuracy of MTT, especially for small targets. The results of this study will guide the future implementation of fast-kV switching DE imaging using the on-board imager of a linear accelerator.


Assuntos
Fluoroscopia/instrumentação , Neoplasias Pulmonares/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/fisiopatologia , Movimento , Imagens de Fantasmas , Rotação , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa