Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Cell Physiol ; 234(9): 15668-15677, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30693516

RESUMO

Iron overload is a common stress in the development of cells. Growing evidence has indicated that iron overload is associated with osteoporosis. Therefore, enhancing the understanding of iron overload would benefit the development of novel approaches to the treatment of osteoporosis. The purpose of the present study was to analyze the effect of iron overload on osteoblast cells, via the MC3T3-E1 cell line, and to explore its possible underlying molecular mechanisms. Ferric ammonium citrate (FAC) was utilized to simulate iron overload conditions in vitro. FAC-induced iron overload strongly suppressed proliferation of osteoblast cells and induced apoptosis. Moreover, iron overload strongly suppressed the expression of dual-specificity phosphatase 14 (DUSP14). Additionally, overexpression of DUSP14 protected osteoblast cells from the deleterious effects of iron overload, and this protective effect was mediated by FOXO3a. Additionally, matrine rescued the function of DUSP14 in osteoblast cells. Most importantly, our analysis demonstrated the essential role of the PI3K/AKT/FOXO3a/DUSP14 signaling pathway in the defense against iron overload in osteoblast cells. Overall, our results not only elucidate deleterious effects of iron overload, but also unveil its possible signaling pathway in osteoblast cells.

2.
Biochem Biophys Res Commun ; 519(3): 445-452, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526569

RESUMO

Osteoporosis is a progressive systematic skeletal disorder featured by decreased bone and enhanced risk of fracture due to an uncoupling of bone resorption. Chronic inflammatory response plays an essential role in osteoporosis progression. Unfortunately, the pathogenesis that contributes to osteoporosis still remains unclear. Dual-specificity phosphatase 14 (Dusp14, also known as MKP6) is a MAP kinase phosphatase, and has important roles in regulating various cellular processes. In the study, we attempted to explore the effects of Dusp14 on osteoporosis development. The results indicated that Dusp14 expression was decreased during osteoclast differentiation and that Dusp14 over-expression markedly alleviated osteoclast generation regulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). In M-CSF/RANKL-treated bone marrow-derived cells (BMMs), promoting Dusp14 expression significantly alleviated inflammation and apoptosis by suppressing nuclear factor (NF)-κB and Caspase-3 signaling pathways, respectively. Furthermore, AMP-activated protein kinase (AMPK)-α activation was markedly increased by Dusp14 over-expression in M-CSF/RANKL-incubated BMMs. Importantly, we found that AMPKα blockage obviously abolished the role of Dusp14 in preventing osteoclasts differentiation at least partly via elevating M-CSF/RANKL-elicited inflammation and apoptosis. In vivo, magnesium silicate-induced inflammatory osteoporosis was obviously alleviated in Dusp14 transgenic (TG) mice. Taken together, we defined Dusp14 as an important molecular switch resulting in osteoporosis through an AMPKα-dependent manner.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Reabsorção Óssea/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Osteoclastos/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Reabsorção Óssea/genética , Células Cultivadas , Fosfatases de Especificidade Dupla/genética , Ativação Enzimática , Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Ligante RANK/farmacologia
3.
Biochem Biophys Res Commun ; 509(3): 713-721, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30638656

RESUMO

Ischemic stroke is the second most common cause of death, a major cause of acquired disability in adults. However, the pathogenesis that contributes to ischemic stroke has not been fully understood. Dual-specificity phosphatase 14 (DUSP14, also known as MKP6) is a MAP kinase phosphatase, playing important role in regulating various cellular processes, including oxidative stress and inflammation. However, its effects on cerebral ischemia/reperfusion (IR) are unclear. In the study, we found that DUSP14 expression was decreased responding to IR surgery. Over-expressing DUSP14 reduced the infarction volume of cerebral IR mice. Cognitive dysfunction was also improved in mice with DUSP14 over-expression. Promoting DUSP14 expression markedly reduced the activation of glial cells, as evidenced by the decreases in GFAP and Iba-1 expressions in mice with cerebral IR injury. In addition, inflammatory response induced by cerebral IR injury was inhibited in DUSP14 over-expressed mice, as proved by the reduced expression of tumor necrosis factor (TNF)-α and interleukin 1ß (IL-1ß). Furthermore, oxidative stress was markedly reduced by DUSP14 over-expression through elevating nuclear factor-erythroid 2 related factor 2 (Nrf-2) signaling pathway. Importantly, we found that DUSP14 could interact with Nrf-1, which thereby protected mice against cerebral IR injury. In vitro, we also found that repressing Nrf-2 expression abrogated DUSP14 over-expression-reduced inflammation and ROS generation. Consistent with the anti-inflammatory effect of DUSP14, reducing the production of reactive oxygen species (ROS) also down-regulated TNF-α and IL-1ß expressions. Collectively, elevated DUSP14 alleviated brain damage from cerebral IR injury through Nrf-2-regulated anti-oxidant signaling pathway, and the restraining of inflammatory response. These results suggested that DUSP14 might be a potential therapeutic target to prevent ischemic stroke.


Assuntos
Apoptose , Isquemia Encefálica/imunologia , Fosfatases de Especificidade Dupla/imunologia , Inflamação/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Infarto Encefálico/imunologia , Infarto Encefálico/patologia , Isquemia Encefálica/patologia , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Traumatismo por Reperfusão/patologia
4.
Biochem Biophys Res Commun ; 501(1): 24-32, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29660332

RESUMO

Inflammation and oxidative stress are significantly involved in the progression of a variety of diseases, including myocardial ischemia/reperfusion (IR). In the present study, we hypothesized a protective role of dual-specificity phosphatase 14 (DUSP14) in myocardial IR, as well as the underlying molecular mechanism. The results indicated that DUSP14 was down-regulated following cardiac IR injury. Subsequently, the wild type (WT) and DUSP14-knockout (KO) mice were included to further reveal the potential role of DUSP14 in cardiac IR injury progression. DUSP14-KO mice exhibited increased infarction area and elevated apoptosis, as evidenced by the increased TUNEL-positive cells in ischemia heart following reperfusion compared to WT mice. Further, DUSP14-KO significantly aggregated cardiac dysfunction of mice after IR injury. Cardiac IR injury to DUSP14-KO mice led to markedly increased expression of pro-inflammatory cytokines and activated nuclear factor-κB (NF-κB) pathway in the heart in comparison to WT mice. Meanwhile, mitogen-activated protein kinases (MAPKs), including p38, ERK1/2 and JNK, were significantly activated by DUSO14-KO in mice after IR injury. Compared to WT mice, DUSP14-KO mice showed markedly increased oxidative stress markers in cardiac tissues, including malondialdehyde (MDA), NADPH oxidase-4 (NOX4) and p47, while decreased activities or expressions of anti-oxidants, such as glutathione (GSH), glutathione peroxidase (GPx), glutathion reductases (GR), superoxide dismutase (SOD) and hemeoxygenase-1 (HO-1). DUSP14-knockdown (KD) in primary cardiomyocytes using its specific siRNA sequence elevated hypoxia and reoxygenation (HR)-induced activation of NF-κB and MAPKs signaling pathways, and reactive oxygen species (ROS) generation. Intriguingly, pre-treatment of ROS scavenger, N-acetylcysteine (NAC), markedly abolished DUSP14-KD-augmented NF-κB and MAPKs activation in HR-stimulated primary cardiomyocytes. Together, the results above indicated that DUSP14 might be served as a positive regulator to attenuate cardiac IR injury. Suppressing DUSP14 exacerbated cardiac injury through activating NF-κB and MAPKs signaling pathways regulated by ROS production. Thus, DUSP14 could be a valuable target for developing treatments for myocardial IR injury.


Assuntos
Fosfatases de Especificidade Dupla/deficiência , Sistema de Sinalização das MAP Quinases , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , NF-kappa B/metabolismo , Animais , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
J Hepatol ; 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28887166

RESUMO

BACKGROUND & AIMS: Hepatic ischaemia-reperfusion (I/R) injury is characterised by severe inflammation and extensive cell death. Multiple signalling pathways, including NF-κB and mitogen-activated protein kinase (MAPK)/c-Jun NH2-terminal kinase (JNK), have important roles in this process. Identifying the unknown critical regulators of these signalling pathways could provide potential targets for therapeutic application. Dual-specificity phosphatase 14 (DUSP14) acts as a negative regulator of NF-κB signalling. However, its function in hepatic I/R injury is unknown. METHODS: Hepatocyte-specific Dusp14 knockout (HKO) and transgenic (TG) mice were subjected to hepatic I/R surgery to examine Dusp14 function in vivo. Primary hepatocytes isolated from Dusp14-HKO and Dusp14-TG mice were cultured and subjected to hypoxia/reoxygenation insult in vitro. Inflammatory cytokine production was measured using quantitative reverse transcription PCR and ELISA. Liver damage was analysed using histopathology. Co-immunoprecipitation and pull-down assays followed by Western blot were performed to detect Dusp14 and transforming growth factor (Tgf)-ß-activated kinase 1 (Tak1) interactions. RESULTS: Dusp14 was significantly downregulated in liver tissues from liver transplantation patients and mice subjected to hepatic I/R surgery. Dusp14-HKO and Dusp14-TG mouse models demonstrated that Dusp14 reduced cell death, ameliorated inflammation, and promoted hepatocyte proliferation and/or regeneration. Dusp14 also suppressed NF-κB and MAPK signalling via a physical interaction with Tak1, leading to its subsequent inhibition. Tak1 inhibition by 5Z-7-ox abolished Dusp14 function in vivo, indicating that TAK1 is required for Dusp14 function in hepatic I/R injury. Finally, mutant Dusp14 lost the ability to bind Tak1 and failed to protect against hepatic I/R injury. CONCLUSIONS: Dusp14 is a protective factor in hepatic I/R injury, and the Dusp14-Tak1-Jnk1/2 regulatory axis is important for the pathogenesis of hepatic I/R injury. Modulation of this axis could be a novel therapeutic strategy to prevent or interfere with this pathological process. LAY SUMMARY: Reductions in the level of the protein Dusp14 are closely associated with liver damage caused by inadequate blood supply followed by restoration of blood flow to the liver. Dusp14 protects against liver damage by suppressing the activity of Tak1. Targeting Dusp14 could be a strategy for prevention and treatment of this disease.

6.
Adipocyte ; 13(1): 2381262, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39039652

RESUMO

Obesity is a low-grade chronic inflammation induced by the pathological expansion of adipocytes which allows the development of obesity-associated metabolic diseases like type 2 diabetes mellitus (T2D) and non-alcoholic fatty liver disease (NAFLD). However, mechanisms regulating adipocyte inflammation remain poorly understood. Here, we observed that TRIM8 was upregulated in adipocyte inflammation and insulin resistance while DUSP14 was downregulated. TRIM8 deficiency and DUSP14 over-expression decreased the level of inflammatory cytokines, increased glucose uptake content, and improved insulin signalling transduction compared to LPS treatment alone. Conversely, silencing DUSP14 increased the expression of inflammatory cytokines. It decreased the glucose uptake content and the phosphorylation level of proteins involved in insulin signalling, further impairing insulin signalling and aggravating insulin resistance. Furthermore, The decreased level of inflammatory cytokines, increased glucose uptake, and improved insulin signalling transduction caused by TRIM8 deficiency were reversed by down-regulated DUSP14. Collectively, our findings revealed that TRIM8 can regulate adipocyte inflammation and insulin resistance by regulating the MAPKs pathway which is dependent on DUSP14.


Assuntos
Adipócitos , Fosfatases de Especificidade Dupla , Inflamação , Resistência à Insulina , Animais , Adipócitos/metabolismo , Camundongos , Inflamação/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Sistema de Sinalização das MAP Quinases , Células 3T3-L1 , Transdução de Sinais , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Camundongos Endogâmicos C57BL
7.
Heliyon ; 10(8): e29102, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644862

RESUMO

Background: Non-small cell lung cancer (NSCLC) shows the highest morbidity among malignant tumors worldwide. Despite improvements of diagnosis and treatment, patient prognosis remains unfavorable. Therefore, there is a need to discover a novel treatment strategy for NSCLC. DUSP14 is related to various cancers as the regulatory factor for cellular processes. However, its specific roles in NSCLC and the upstream modulator remain largely unclear. Methods: DUSP14 expression patterns within the lung cancer patient cohort from TCGA database were analyzed using UALCAN online tool. Different databases including miRDB, starbase, and Targetscan were employed to screen the upstream regulator of DUSP14. DUSP14 and miR-199a-5p expression was determined by qRT-PCR and Western blot techniques. To confirm binding interaction of DUSP14 with miR-199a-5p, we conducted a dual-luciferase reporter assay. Cell viability, migration, and stemness properties were assessed using CCK-8, EdU (5-ethynyl-2'-deoxyuridine) incorporation, transwell invasion, and sphere formation assays. The effect of DUSP14 silencing on tumorigenesis was assessed with the NSCLC cell xenograft mouse model. Results: Our study discovered that DUSP14 exhibited high expression within NSCLC tumor samples, which is related to the dismal prognostic outcome in NSCLC patients. Silencing DUSP14 impaired NSCLC cell proliferation, migration, and tumor sphere formation. Besides, we identified miR-199a-5p as the upstream regulatory factor for DUSP14, and its expression was negatively related to DUSP14 level within NSCLC tissues. Introducing miR-199a-5p recapitulated the function of DUSP14 silencing in NSCLC cell aggressiveness and stemness. Moreover, knocking down DUSP14 efficiently inhibited tumor formation in NSCLC cells of the xenograft model. Conclusions: Our study suggests that DUSP14 is negatively regulated by miR-199a-5p within NSCLC, whose overexpression is required for sustaining NSCLC cell proliferation, invasion and stemness.

8.
Immun Inflamm Dis ; 11(8): e952, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647434

RESUMO

BACKGROUND: Myocardial injury is the main manifestation of cardiovascular diseases, and previous studies have shown that propofol (PPF) regulates myocardial injury. However, the mechanism of PPF in regulating myocardial injury remains to be further explored. This work aims to analyze the effects of PPF on human cardiomyocyte injury and the underlying mechanism. METHODS: The regulatory and functional role of PPF and circAPBB2 in human cardiomyocyte injury were analyzed using an in vitro hypoxia/reoxygenation (H/R) cell model, which was established by treating human cardiomyocytes (AC16 cells) with H/R. The study evaluated AC16 cell injury by analyzing cytotoxicity, oxidative stress, inflammation and apoptosis of H/R-induced AC16 cells. Quantitative real-time polymerase chain reaction was performed to detect circAPBB2, miR-18a-5p and dual specificity phosphatase 14 (DUSP14) expression. Protein expression was analyzed by Western blot analysis assay. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were performed to identify the associations among circAPBB2, miR-18a-5p and DUSP14. Cytotoxicity was investigated by cell counting kit-8 assay and lactate dehydrogenase activity detection kit. Oxidative stress was evaluated by cellular reactive oxygen species assay kit and superoxide dismutase activity assay kit. The production of tumor necrosis factor-α and interleukin-1ß was evaluated by enzyme-linked immunosorbent assays. RESULTS: The expression of circAPBB2 and DUSP14 was significantly decreased, while miR-18a-5p was increased in H/R-induced AC16 cells when compared with controls. H/R treatment-induced cytotoxicity, oxidative stress, inflammation and cell apoptosis were attenuated after circAPBB2 overexpression or PPF treatment, whereas these effects were restored by increasing miR-18a-5p expression. PPF treatment improved the inhibitory effect of ectopic circAPBB2 expression on H/R-induced cell injury. MiR-18a-5p silencing ameliorated H/R-induced AC16 damage by interacting with DUSP14. Mechanically, circAPBB2 acted as a miR-18a-5p sponge, and miR-18a-5p targeted DUSP14 in AC16 cells. CONCLUSION: PPF synergized with circAPBB2 to protect AC16 cells against H/R-induced oxidative stress, inflammation and apoptosis through the miR-18a-5p/DUSP14 pathway.


Assuntos
MicroRNAs , Propofol , Humanos , Miócitos Cardíacos , Propofol/farmacologia , Estresse Oxidativo , Apoptose , Inflamação , Hipóxia , MicroRNAs/genética
9.
Discov Med ; 35(179): 1134-1146, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058079

RESUMO

BACKGROUND: Inflammation and oxidative stress (OS) are major causes of aneurysmal subarachnoid hemorrhage (aSAH)-induced early brain injury (EBI). Eriocitrin (EC), a flavonoid compound, has anti-inflammatory and antioxidant actions. However, there is still no relevant studies on the role of EC in SAH. Accordingly, this research aims to clarify the anti-OS and anti-inflammatory efficacy of EC in SAH. METHOD: Rat SAH model was established in vivo and administered with Eriocitrin (25 mg/kg). In vitro, BV2 cells were exposed to oxyhemoglobin (OxyHb) for 24 hours and pretreated with Eriocitrin (1 uM/mL, 2 uM/mL, 4 uM/mL) for 30 minutes. Water maze experiments and neurological function scores were conducted to assess cognitive and motor function. TdT-mediated dUTP Nick-End Labeling (TUNEL) staining was used to detect cortical cell apoptosis. Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) were used to detect the inflammatory factors and malondialdehyde (MDA), as well as the expression of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). Western blots were used to semi quantify nuclear factor erythroid-2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), dual specificity phosphatase 14 (DUSP14) expression. RESULTS: The findings suggest that EC (25 mg/kg) reduced SAH-induced central nervous system (CNS) damage, neuronal apoptosis, inflammatory reactions and OS. Regarding a mechanistic study, EC enhanced Nrf2 and NF-κB by increasing DUSP14 activation, thereby reducing the inflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6. In addition, EC decreased MDA while markedly elevating SOD and enhancing GSH-px. Furthermore, specifically inhibiting DUSP14 expression via using protein-tyrosine-phosphatase (PTP) inhibitor IV, neutralized the protective action of EC and aggravated inflammation and OS. In vitro experiments of OxyHb-induced BV2 cells revealed that EC promoted Nrf2 while markedly suppressing NF-κB by increasing DUSP14 activation, thereby reducing the concentrations of the above inflammatory cytokines. Moreover, EC decreased MDA while evidently increasing SOD and GSH-px. CONCLUSION: In summary, this paper lays a theoretical grounding for EC treatment of SAH-induced inflammatory reactions and OS by regulating DUSP14.


Assuntos
NF-kappa B , Hemorragia Subaracnóidea , Ratos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Ratos Sprague-Dawley , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico
10.
Front Cell Neurosci ; 16: 840143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401113

RESUMO

Most cases of acquired hearing loss are due to degeneration and subsequent loss of cochlear hair cells. Whereas mammalian hair cells are not replaced when lost, in zebrafish, they constantly renew and regenerate after injury. However, the molecular mechanism among this difference remains unknown. Dual-specificity phosphatase 14 (DUSP14) is an important negative modulator of mitogen-activated protein kinase (MAPK) signaling pathways. Our study was to investigate the effects of DUSP14 on supporting cell development and hair cell regeneration and explore the potential mechanism. Our results showed that dusp14 gene is highly expressed in zebrafish developing neuromasts and otic vesicles. Behavior analysis showed that dusp14 deficiency resulted in hearing defects in zebrafish larvae, which were reversed by dusp14 mRNA treatment. Moreover, knockdown of dusp14 gene caused a significant decrease in the number of neuromasts and hair cells in both neuromast and otic vesicle, mainly due to the inhibition of the proliferation of supporting cells, which results in a decrease in the number of supporting cells and ultimately in the regeneration of hair cells. We further found significant changes in a series of MAPK pathway genes through transcriptome sequencing analysis of dusp14-deficient zebrafish, especially mapk12b gene in p38 signaling. Additionally, inhibiting p38 signaling effectively rescued all phenotypes caused by dusp14 deficiency, including hair cell and supporting cell reduction. These results suggest that DUSP14 might be a key gene to regulate supporting cell development and hair cell regeneration and is a potential target for the treatment of hearing loss.

11.
Curr Neurovasc Res ; 19(3): 245-254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927915

RESUMO

BACKGROUND: Ischemic brain injury often results in irreversible pyroptosis of neurons. Sevoflurane (Sevo) post-treatment exerts an alleviative role in neuroinflammation. OBJECTIVES: This work evaluated the mechanism of Sevo post-treatment in oxygen-glucose deprivation (OGD)-induced pyroptosis of rat hippocampal neurons. METHODS: Rat hippocampal neuron cell line H19-7 cells were treated with OGD, followed by posttreatment of 2% Sevo. The expression patterns of Mafb ZIP Transcription Factor B (Mafb) and dual- specificity phosphatase 14 (DUSP14) were determined via quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting methods. H19-7 cell viability and the release of lactate dehydrogenase (LDH) were examined via the cell counting kit-8 and LDH assay kits. Levels of pyroptosis-related proteins and cytokines NOD-like receptor family, pyrin domain containing 3 (NLRP3), N-term cleaved Gasdermin-D (GSDMD-N), cleaved-caspase-1, interleukin (IL)-1ß, and IL-18 were also examined. The binding relation between Mafb and the DUSP14 promoter was detected. Besides, the roles of Mafb/DUSP14 in OGD-induced pyroptosis of rat hippocampal neurons were investigated through functional rescue experiments. RESULTS: Mafb and DUSP14 expression levels were decreased in OGD-induced hippocampal neurons. Sevo post-treatment up-regulated Mafb and DUSP14, facilitated H19-7 cell viability, inhibited LDH release, and reduced levels of NLRP3, GSDMD-N, cleaved-caspase-1, IL-1ß, and IL-18. Mafb increased DUSP14 expression via binding to the DUSP14 promoter. Repressing Mafb or DUSP14 exacerbated pyroptosis of hippocampal neurons. CONCLUSION: Sevo post-treatment increased Mafb and DUSP14 expressions, which repressed OGDinduced pyroptosis of hippocampal neurons.


Assuntos
Interleucina-18 , Piroptose , Ratos , Animais , Piroptose/fisiologia , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxigênio/metabolismo , Glucose/metabolismo , Sevoflurano , Caspase 1/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Proteínas Oncogênicas/metabolismo , Fator de Transcrição MafB/metabolismo
12.
Bioengineered ; 12(1): 7495-7507, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605731

RESUMO

Osteoarthritis (OA) is a proverbial inflammatory degenerative joint disease associated with the acceleration of the aging process and is characterized by chondrocyte injury and articular cartilage degradation. Dual-specificity phosphatase 14 (Dusp14), a common member of the DUSP family, has been implicated in multiple inflammatory diseases and bone loss. Nevertheless, the function of DUSP14 in OA remains unclear. In the present study, down-regulation of DUSP14 was corroborated in anterior cruciate ligament transection (ACLT)-induced OA rats and interleukin-1ß (IL-1ß)-stimulated chondrocytes. Additionally, the gain of DUSP14 reversed IL-1ß-induced inhibition of chondrocyte viability but attenuated cell apoptosis. Concomitantly, DUSP14 overexpression muted IL-1ß-induced release of pro-inflammatory mediators NO and prostaglandin E2 (PGE2), as well as pro-inflammatory cytokine levels (IL-6 and TNF-α). Furthermore, up-regulation of DUSP14 overturned the effects of IL-1ß on the inhibition of collagen II and aggrecan expression, and enhancement of A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5 (ADAMTS5) and matrix metalloproteinases (MMPs; MMP3 and MMP-13). Mechanistically, DUSP14 elevation increased the p-Adenosine 5'-monophosphate-activated protein activated protein kinase(AMPK), inhibitor of NF-κB (IκB) expression and decreased p-p65 NF-κB expression, indicating that DUSP14 might restore the AMPK-IκB pathway to restrain NF-κB signaling under IL-1ß exposure. Notably, blockage of AMPK signaling muted the protective efficacy of DUSP14 elevation against IL-1ß-induced inflammatory injury and metabolism disturbance in chondrocytes. Interestingly, histological evaluation substantiated that DUSP14 injection alleviated cartilage degradation in OA rats. Together, DUSP14 may ameliorate OA progression by affecting chondrocyte injury, inflammatory response and cartilage metabolism homeostasis, implying a promising therapeutic strategy against OA.


Assuntos
Condrócitos/metabolismo , Fosfatases de Especificidade Dupla , Fosfatases da Proteína Quinase Ativada por Mitógeno , Osteoartrite , Animais , Células Cultivadas , Citocinas/metabolismo , Progressão da Doença , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Homeostase , Inflamação/metabolismo , Masculino , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Ratos , Ratos Sprague-Dawley
13.
Curr Eye Res ; 46(5): 710-718, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33107352

RESUMO

PURPOSE: Understanding molecular changes is essential for designing effective treatments for nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in adults older than 50 years. We investigated changes in the mitogen-activated protein kinase (MAPK) pathway after experimental AION and focused on dual specificity phosphatase 14 (Dusp14), an atypical MAPK phosphatase that is downstream of Krüppel-like transcription factor (KLF) 9-mediated inhibition of retinal ganglion cell (RGC) survival and axonal regeneration. MATERIALS AND METHODS: We induced severe AION in a photochemical thrombosis model in adult C57BL/6 wild-type and Dusp14 knockout mice. For comparison, some studies were performed using an optic nerve crush model. We assessed changes in MAPK pathway molecules using Western blot and immunohistochemistry, measured retinal thickness using optical coherence tomography (OCT), and quantified RGCs and axons using histologic methods. RESULTS: Three days after severe AION, there was no change in the retinal protein levels of MAPK ERK1/2, phosphorylated-ERK1/2 (pERK1/2), downstream effector Elk-1 and phosphatase Dusp14 on Western blot. Western blot analysis of purified RGCs after a more severe model using optic nerve crush also showed no change in Dusp14 protein expression. Because of the known importance of the Dusp14 and MAPK pathway in RGCs, we examined changes after AION in Dusp14 knockout mice. Three days after AION, Dusp14 knockout mice had significantly increased pERK1/2+, Brn3A+ RGCs on immunohistochemistry. Three weeks after AION, Dusp14 knockout mice had significantly greater preservation of retinal thickness, increased number of Brn3A+ RGCs on whole mount preparation, and increased number of optic nerve axons compared with wild-type mice. CONCLUSIONS: Genetic deletion of Dusp14, a MAPK phosphatase important in KFL9-mediated inhibition of RGC survival, led to increased activation of MAPK ERK1/2 and greater RGC and axonal survival after experimental AION. Inhibiting Dusp14 or activating the MAPK pathway should be examined further as a potential therapeutic approach to treatment of AION.Abbreviations: AION: anterior ischemic optic neuropathy; Dusp14: dual specific phosphatase 14; ERK1/2: extracellular signal-regulated kinases 1/2; Elk-1: ETS Like-1 protein; GCC: ganglion cell complex; GCL: ganglion cell layer; inner nuclear layer; KO: knockout; MAPK: mitogen-activated phosphokinase; OCT: optical coherence tomography; RGC: retinal ganglion cell; RNFL: retinal nerve fiber layer.


Assuntos
Axônios/fisiologia , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Nervo Óptico/fisiologia , Neuropatia Óptica Isquêmica/fisiopatologia , Células Ganglionares da Retina/citologia , Animais , Western Blotting , Sobrevivência Celular , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tomografia de Coerência Óptica , Fator de Transcrição Brn-3A/metabolismo
14.
Ann Transl Med ; 9(4): 350, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708977

RESUMO

BACKGROUND: Ischemia reperfusion (IR)-induced acute kidney injury (AKI) is accompanied by increased inflammatory response and oxidative stress. Eriocitrin is a flavonoid that is mainly derived from lemon or citrate juice. It exhibits various pharmacological effects and is known to have antioxidant and anti-steatotic benefits. However, research on the effect of eriocitrin against IR-induced oxidative stress and inflammation in AKI is limited. METHODS: In this study, an OGD/R of HK-2 cell in vitro and rat model of AKI in vivo were constructed. Then the cell or rats were treated with eriocitrin at different doses (60, 30, 10 mg/kg). The levels of apoptotic were detected by flow cytometry. Inflammatory and oxidative stress factors in supernatant in vitro and tissue in vivo. Meanwhile, Western blot was used to detect the change of dual-specificity phosphatase 14 (DUSP14), Nrf2 and nuclear factor-κB (NF-κB). RESULTS: Eriocitrin attenuated apoptosis of the human renal tubular epithelial cell line HK-2 mediated by oxygen glucose deprivation/reperfusion via the repression of inflammation and oxidative stress in a dose-dependent manner. Eriocitrin also enhanced the levels of dual-specificity phosphatase 14 (DUSP14) and Nrf2, and decreased NF-κB phosphorylation. Furthermore, the in vivo experiments indicated that eriocitrin dose-dependently alleviated IR-induced AKI and apoptosis in rats. By elevating DUSP14, eriocitrin promoted the expression of Nrf2 and inactivated NF-κB, thereby downregulating inflammation and oxidative stress. Moreover, inhibiting DUSP14 expression with protein tyrosine phosphatase (PTP) inhibitor IV reversed the kidney-protective effects of Eriocitrin. CONCLUSIONS: Eriocitrin protected IR-induced AKI by attenuating oxidative stress and inflammation via elevating DUSP14, thereby providing a theoretical basis for the treatment of IR-induced AKI.

15.
Cancer Manag Res ; 12: 2097-2108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256117

RESUMO

BACKGROUND: There is a growing number of evidence which report the relationship of the dual-specificity phosphatases 14 (DUSP14) with physiological and pathological mechanisms in the human body. However, it is still not known what if any role DUSP14 plays in pancreatic cancer. MATERIALS AND METHODS: The study evaluates the levels of DUSP14 in the pancreatic cancer tissues and cell lines using Western blotting and qRT-PCR to assess the levels of the DUSP14 and epithelial-mesenchymal transition (EMT) biomarkers. After the DUSP14 was blocked, the following assays were performed: colony formation, assessments of scratch wound and transwell to examine the effects of DUSP14 on the proliferation, migration and invasion of the pancreatic cancer. RESULTS: Results showed that there was a significant increase in the level of DUSP14 expression both in the pancreatic cancer tissues and cell lines. Experimental downregulation of DUSP14 induced the inhibition of the capacity of proliferation, migration and invasion of the pancreatic cancer cells. Western blotting analyses showed changes in the levels of expression of the EMT biomarkers, which helped to determine the function of DUSP14 in EMT. CONCLUSION: In conclusion, we suggest that DUSP14 is a novel molecular target that can be used for the treatment of pancreatic cancer.

16.
Cardiovasc Eng Technol ; 11(2): 219-227, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31916040

RESUMO

PURPOSE: Recent studies have demonstrated that miRNAs play a vital role in regulating myocardial ischemia/reperfusion injury (MIRI). MiR-217 has been proven to be implicated in cardiac diseases such as chronic heart failure and cardiac myxoma. However, the role of miR-217 in MIRI is not clear. METHODS: A mouse MIRI model was established and the myocardial infarct size was evaluated by TTC staining. The expression level of miR-217 in I/R group was determined by real-time polymerase chain reaction. Subsequently, MIRI mice and H9C2 cells were administrated with miR-217 inhibitor in vivo and in vitro, respectively. The levels of TNF-α and IL-6 were measured by commercially available ELISA kits. Blood and cell samples were collected for the measurement of lactate dehydrogenase (LDH) level and caspase-3 activity. Cell viability was assessed with the CCK-8 assay. We then explored the detailed molecular mechanisms by TargetScan 7.1 database and further studies were performed to prove the prediction by dual-luciferase reporter assay. RESULTS: Larger stainless infarct areas were observed in the MIRI group, accompanied by inceased serum LDH activity, indicating the mouse MIRI model was successfully established. MiR-217 was up-regulated in MIRI mice and hypoxia/reoxygenation-treated H9C2 cells. MiR-217 knockdown alleviated the MIRI in MIRI mouse model, and also attenuated the myocardial hypoxia/reoxygenation injury in H9C2 cells. Moreover, dual specificity protein phosphatase 14 (DUSP14) was proved to be a target of miR-217. Besides, further study indicated that inhibition of miR-217 protected against MIRI through inactivating NF-κB and MAPK pathways via targeting DUSP14. CONCLUSIONS: MiR-217 inhibition protected against MIRI through inactivating NF-κB and MAPK pathways by targeting DUSP14. This study may provide valuable diagnostic and factors and therapeutic agents for MIRI.


Assuntos
Antagomirs/administração & dosagem , Técnicas de Silenciamento de Genes , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia , NF-kappa B/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Fosforilação , Transdução de Sinais
17.
Mol Cell Oncol ; 7(4): 1740541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944611

RESUMO

We recently demonstrated that post-translational modifications of the OTU deubiquitinase with linear linkage specificity (OTULIN) regulate its function in cell death. OTULIN hyper-phosphorylation promotes necroptosis by locking ring finger protein 31 (RNF31, also known as HOIP) away from the cylindromatosis (CYLD) complex, resulting in altered receptor interacting serine/threonine kinase 1 (RIPK1) ubiquitination. Further, we identified dual specificity phosphatase 14 (DUSP14) as an OTULIN phosphatase that limits necroptosis.

18.
Cell Rep ; 29(11): 3652-3663.e5, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825842

RESUMO

Linear ubiquitination has emerged as an important post-translational modification that regulates NF-κB activation, inflammation, and cell death in both immune and non-immune compartments, including the skin. The deubiquitinase OTULIN specifically disassembles linear ubiquitin chains generated by the linear ubiquitin assembly complex (LUBAC) and is necessary to prevent embryonic lethality and autoinflammatory disease. Here, we dissect the direct role of OTULIN in cell death and find that OTULIN limits apoptosis and necroptosis in keratinocytes. During apoptosis, OTULIN is cleaved by capase-3 at Asp-31 into a C-terminal fragment that restricts caspase activation and cell death. During necroptosis, OTULIN is hyper-phosphorylated at Tyr-56, which modulates RIPK1 ubiquitin dynamics and promotes cell death. OTULIN Tyr-56 phosphorylation is counteracted by the activity of dual-specificity phosphatase 14 (DUSP14), which we identify as an OTULIN phosphatase that limits necroptosis. Our data provide evidence of dynamic post-translational modifications of OTULIN and highlight their importance in cell death outcome.


Assuntos
Apoptose , Endopeptidases/metabolismo , Necroptose , Processamento de Proteína Pós-Traducional , Ubiquitinas/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Células HEK293 , Humanos , Queratinócitos/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Cell Signal ; 28(1): 145-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26521044

RESUMO

Dual-specificity phosphatase 14 (DUSP14, also known as MKP6) is a MAP kinase phosphatase that dephosphorylates JNK, ERK, and p38 in vitro. We recently reported that DUSP14 negatively regulates T-cell activation and immune responses by interfering activation of TAB1-TAK1 complex. However, the molecular mechanism that regulates the phosphatase activity of DUSP14 remains unclear. Here, we report the post-translational modification of DUSP14 by ubiquitination. Mass spectrometry and mutational analyses identified that DUSP14 was Lys63-linked ubiquitinated at lysine 103 residue. Furthermore, DUSP14 inducibly interacted with the E3 ligase TRAF2 during T-cell receptor (TCR) signaling; TRAF2 shRNA knockdown reduced the DUSP14 ubiquitination. We also show that ubiquitination of DUSP14 was required for its phosphatase activity during TCR signaling. Together, these findings reveal a novel mechanism by which TRAF2 mediates Lys63-linked ubiquitination of DUSP14, leading to DUSP14 activation in T cells.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Lisina/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Processamento de Proteína Pós-Traducional/genética , Linfócitos T/imunologia , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo , Fosfatases de Especificidade Dupla/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ativação Linfocitária/genética , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Fosforilação , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa