Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Endocr J ; 68(4): 399-407, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33229817

RESUMO

A 17-year-old woman with a history of childhood leukemia and hematopoietic stem cell transplantation (HSCT), preceded by total body irradiation, developed diabetes, dyslipidemia, fatty liver, and marked insulin resistance. Based on Dunnigan phenotype, HSCT-associated lipodystrophy was suspected. Because of rapid deterioration of diabetes control, metreleptin was introduced at 23 years of age upon receipt of her caregiver's documented consent. This trial was initially planned as a prospective 18 month-long study, with regular assessments of the patient's physical activity, food intake, and body composition analysis. However, because an abrupt and transient attenuation of the metreleptin effect occurred 16 months after the treatment initiation, the entire course of 28 months is reported here. Over the period, her HbA1c decreased from 10.9% to 6.7% despite no significant increase of physical activity and with a stable food intake. Decreased levels of triglyceride and non-HDL cholesterol were found. Her liver function improved, indicating the amelioration of fatty liver. In addition, a 25% reduction in the subcutaneous fat area at umbilical level was found, accompanied by a decrease in fat percentage of both total-body and trunk. The formation of neutralizing antibodies to metreleptin may be responsible for the transient loss of efficacy, considering a sudden elevation in her serum leptin level. In conclusion, metreleptin is useful for the management of HSCT-associated lipodystrophy, supporting the concept that adipose tissue dysfunction is responsible for diverse post-HSCT metabolic aberrations.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Leptina/análogos & derivados , Lipodistrofia/tratamento farmacológico , Adolescente , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus/sangue , Diabetes Mellitus/etiologia , Feminino , Humanos , Leptina/administração & dosagem , Leptina/sangue , Leptina/uso terapêutico , Lipodistrofia/sangue , Lipodistrofia/etiologia , Resultado do Tratamento , Adulto Jovem
2.
Biochem Cell Biol ; 96(3): 342-348, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29040816

RESUMO

Lamins A and C are involved in many cellular functions, owing to its ability to bind chromatin and transcription factors and affect their properties. Mutations of the LMNA gene encoding lamin A/C affect differentiation capacity of stem cells. However, the signaling pathways involved in interactions with lamins during cellular differentiation remain unclear. Lipodystrophy associated with LMNA mutation R482L causes loss of fat tissue. In this study we investigated the role of LMNA mutation R482L in modulating Notch signaling activity in the adipogenic differentiation of mesenchymal stem cells. Notch was activated using lentiviral Notch intracellular domain. Activation of Notch was estimated through the expression of Notch-responsive genes by qPCR and by activation of a luciferase CSL-reporter construct. The effect of LMNA mutation on Notch activation and adipogenic differentiation was analyzed in cells bearing lentiviral LMNA WT or LMNA R482L. We show that, when Notch is activated, LMNA R482L contributes to down-regulation of Notch activation in undifferentiated and differentiated cells, and decreases adipogenic differentiation. Thus, lamin A/C interacts with Notch signaling, thereby influencing cellular differentiation, and point mutation in LMNA could halt this interaction.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Lamina Tipo A/genética , Mutação/genética , Células-Tronco/metabolismo , Animais , Cromatina/metabolismo , Humanos , Lipodistrofia/genética , Células-Tronco Mesenquimais/metabolismo , Ratos , Receptores Notch/metabolismo , Transdução de Sinais/genética
3.
J Am Coll Nutr ; 36(4): 248-252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443701

RESUMO

INTRODUCTION: Familial partial lipodystrophy (FPL) is a rare genetic disorder characterized by selective lack of subcutaneous fat, which is associated with insulin-resistant diabetes. The Dunnigan variety (FPLD2) is caused by several missense mutations in the lamin A/C (LMNA) gene, most of which are typically located in exon 8 at the codon position 482. OBJECTIVE: The aim of this study was to assess and compare the dietary intake, leisure-time physical activity (LTPA), and biochemical measurements (glucose, A1C, and plasma lipids) in women with FPLD2 and without (control group, CG) and to examine the associations between dietary intake and biochemical measurements (BM). METHODS: LTPA was measured with a questionnaire and metabolic equivalent (MET) hours per week (hours/week) were calculated. Dietary intake by the 3-day recall method and clinical laboratory parameters were collected. RESULTS: Characteristics of women with FPLD2: 35.8 ± 13.9 years, fat mass = 10 ± 2.3 kg and fat free mass = 41.4 ± 4.5 kg (p < 0.05). Women with FPLD2 showed a smaller intake of energy (kcal), lipids, and carbohydrates and a large intake of protein (p < 0.01) compared to CG. Comparing the 2 groups in terms of LTPA, 78% of women with FPLD2 performed insufficient physical activity. In addition, they had a higher levels of glucose, A1C, and triglycerides (TG) and lower levels of high-density lipoprotein (HDL). There was no correlation between dietary intake and biochemical measurements. CONCLUSIONS: Women with FPLD2 have a lower intake of energy (kcal), lipids, and carbohydrates and greater changes in biochemical measurements. Because this is a rare disease, future studies are needed with encouragement of the practice of physical activity and of healthy eating habits, preventing the onset of diseases.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/metabolismo , Adulto , Estudos Transversais , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Feminino , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Pessoa de Meia-Idade , Mutação , Adulto Jovem
4.
Front Endocrinol (Lausanne) ; 15: 1359025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633761

RESUMO

Introduction: Lipodystrophies are a group of disorders characterized by selective and variable loss of adipose tissue, which can result in an increased risk of insulin resistance and its associated complications. Women with lipodystrophy often have a high frequency of polycystic ovary syndrome (PCOS) and may experience gynecological and obstetric complications. The objective of this study was to describe the gestational outcomes of patients with familial partial lipodystrophy type 2 (FPLD2) at a reference center with the aim of improving the understanding and management of pregnant women affected by this condition. Methods: This was a retrospective analysis of data obtained from questionnaires regarding past pregnancies and a review of medical records from the beginning of follow-up in outpatient clinics. Results: All women diagnosed with FPLD2 who had previously become pregnant were included in this study (n=8). The women in the study experienced pregnancies between the ages of 14 and 38 years, with an average of 1.75 children per woman. The pregnancies in question were either the result of successful conception within 12 months of attempting to conceive or unplanned pregnancies. During pregnancy, two women (25%) were diagnosed with gestational diabetes mellitus (GDM), one (12.5%) with gestational hypothyroidism, and one (12.5%) with preeclampsia. Among the 17 pregnancies, two miscarriages (11.8%) occurred, and five cases (29.4%) of macrosomia were observed. Four instances of premature birth and an equal number of neonatal hypoglycemia cases were recorded. The reported neonatal complications included an unspecified malformation, respiratory infection, and two neonatal deaths related to heart malformation and respiratory distress syndrome. Conclusion: Our data showed a high frequency of fetal complications in women with FPLD2. However, no instances of infertility or prolonged attempts to conceive have been reported, highlighting the significance of employing effective contraception strategies to plan pregnancies at optimal times for managing metabolic comorbidities.


Assuntos
Diabetes Gestacional , Lipodistrofia Parcial Familiar , Lipodistrofia , Recém-Nascido , Criança , Gravidez , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Estudos Retrospectivos , Diabetes Gestacional/diagnóstico , Resultado da Gravidez
5.
Diabetes Metab ; 49(2): 101409, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36400409

RESUMO

AIM: Subjects with Familial Partial Lipodystrophy type 2 (FPLD2) are at high risk to develop diabetes. To better understand the natural history and variability of this disease, we studied glucose tolerance, insulin response to an oral glucose load, and metabolic markers in the largest cohort to date of subjects with FPLD2 due to the same LMNA variant. METHODS: A total of 102 patients aged > 18 years, with FPLD2 due to the LMNA 'Reunionese' variant p.(Thr655Asnfs*49) and 22 unaffected adult relatives with normal glucose tolerance (NGT) were enrolled. Oral Glucose Tolerance Tests (OGTT) with calculation of derived insulin sensitivity and secretion markers, and measurements of HbA1c, C-reactive protein, leptin, adiponectin and lipid profile were performed. RESULTS: In patients with FPLD2: 65% had either diabetes (41%) or prediabetes (24%) despite their young age (median: 39.5 years IQR 29.0-50.8) and close-to-normal BMI (median: 25.5 kg/m2 IQR 23.1-29.4). Post-load OGTT values revealed insulin resistance and increased insulin secretion in patients with FPLD2 and NGT, whereas patients with diabetes were characterized by decreased insulin secretion. Impaired glucose tolerance with normal fasting glucose was present in 86% of patients with prediabetes. Adiponectin levels were decreased in all subjects with FPLD2 and correlated with insulin sensitivity markers. CONCLUSIONS: OGTT reveals early alterations of glucose and insulin metabolism in patients with FPLD2, and should be systematically performed before excluding a diagnosis of prediabetes or diabetes to adapt medical care. Decreased adiponectin is an early marker of the disease. Adiponectin replacement therapy warrants further study in FPLD2.


Assuntos
Diabetes Mellitus Lipoatrófica , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Lipodistrofia Parcial Familiar , Estado Pré-Diabético , Adulto , Humanos , Adiponectina , Insulina , Glucose , Glicemia/metabolismo
6.
Diabetol Metab Syndr ; 15(1): 77, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37081489

RESUMO

INTRODUCTION: The transition to metabolically unhealthy obesity (MUO) is driven by the limited expandability of adipose tissue (AT). Familial Partial Lipodystrophy type 2 (FPLD2) is an alternative model for AT dysfunction that is suitable for comparison with obesity. While MUO is associated with low-grade systemic inflammation, studies of inflammation in FPLD2 have yielded inconsistent results. Consequently, comparison of inflammation markers between FPLD2 and obesity is of great interest to better understand the pathophysiological defects of FPLD2. OBJECTIVE: To compare the levels of inflammatory biomarkers between a population of patients with FPLD2 due to the same 'Reunionese' LMNA variant and a population of patients with obesity (OB group). METHODS: Adiponectin, leptin, IL-6, TNF-α and MCP-1 plasma levels were measured by enzyme-linked immuno assays for 60 subjects with FPLD2 and for 60 subjects with obesity. The populations were closely matched for age, sex, and diabetic status. RESULTS: Metabolic outcomes were similar between the two populations. Adiponectinemia and leptinemia were lower in the FPLD2 group than in the OB group (p < 0.01 for both), while MCP-1 levels were higher in the FPLD2 than in the OB group (p < 0.01). Levels of other inflammatory markers were not significantly different. CONCLUSIONS: Insulin-resistant patients with FPLD2 and obesity share common complications related to AT dysfunction. Inflammatory biomarker analyses demonstrated that MCP-1 levels and adiponectin levels differ between patients with FPLD2 and patients with obesity. These two AT pathologies thus appear to have different inflammatory profiles.

7.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899861

RESUMO

Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Lipodistrofia Parcial Familiar , Humanos , Feminino , Tecido Adiposo/metabolismo , Resistência à Insulina/genética , Extremidades/patologia , Diabetes Mellitus Tipo 2/patologia , Lamina Tipo A
8.
Artigo em Inglês | MEDLINE | ID: mdl-37231758

RESUMO

BACKGROUND: Whole exome sequencing (WES) provides support for clinical diagnosis and treatment of genetically related diseases based on specific probe capture and high-throughput second-generation sequencing technology. Familial partial lipodystrophy 2 (FPLD2; OMIM # 151660) or type 2 Köbberling-Dunnigan syndrome with insulin resistance syndrome is uncommon in mainland China and elsewhere. AIMS: We report the case in order to have a further understanding of FPLD2 or type 2 KobberlingDunnigan syndrome) with the assistance of WES and improve the clinical and genetic understanding and diagnosis of this disease. CASE: A 30-year-old woman was admitted to the cadre department of our hospital at 14:00 on July 11, 2021, because of hyperglycemia, a rapid heart rate, and excessive sweating during pregnancy. An oral glucose tolerance test (OGTT) showed that insulin and C-peptide increased slowly after glucose stimulation, and the peak value was extended backward (Table 1). It was suggested that the patient had developed insulin antibodies, resulting in insulin resistance. Her clinical features and familial inheritance were consistent with FPLD2 (type 2 Kobberling-Dunnigan syndrome). The results of WES indicated that a heterozygous mutation occurred in exon 8 of the LMNA gene, because the base C at position 1444 was mutated into T during transcription. This mutation changed the amino acid position 482 of the encoded protein from Arg to Trp. Type 2 KobberlingDunnigan syndrome is associated with an LMNA gene mutation. According to the patient's clinical manifestations, hypoglycemic and lipid-lowering therapy is recommended. CONCLUSION: WES can assist in the simultaneous clinical investigation or confirmation of FPLD2 and help identify diseases with similar clinical phenotypes. This case demonstrates that familial partial lipodystrophy is associated with an LMNA gene mutation on chromosome 1q21-22. This is one of the few cases of familial partial lipodystrophy diagnosed by WES.

9.
Cells ; 12(8)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190051

RESUMO

Mutations in the LMNA gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The LMNA gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold. This study identified differences between two mutant lamins that cause distinct clinical diseases. One of the LMNA mutations encodes lamin A/C p.R527P and the other codes lamin A/C p.R482W, which are typically associated with muscular dystrophy and lipodystrophy, respectively. To determine how these mutations differentially affect muscle, we generated the equivalent mutations in the Drosophila Lamin C (LamC) gene, an orthologue of human LMNA. The muscle-specific expression of the R527P equivalent showed cytoplasmic aggregation of LamC, a reduced larval muscle size, decreased larval motility, and cardiac defects resulting in a reduced adult lifespan. By contrast, the muscle-specific expression of the R482W equivalent caused an abnormal nuclear shape without a change in larval muscle size, larval motility, and adult lifespan compared to controls. Collectively, these studies identified fundamental differences in the properties of mutant lamins that cause clinically distinct phenotypes, providing insights into disease mechanisms.


Assuntos
Lamina Tipo A , Distrofias Musculares , Animais , Adulto , Humanos , Lamina Tipo A/metabolismo , Drosophila/genética , Drosophila/metabolismo , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Mutação/genética , Distrofias Musculares/genética
10.
Orphanet J Rare Dis ; 17(Suppl 1): 170, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440056

RESUMO

Dunnigan syndrome, or Familial Partial Lipodystrophy type 2 (FPLD2; ORPHA 2348), is a rare autosomal dominant disorder due to pathogenic variants of the LMNA gene. The objective of the French National Diagnosis and Care Protocol (PNDS; Protocole National de Diagnostic et de Soins), is to provide health professionals with a guide to optimal management and care of patients with FPLD2, based on a critical literature review and multidisciplinary expert consensus. The PNDS, written by members of the French National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), is available on the French Health Authority website (in French). Dunnigan syndrome is characterized by a partial atrophy of the subcutaneous adipose tissue and by an insulin resistance syndrome, associated with a risk of metabolic, cardiovascular and muscular complications. Its prevalence, assessed at 1/100.000 in Europe, is probably considerably underestimated. Thorough clinical examination is key to diagnosis. Biochemical testing frequently shows hyperinsulinemia, abnormal glucose tolerance and hypertriglyceridemia. Elevated hepatic transaminases (hepatic steatosis) and creatine phosphokinase, and hyperandrogenism in women, are common. Molecular analysis of the LMNA gene confirms diagnosis and allows for family investigations. Regular screening and multidisciplinary monitoring of the associated complications are necessary. Diabetes frequently develops from puberty onwards. Hypertriglyceridemia may lead to acute pancreatitis. Early atherosclerosis and cardiomyopathy should be monitored. In women, polycystic ovary syndrome is common. Overall, the management of patients with Dunnigan syndrome requires the collaboration of several health care providers. The attending physician, in conjunction with the national care network, will ensure that the patient receives optimal care through regular follow-up and screening. The various elements of this PNDS are described to provide such a support.


Assuntos
Hipertrigliceridemia , Resistência à Insulina , Lipodistrofia Parcial Familiar , Lipodistrofia , Pancreatite , Doença Aguda , Feminino , Humanos , Hipertrigliceridemia/complicações , Lipodistrofia Parcial Familiar/diagnóstico , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/terapia
11.
J Clin Endocrinol Metab ; 107(6): 1714-1726, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35137140

RESUMO

Lipodystrophy constitutes a spectrum of diseases characterized by a generalized or partial absence of adipose tissue. Underscoring the role of healthy fat in maintenance of metabolic homeostasis, fat deficiency in lipodystrophy typically leads to profound metabolic disturbances including insulin resistance, hypertriglyceridemia, and ectopic fat accumulation. While rare, recent genetic studies indicate that lipodystrophy is more prevalent than has been previously thought, suggesting considerable underdiagnosis in clinical practice. In this article, we provide an overview of the etiology and management of generalized and partial lipodystrophy disorders. We bring together the latest scientific evidence and clinical guidelines and expose key gaps in knowledge. Through improved recognition of the lipodystrophy disorders, patients (and their affected family members) can be appropriately screened for cardiometabolic, noncardiometabolic, and syndromic abnormalities and undergo treatment with targeted interventions. Notably, insights gained through the study of this rare and extreme phenotype can inform our knowledge of more common disorders of adipose tissue overload, including generalized obesity.


Assuntos
Hipertrigliceridemia , Resistência à Insulina , Lipodistrofia , Tecido Adiposo/metabolismo , Humanos , Hipertrigliceridemia/tratamento farmacológico , Leptina/uso terapêutico , Lipodistrofia/complicações , Lipodistrofia/diagnóstico , Lipodistrofia/genética , Obesidade/complicações , Obesidade/tratamento farmacológico
12.
J Clin Med ; 10(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803652

RESUMO

Patients with Dunnigan disease (FPLD2) with a pathogenic variant affecting exon 8 of the LMNA gene are considered to have the classic disease, whereas those with variants in other exons manifest the "atypical" disease. The aim of this study was to investigate the degree of variable expressivity when comparing patients carrying the R482 and N466 variants in exon 8. Thus, 47 subjects with FPLD2 were studied: one group of 15 patients carrying the N466 variant and the other group of 32 patients with the R482 variant. Clinical, metabolic, and body composition data were compared between both groups. The thigh skinfold thickness was significantly decreased in the R482 group in comparison with the N466 group (4.2 ± 1.8 and 5.6 ± 2.0 mm, respectively, p = 0.002), with no other differences in body composition. Patients with the N466 variant showed higher triglyceride levels (177.5 [56-1937] vs. 130.0 [55-505] mg/dL, p = 0.029) and acute pancreatitis was only present in these subjects (20%). Other classic metabolic abnormalities related with the disease were present regardless of the pathogenic variant. Thus, although FPLD2 patients with the R482 and N466 variants share most of the classic characteristics, some phenotypic and metabolic differences suggest possible heterogeneity even within exon 8 of the LMNA gene.

13.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193531

RESUMO

CONTEXT: Familial partial lipodystrophy, Dunnigan variety (FPLD2) is a rare autosomal dominant disorder resulting from LMNA causal variants, which is characterized by loss of subcutaneous fat from the extremities and predisposition to metabolic complications. The diagnostic value of various anthropometric measurements for FPLD2 remains unknown. OBJECTIVE: To determine specificity and sensitivity of anthropometric measurements for the diagnosis of FPLD2. METHODS: We measured skinfold thickness and regional body fat by dual energy X-ray absorptiometry (DXA) in 50 adult females and 6 males with FPLD2 at UT Southwestern and compared their data with the sex- and age-matched controls from the National Health and Nutrition Examination Survey (NHANES) 1999-2010. We further compared data from 1652 unaffected females from the Dallas Heart Study and 23 females with FPLD2 from the National Institutes of Health with the NHANES data. RESULTS: The DXA-derived lower limb fat (%) had the best specificity (0.995) and sensitivity (1.0) compared with the upper limb fat, truncal fat, the ratio of lower limb to truncal fat, and triceps skinfold thickness for adult females with FPLD2. The lower limb fat below 1st percentile of NHANES females had a false-positive rate of 0.0054 and a false negative rate of 0. The diagnostic value of anthropometric parameters could not be determined for males with FPLD2 due to small sample size. CONCLUSIONS: The lower limb fat (%) is the best objective anthropometric measure for diagnosing FPLD2 in females. Women with below the 1st percentile lower limb fat should undergo genetic testing for FPLD2, especially if they have metabolic complications.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/diagnóstico , Dobras Cutâneas , Absorciometria de Fóton , Adulto , Composição Corporal/genética , Feminino , Humanos , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais
14.
Artigo em Inglês | MEDLINE | ID: mdl-30177912

RESUMO

Background: Dunnigan-type familial partial lipodystrophy (FPLD2) is a rare autosomal dominant disease caused by heterozygous mutations in the LMNA gene that results in regional loss of subcutaneous adipose tissue with onset in puberty. However, a generalized lipodystrophy phenotype has also been associated with heterozygous mutations in this gene, demonstrating the noticeable phenotypic heterogeneity of this disease. Methods: We report and describe clinical and metabolic features of four patients from the same family with the p.R582C LMNA mutation, three homozygous and one in the heterozygous state that present with three distinct lipodystrophic phenotypes. Results: Case description: The proband was a 12-year-old girl who developed severe subcutaneous fat atrophy in limbs and abdomen followed by a remarkable dorsocervical fat accumulation in adulthood along with diabetes at age 23. The proband's sister was a phenotypically normal girl who developed hypertriglyceridemia at age 8, progressive features of partial lipodystrophy at age 11, and diabetes at age 22. The proband's mother was first examined at age 32, presenting diabetes and a severe generalized lipodystrophic phenotype; she developed kidney failure at age 41 and died due to diabetic complications. The proband's father was a 50-year-old man with abdominal fat concentration that was initially considered phenotypically normal. Massively parallel sequencing using a platform of genes related to genetic lipodystrophies, followed by Sanger sequencing, revealed the transversion c.1744C>T at exon 11 of the LMNA gene (p.R582C) in the homozygous (mother and daughters) and heterozygous (father) states. Conclusion: We documented three distinct phenotypes of the homozygous and heterozygous p. R582C LMNA mutation in the same kindred, illustrating that FPLD2 linked to mutations in this gene is a disease of great clinical heterogeneity, possibly due to associated environmental or genetic factors.

15.
Diabetol Metab Syndr ; 10: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449893

RESUMO

BACKGROUND: Familial partial lipodystrophy of the Dunnigan type is one of the most common inherited lipodystrophies variables. These individuals have important metabolic disorders that cause predisposition to various diseases. In this study we aimed to demonstrate the relation between the metabolic abnormalities, inflammatory profile and the expression of genes involved in the activation of the endoplasmic reticulum stress (ERS) in subjects with FPLD. METHODS: We evaluated 14 female FPLD patients and compared with 13 female healthy individuals. The subjects were paired with their respective BMI and age and categorized into two groups: Familial partial lipodystrophy of the Dunnigan type (FPLD) and control. Patients were fasted for 12 h before blood collection for measurement of HbA1c, glucose, insulin, lipids and inflammatory markers. Subcutâneous adipose tissue was collected by puncture aspiration of submental region during ambulatorial surgical aesthetic procedure. RESULTS: We demonstrate that patients with FPLD show increased HbA1c (p < 0.01), fasting glucose (p < 0.002) and triglycerides (p < 0.005) while HDL/cholesterol (p < 0.001) was lower when compared to healthy individuals. We found that 64.2% FPLD patients had metabolic syndrome according to International Diabetes Federation definition. We also observe increased AUC of glucose (p < 0.001) and insulin during oGTT, featuring a frame of hyperglycemia and hyperinsulinemia, suggesting insulin resistance. Also we found hyperactivation of several genes responsible for ERS such as ATF-4 (p < 0.01), ATF-6 (p < 0.01), EIF2α3K (p < 0.005), CCT4 (p < 0.001), CHOP (p < 0.01), CALR (p < 0.001) and CANX (p < 0.005), that corroborate the idea that diabetes mellitus and metabolic syndrome are associated with direct damage to the endoplasmic reticulum homeostasis. Ultimately, we note that individuals with lipodystrophy have an increase in serum interleukins, keys of the inflammatory process, as IL-1ß, TNF-α and IL-6 (p < 0.05 all), compared with healthy individuals, which can be the trigger to insulin resistance in this population. CONCLUSION: Individuals with FPLD besides having typical dysfunctions of metabolic syndrome, show a hyperactivation of ERS associated with increased systemic inflammatory profile, which together may explain the complex clinical aspect of this diseases.Trial registration HCRP no 6711/2012.

16.
Endocrinol Metab Clin North Am ; 46(2): 539-554, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28476236

RESUMO

Lipodystrophy disorders are characterized by selective loss of fat tissue with metabolic complications including insulin resistance, hypertriglyceridemia, and nonalcoholic liver disease. These complications can be life-threatening, affect quality of life, and result in increased health care costs. Genetic discoveries have been particularly helpful in understanding the pathophysiology of these diseases, and have shown that mutations affect pathways involved in adipocyte differentiation and survival, lipid droplet formation, and lipid synthesis. In addition, genetic testing can identify patients whose phenotypes are not clearly apparent, but who may still be affected by severe metabolic complications.


Assuntos
Lipodistrofia/genética , Tecido Adiposo/fisiopatologia , Humanos , Hipertrigliceridemia/complicações , Resistência à Insulina , Lipodistrofia/complicações , Mutação , Hepatopatia Gordurosa não Alcoólica/complicações
17.
Adipocyte ; 6(4): 259-276, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28872940

RESUMO

Dysregulation of adipose tissue metabolism is associated with multiple metabolic disorders. One such disease, known as Dunnigan-type familial partial lipodystrophy (FPLD2) is characterized by defective fat metabolism and storage. FPLD2 is caused by a specific subset of mutations in the LMNA gene. The mechanisms by which LMNA mutations lead to the adipose specific FPLD2 phenotype have yet to be determined in detail. We used RNA-Seq analysis to assess the effects of wild-type (WT) and mutant (R482W) lamin A on the expression profile of differentiating 3T3-L1 mouse preadipocytes and identified Itm2a as a gene that was upregulated at 36 h post differentiation induction in these cells. In this study we identify Itm2a as a novel modulator of adipogenesis and show that endogenous Itm2a expression is transiently downregulated during induction of 3T3-L1 differentiation. Itm2a overexpression was seen to moderately inhibit differentiation of 3T3-L1 preadipocytes while shRNA mediated knockdown of Itm2a significantly enhanced 3T3-L1 differentiation. Investigation of PPARγ levels indicate that this enhanced adipogenesis is mediated through the stabilization of the PPARγ protein at specific time points during differentiation. Finally, we demonstrate that Itm2a knockdown is sufficient to rescue the inhibitory effects of lamin A WT and R482W mutant overexpression on 3T3-L1 differentiation. This suggests that targeting of Itm2a or its related pathways, including autophagy, may have potential as a therapy for FPLD2.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular/genética , Inativação Gênica , Lamina Tipo A/genética , Proteínas de Membrana/genética , Células 3T3-L1 , Adipogenia , Animais , Fibroblastos/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/patologia , Camundongos , Regiões Promotoras Genéticas
18.
Cell Mol Gastroenterol Hepatol ; 4(3): 365-383, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28913408

RESUMO

BACKGROUND & AIMS: Lamins are nuclear intermediate filament proteins that comprise the major components of the nuclear lamina. Mutations in LMNA, which encodes lamins A/C, cause laminopathies, including lipodystrophy, cardiomyopathy, and premature aging syndromes. However, the role of lamins in the liver is unknown, and it is unclear whether laminopathy-associated liver disease is caused by primary hepatocyte defects or systemic alterations. METHODS: To address these questions, we generated mice carrying a hepatocyte-specific deletion of Lmna (knockout [KO] mice) and characterized the KO liver and primary hepatocyte phenotypes by immunoblotting, immunohistochemistry, microarray analysis, quantitative real-time polymerase chain reaction, and Oil Red O and Picrosirius red staining. RESULTS: KO hepatocytes manifested abnormal nuclear morphology, and KO mice showed reduced body mass. KO mice developed spontaneous male-selective hepatosteatosis with increased susceptibility to high-fat diet-induced steatohepatitis and fibrosis. The hepatosteatosis was associated with up-regulated transcription of genes encoding lipid transporters, lipid biosynthetic enzymes, lipid droplet-associated proteins, and interferon-regulated genes. Hepatic Lmna deficiency led to enhanced signal transducer and activator of transcription 1 (Stat1) expression and blocked growth hormone-mediated Janus kinase 2 (Jak2), signal transducer and activator of transcription 5 (Stat5), and extracellular signal-regulated kinase (Erk) signaling. CONCLUSIONS: Lamin A/C acts cell-autonomously to maintain hepatocyte homeostasis and nuclear shape and buffers against male-selective steatohepatitis by positively regulating growth hormone signaling and negatively regulating Stat1 expression. Lamins are potential genetic modifiers for predisposition to steatohepatitis and liver fibrosis. The microarray data can be found in the Gene Expression Omnibus repository (accession number: GSE93643).

19.
J Clin Lipidol ; 10(6): 1488-1491, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27919367

RESUMO

We report the first described case of a heterozygous p.R545H (c.1634 G > A) missense mutation in the LMNA gene with clinical features compatible with Dunnigan-type 2 familial partial lipodystrophy (FPLD2). The case presented as metabolic syndrome to a specialist clinical service and highlights the overlap between FPLD2 and the metabolic syndrome. The associations with type 2 diabetes mellitus, fatty liver disease, polycystic ovarian syndrome, and hypertriglyceridemia are highlighted. The importance of evaluating patients for these associated conditions is discussed, and the potential mechanisms of disease are briefly outlined. The mutation has been previously reported in a heart failure database without a clinical description. The links between heart failure and the clinical condition are briefly considered.


Assuntos
Lipodistrofia Parcial Familiar/diagnóstico , Síndrome Metabólica/diagnóstico , Alanina Transaminase/sangue , HDL-Colesterol/sangue , Feminino , Heterozigoto , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Pessoa de Meia-Idade , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa