Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Exp Cell Res ; 430(2): 113720, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479052

RESUMO

BACKGROUND: Hyperglycemia-induced vascular endothelial cell dysfunction is a major factor contributing to diabetic lower extremity ischemia. We intend to investigate the role of Dusp2 in hyperglycemia-induced vascular endothelial cell dysfunction and related mechanisms. METHODS: The human umbilical vein endothelial cells (HUVECs) were treated with high glucose (HG) as the cell model. Streptozotocin injection was performed to induce diabetes and femoral artery ligation was to induce hind limb ischemia in mice. The levels of Dusp2, p-p38 MAPK, E2F4, and p38 MAPK were evaluated by Western blot or quantitative real-time PCR. The laser Doppler perfusion imaging was conducted to measure blood flow recovery. The cell counting kit-8, transwell, and tube formation assay were performed to evaluate cell proliferation, migration, and angiogenesis, respectively. CD31 immunohistochemical staining was carried out to detect the capillary density of gastrocnemius. The dual-luciferase reporter gene assay and Chromatin immunoprecipitation assay were executed to explore the interaction between E2F4 and Dusp2. RESULTS: Dusp2 was highly expressed in HG-induced HUVECs and diabetic lower extremity ischemia model mice. Interference with Dusp2 promoted cell proliferation, migration, and angiogenesis, as well as alleviated mouse diabetic hindlimb ischemia. Dusp2 knockdown up-regulated p-p38 MAPK levels. We verified the binding between E2F4 and Dusp2. Overexpressing E2F4 suppressed Dusp2 levels and promoted cell proliferation, migration, and angiogenesis, co-overexpression of Dusp2 reversed the results. CONCLUSIONS: Overexpressing E2F4 promotes endothelial cell proliferation, migration, and angiogenesis by inhibiting Dusp2 expression and activating p38 MAPK to alleviate vascular endothelial cell dysfunction under HG stimulation.


Assuntos
Hiperglicemia , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Camundongos , Células Cultivadas , Glucose/farmacologia , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hiperglicemia/metabolismo , Isquemia/genética , Neovascularização Fisiológica , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Semin Cell Dev Biol ; 110: 51-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32362381

RESUMO

Multiciliated cells (MCC) project dozens to hundreds of motile cilia from the cell surface to generate fluid flow across epithelial surfaces or turbulence to promote the transport of gametes. The MCC differentiation program is initiated by GEMC1 and MCIDAS, members of the geminin family, that activate key transcription factors, including p73 and FOXJ1, to control the multiciliogenesis program. To support the generation of multiple motile cilia, MCCs must undergo massive centriole amplification to generate a sufficient number of basal bodies (modified centrioles). This transcriptional program involves the generation of deuterosomes, unique structures that act as platforms to regulate centriole amplification, the reactivation of cell cycle programs to control centriole amplification and release, and extensive remodeling of the cytoskeleton. This review will focus on providing an overview of the transcriptional regulation of MCCs and its connection to key processes, in addition to highlighting exciting recent developments and open questions in the field.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Centríolos/ultraestrutura , Cílios/ultraestrutura , Ciliopatias/metabolismo , Ciliopatias/patologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
3.
Hereditas ; 160(1): 29, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349788

RESUMO

BACKGROUND: Glioma stem cells (GSCs) are responsible for glioma recurrence and drug resistance, yet the mechanisms underlying their maintenance remains unclear. This study aimed to identify enhancer-controlled genes involved in GSCs maintenance and elucidate the mechanisms underlying their regulation. METHODS: We analyzed RNA-seq data and H3K27ac ChIP-seq data from GSE119776 to identify differentially expressed genes and enhancers, respectively. Gene Ontology analysis was performed for functional enrichment. Transcription factors were predicted using the Toolkit for Cistrome Data Browser. Prognostic analysis and gene expression correlation was conducted using the Chinese Glioma Genome Atlas (CGGA) data. Two GSC cell lines, GSC-A172 and GSC-U138MG, were isolated from A172 and U138MG cell lines. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to detect H3K27ac of enhancers, and binding of E2F4 to target gene enhancers. Western blot was used to analyze protein levels of p-ATR and γH2AX. Sphere formation, limiting dilution and cell growth assays were used to analyze GSCs growth and self-renewal. RESULTS: We found that upregulated genes in GSCs were associated with ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) pathway activation, and that seven enhancer-controlled genes related to ATR pathway activation (LIN9, MCM8, CEP72, POLA1, DBF4, NDE1, and CDKN2C) were identified. Expression of these genes corresponded to poor prognosis in glioma patients. E2F4 was identified as a transcription factor that regulates enhancer-controlled genes related to the ATR pathway activation, with MCM8 having the highest hazard ratio among genes positively correlated with E2F4 expression. E2F4 bound to MCM8 enhancers to promote its transcription. Overexpression of MCM8 partially restored the inhibition of GSCs self-renewal, cell growth, and the ATR pathway activation caused by E2F4 knockdown. CONCLUSION: Our study demonstrated that E2F4-mediated enhancer activation of MCM8 promotes the ATR pathway activation and GSCs characteristics. These findings offer promising targets for the development of new therapies for gliomas.


Assuntos
Glioma , Humanos , Glioma/genética , Glioma/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Fator de Transcrição E2F4/metabolismo , Proteínas Associadas aos Microtúbulos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
4.
J Cell Physiol ; 237(6): 2690-2702, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35403704

RESUMO

E2f4 is a multifunctional transcription factor that is essential for many cellular processes. Although the role of E2f4 during cell cycle progression has been investigated in great detail, less is known about E2f4 during embryonic development. Here, we investigated the role of E2f4 during zebrafish development. Zebrafish e2f4 mutants displayed ectopic otolith formation due to abnormal ciliary beating in the otic vesicle. The beating defects of motile cilia were caused by abnormal expression of ciliary motility genes. The expression of two genes, lrrc23 and ccdc151, were significantly decreased in the absence of E2f4. In addition to that, e2f4 mutants also displayed growth retardation both in the body length and body weight and mostly died at around 6 months old. Although food intake was normal in the mutants, we found that the microvilli of the intestinal epithelia were significantly affected in the mutants. Finally, the intestinal epithelia of e2f4 mutants also displayed reduced cell proliferation, together with an increased level of cell apoptosis. Our data suggested a tissue-specific role of E2f4 during zebrafish development, which is distinct from the traditional views of this protein as a transcription repressor.


Assuntos
Fator de Transcrição E2F4/metabolismo , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Cílios/genética , Cílios/metabolismo , Intestinos , Membrana dos Otólitos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
EMBO Rep ; 21(12): e49183, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073500

RESUMO

Zika virus (ZIKV) is an emerging flavivirus, which when passed through vertical transmission from mother to developing fetus can lead to developmental abnormalities, including microcephaly. While there is mounting evidence that suggests a causal relationship between ZIKV infection and microcephaly, the mechanisms by which ZIKV induces these changes remain to be elucidated. Here, we demonstrate that ZIKV infection of neural stems cells, both in vitro and in vivo, induces macroautophagy to enhance viral replication. At the same time, ZIKV downregulates a number of essential selective autophagy genes, including the Fanconi anemia (FA) pathway genes. Bioinformatics analyses indicate that the transcription factor E2F4 promotes FANCC expression and is downregulated upon ZIKV infection. Gain and loss of function assays indicate that FANCC is essential for selective autophagy and acts as a negative regulator of ZIKV replication. Finally, we show that Fancc KO mice have increased ZIKV infection and autophagy protein levels in various brain regions. Taken together, ZIKV downregulates FANCC to modulate the host antiviral response and simultaneously attenuate neuronal growth.


Assuntos
Anemia de Fanconi , Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Animais , Autofagia , Linhagem Celular , Anemia de Fanconi/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi , Macroautofagia , Camundongos , Replicação Viral , Zika virus/genética , Infecção por Zika virus/genética
6.
Genes Dev ; 28(13): 1461-71, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24934224

RESUMO

Multiciliate cells employ hundreds of motile cilia to produce fluid flow, which they nucleate and extend by first assembling hundreds of centrioles. In most cells, entry into the cell cycle allows centrioles to undergo a single round of duplication, but in differentiating multiciliate cells, massive centriole assembly occurs in G0 by a process initiated by a small coiled-coil protein, Multicilin. Here we show that Multicilin acts by forming a ternary complex with E2f4 or E2f5 and Dp1 that binds and activates most of the genes required for centriole biogenesis, while other cell cycle genes remain off. This complex also promotes the deuterosome pathway of centriole biogenesis by activating the expression of deup1 but not its paralog, cep63. Finally, we show that this complex is disabled by mutations in human Multicilin that cause a severe congenital mucociliary clearance disorder due to reduced generation of multiple cilia. By coopting the E2f regulation of cell cycle genes, Multicilin drives massive centriole assembly in epithelial progenitors in a manner required for multiciliate cell differentiation.


Assuntos
Centríolos/metabolismo , Fatores de Transcrição E2F/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação/genética , Ligação Proteica/genética , Pele/citologia , Pele/metabolismo , Fator de Transcrição DP1/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
7.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292945

RESUMO

E2F4 was initially described as a transcription factor with a key function in the regulation of cell quiescence. Nevertheless, a number of recent studies have established that E2F4 can also play a relevant role in cell and tissue homeostasis, as well as tissue regeneration. For these non-canonical functions, E2F4 can also act in the cytoplasm, where it is able to interact with many homeostatic and synaptic regulators. Since E2F4 is expressed in the nervous system, it may fulfill a crucial role in brain function and homeostasis, being a promising multifactorial target for neurodegenerative diseases and brain aging. The regulation of E2F4 is complex, as it can be chemically modified through acetylation, from which we present evidence in the brain, as well as methylation, and phosphorylation. The phosphorylation of E2F4 within a conserved threonine motif induces cell cycle re-entry in neurons, while a dominant negative form of E2F4 (E2F4DN), in which the conserved threonines have been substituted by alanines, has been shown to act as a multifactorial therapeutic agent for Alzheimer's disease (AD). We generated transgenic mice neuronally expressing E2F4DN. We have recently shown using this mouse strain that expression of E2F4DN in 5xFAD mice, a known murine model of AD, improved cognitive function, reduced neuronal tetraploidization, and induced a transcriptional program consistent with modulation of amyloid-ß (Aß) peptide proteostasis and brain homeostasis recovery. 5xFAD/E2F4DN mice also showed reduced microgliosis and astrogliosis in both the cerebral cortex and hippocampus at 3-6 months of age. Here, we analyzed the immune response in 1 year-old 5xFAD/E2F4DN mice, concluding that reduced microgliosis and astrogliosis is maintained at this late stage. In addition, the expression of E2F4DN also reduced age-associated microgliosis in wild-type mice, thus stressing its role as a brain homeostatic agent. We conclude that E2F4DN transgenic mice represent a promising tool for the evaluation of E2F4 as a therapeutic target in neuropathology and brain aging.


Assuntos
Doença de Alzheimer , Gliose , Animais , Camundongos , Camundongos Transgênicos , Gliose/patologia , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Envelhecimento/genética , Treonina/metabolismo , Fatores de Transcrição/metabolismo
8.
Dev Biol ; 465(2): 168-177, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32735790

RESUMO

Multiciliated cells (MCCs) differentiate hundreds of motile cilia that beat to drive fluid movement over various kinds of epithelia. In Xenopus, mice and human, the coiled-coil containing protein Mcidas (Mci) has been shown to be a key transcriptional regulator of MCC differentiation. We have examined Mci function in the zebrafish, another model organism that is widely used to study ciliary biology. We show that zebrafish mci is expressed specifically in the developing MCCs of the kidney tubules, but surprisingly, not in those of the nasal placodes. Mci proteins lack a DNA binding domain and associate with the cell-cycle transcription factors E2f4/5 for regulating MCC-specific gene expression. We found that while the zebrafish Mci protein can complex with the E2f family members, its sequence as well as the requirement and sufficiency for MCC differentiation has diverged significantly from Mci homologues of the tetrapods. We also provide evidence that compared to Gmnc, another related coiled-coil protein that has recently been shown to regulate MCC development upstream of Mci, the Mci protein originated later within the vertebrate lineage. Based on these data, we argue that in contrast to Gmnc, which has a vital role in the genetic circuitry that drives MCC formation, the requirement of Mci, at least in the zebrafish, is not obligatory.


Assuntos
Cílios , Regulação da Expressão Gênica no Desenvolvimento , Túbulos Renais/embriologia , Transdução de Sinais , Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Ciclo Celular , Cílios/genética , Cílios/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
FASEB J ; 34(5): 6055-6069, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239565

RESUMO

Esophageal cancer represents the eighth most frequently occurring cancer, as well as the sixth most widespread cause of cancer-related deaths. In recent years, accumulating evidence has implicated long non-coding RNAs in the progression of esophageal squamous cell carcinoma (ESCC). The aim of the present study was to investigate the potential involvement and underlying mechanisms of LINC00337 in ESCC. Expression patterns of LINC00337 and targeting protein for Xenopus kinesin-like protein 2 (TPX2) in ESCC tissues and cells were detected using RT-qPCR and immunohistochemical staining. Next, the interactions among LINC00337, E2F4, and TPX2 were identified using chromatin immunoprecipitation, dual-luciferase reporter, and RNA-binding protein immunoprecipitation assays, suggesting that LINC00337 could recruit E2F4 to enhance the transcription of TPX2. Thereafter, the regulatory roles of LINC00337 and TPX2 in ESCC were analyzed by altering the expression of LINC00337 or TPX2 in ESCC cells following treatment with cisplatin (DDP). The levels of autophagy-related proteins Beclin1 and LC3II/LC3I, viability, autophagy, apoptosis, and chemoresistance of ESCC cells to DDP were measured following transfection treatment with different plasmids. Additionally, the role of the LINC00337/E2F4/TPX2 axis was assessed in vivo by measuring tumor formation in nude mice. The results demonstrated that LINC00337 upregulated TPX2, consequently leading to elevated levels of Beclin1 and LC3II/LC3I, promoted cell viability and autophagy, while inhibiting apoptosis and chemosensitivity to DDP in ESCC. In sum, the current study evidenced that the overexpression of LINC00337 could potentially enhance ESCC cell autophagy and chemoresistance to DDP via the upregulation of TPX2 by recruiting E2F4. Thus, LINC00337 may serve as a potential candidate for the treatment of ESCC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição E2F4/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Longo não Codificante/genética , Idoso , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células , Fator de Transcrição E2F4/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Cell Mol Med ; 24(3): 2157-2168, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943751

RESUMO

Acute myeloid leukaemia (AML) is an aggressive and mostly incurable haematological malignancy with frequent relapse after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve AML clinical outcome. Here, we aim to study the dysregulation of a particular transcription factor, E2F4, and its role in the progression of AML. In this study, human clinical data from the Gene Expression Profiling Interactive Analysis (GEPIA) revealed that increased E2F4 expression was associated with poor prognosis in AML patients. Moreover, the experimental results showed that E2F4 was aberrantly overexpressed in human AML patients and cell lines. Depletion of E2F4 inhibited the proliferation, induced the differentiation and suppressed the growth of AML cells in a nude mouse model. By contrast, overexpression of E2F4 promoted the proliferation and inhibited the differentiation of AML cells in vitro. Additionally, E2F4 expression not only is positively correlated with EZH2 but also can bind to EZH2. RNA microarray results also showed that E2F4 can regulate MAPK signalling pathway. EZH2 can reverse the inhibitory effect of E2F4 silencing on MAPK signaling pathway. In summary, our data suggest that E2F4 may be a potential therapeutic target for AML therapy.


Assuntos
Fator de Transcrição E2F4/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Genes Supressores de Tumor/fisiologia , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Epigênese Genética/genética , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos , Camundongos Nus , Células THP-1
11.
J Cell Mol Med ; 24(11): 6015-6027, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314545

RESUMO

Cervical cancer is one of the major malignancies, the pathophysiology and progression of which remain to be scarcely understood. Long non-coding RNAs (lncRNAs) have been previously implicated in the progression of cervical cancer. Here, the purpose of this study was to identify whether lncRNA heart- and neural crest derivative-expressed 2-antisense RNA 1 (HAND2-AS1) affect the development of cervical cancer through regulation of chromosome 16 open reading frame 74 (C16orf74) by mediating a transcription factor E2F4. RT-qPCR was performed to determine the expression of HAND2-AS1 in cervical cancer cells. Then, cervical cancer cells were treated with HAND2-AS1 or si-E2F4 RNA, or C16orf74, after which the proliferation, colony formation, migration and invasion were detected. Moreover, the binding between HAND2-AS1 and E2F4 or between E2F4 and C16orf74 was explored. Finally, the tumorigenesis of cervical cancer cells was measured in nude mice with altered HAND2-AS1/E2F4/C16orf74 expression. HAND2-AS1 exhibited poor expression in cervical cancer, and HAND2-AS1 overexpression suppressed the proliferation, colony formation, migration and invasion of cervical cancer cells. In addition, HAND2-AS1 was found to recruit transcription factor E2F4 to C16orf74 promoter region and down-regulate C16orf74 expression. Lastly, HAND2-AS1/E2F4/C16orf74 modulated the tumorigenesis of cervical cancer in nude mice. In conclusion, this study provided evidence on the inhibitory effect of HAND2-AS1 on the development of cervical cancer through the suppression of C16orf74 expression by recruiting transcription factor E2F4. This study highlights the potential of lncRNA HAND2-AS1 as a target in the treatment of cervical cancer.


Assuntos
Progressão da Doença , Fator de Transcrição E2F4/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Regiões Promotoras Genéticas , Proteínas/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Animais , Sítios de Ligação , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Invasividade Neoplásica , RNA Longo não Codificante/genética
12.
Cancer Cell Int ; 20(1): 542, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33292231

RESUMO

BACKGROUD: ZBTB protein is an important member of the C2H2 zinc finger protein family. As a transcription factor, it is widely involved in the transcriptional regulation of genes, cell proliferation, differentiation, and apoptosis. The ZBTB7A has been largely linked to different kinds of tumors due to its diverse function. However, the value for ZBTB7A in uterine corpus endometrial carcinoma (UCEC) is unclear. METHODS: In our work, we assessed the importance of ZBTB7A in UCEC. Firstly, Using Oncomine and Tumor Immunoassay Resource (TIMER) databases to evaluate the expression of ZBTB7A. Secondly, we explored the co-expression network of ZBTB7A through the cBioPortal online tool, Metascape, and LinkedOmics. TIMER was also used to explore the relationship between ZBTB7A and tumor immune invasion, and to detect the correlation between the ZBTB7A and the marker genes related to immune infiltration. Finally, CCK8, migration, ChIP assays were introduced to partly validate ZBTB7A function in endometrial cancer cells. RESULTS: We found the ZBTB7A expression in TIMER was associated with various cancers, especially UCEC. The decreased expression of ZBTB7A was markedly related to the stage and prognosis of UCEC. Furthermore, ZBTB7A was also related to the expression of various immune markers such as Neutrophils, Dendritic cell, T cell (general), Th1, Th2, and Treg. Finally, we verified that ZBTB7A repressed E2F4 transcription and inhibited cells proliferation and migration. These results indicate that ZBTB7A may play a vital role in regulating immune cell infiltration in UCEC, and is a valuable prognostic marker. CONCLUSIONS: In summary, we demonstrate that ZBTB7A is notably downregulated in UCEC, plays a vital role in regulating immune cell infiltration, possesses diagnostic and prognostic values and attenuates E2F4 transcription and cell proliferation, migration in vitro.

13.
FASEB J ; 33(1): 219-230, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29995440

RESUMO

Aurora kinases are critical mitotic serine/threonine kinases and are often implicated in tumorigenesis. Recent studies of the interphase functions for aurora kinase (Aurk)A have considerably expanded our understanding of its role beyond mitosis. To identify the unknown targets of AurkA, we used peptide array-based screening and found E2F4 to be a novel substrate. Phosphorylation of E2F4 by AurkA at Ser75 regulates its DNA binding and subcellular localization. Because E2F4 plays an important role in skeletal muscle differentiation, we attempted to gain insight into E2F4 phosphorylation in this context. We observed that a block in E2F4 phosphorylation retained it better within the nucleus and inhibited muscle differentiation. RNA sequencing analysis revealed a perturbation of the gene network involved in the process of muscle differentiation and mitochondrial biogenesis. Collectively, our findings establish a novel role of AurkA in the process of skeletal muscle differentiation.-Dhanasekaran, K., Bose, A., Rao, V. J., Boopathi, R., Shankar, S. R., Rao, V. K., Swaminathan, A., Vasudevan, M., Taneja, R., Kundu, T. K. Unravelling the role of aurora A beyond centrosomes and spindle assembly: implications in muscle differentiation.


Assuntos
Aurora Quinase A/metabolismo , Diferenciação Celular , Centrossomo/metabolismo , Fator de Transcrição E2F4/metabolismo , Músculo Esquelético/citologia , Mioblastos/citologia , Fuso Acromático/metabolismo , Animais , Aurora Quinase A/genética , Ciclo Celular , Células Cultivadas , Fator de Transcrição E2F4/genética , Células HEK293 , Humanos , Camundongos , Mitose , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Fosforilação
14.
Cell Biol Int ; 44(1): 229-241, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31475773

RESUMO

The transcription factor E2F4 is a key determinant of cell differentiation and cell-cycle progression, but its function and regulatory mechanism are not completely understood. Here, we report that E2F4 acts as a positive regulator of the biosynthesis of milk components and proliferation of bovine mammary epithelial cells (BMECs). Overexpression of E2F4 in BMECs resulted in the upregulation of ß-casein, triglyceride, and lactose levels and increased cell proliferation, whereas E2F4 knockdown by small interfering RNA had the opposite effects. We further detected that overexpression of E2F4 significantly increased the messenger RNA expression of mTOR, SREBP-1c, and Cyclin D1, and increased protein levels of SREBP-1c, and Cyclin D1, and the ratio of p-mTOR/mTOR, whereas E2F4 knockdown had the opposite effects. E2F4 was almost entirely located in the nucleus, and we further identified, via ChIP-qPCR analysis, that mTOR, SREBP-1c, and Cyclin D1 were E2F4 target genes, and exogenous administration of methionine, leucine, ß-estradiol, and prolactin markedly increased the protein levels of E2F4 and its binding to the promoters of these three genes. In summary, our data reveal that E2F4 responds to extracellular stimuli and regulates the expression of mTOR, SREBP-1c, and Cyclin D1 for milk biosynthesis and proliferation of BMECs.

15.
Dev Biol ; 443(2): 165-172, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218642

RESUMO

Multiciliated cells (MCCs) differentiate arrays of motile cilia that beat to drive fluid flow over epithelia. Recent studies have established two Geminin family coiled-coil containing nuclear regulatory proteins, Gmnc and Multicilin (Mci), in the specification and differentiation of the MCCs. Both Gmnc and Mci are devoid of a DNA binding domain: they regulate transcription by associating with E2f family transcription factors, notably E2f4 and E2f5. Here, we have studied the relative contribution of these two E2f factors in MCC development using the zebrafish embryo, which differentiates MCCs within kidney tubules and the nose. We found that while E2f4 is fully dispensable, E2f5 is essential for MCCs to form in the kidney tubules. Moreover, using a variety of double mutant combinations we show that E2f5 has a more prominent role in MCC development in the zebrafish than E2f4. This contrasts with current evidence from the mouse, where E2f4 seems to be more important. Thus, distinct combinatorial activities of the E2f4 and E2f5 proteins regulate the specification and differentiation of MCCs in zebrafish and mice.


Assuntos
Fator de Transcrição E2F4/metabolismo , Fator de Transcrição E2F5/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Cílios/metabolismo , Cílios/fisiologia , Fator de Transcrição E2F4/fisiologia , Fator de Transcrição E2F5/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
J Cell Physiol ; 233(12): 9739-9749, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29987913

RESUMO

Bone-marrow-derived mesenchymal stem cells (MSCs) have great potential in transplantation medicine due to their multiple advantages. However, the controlled differentiation of MSCs is one of the key aspects of effective clinical transplantation. Growing evidence suggests that the cell cycle plays an important role in regulating differentiation, while p130 and E2F4 are key to cell cycle checkpoints. The aim of the study is to evaluate the effects and mechanism of p130/E2F4 on the multidifferentiation of MSCs. Our data showed that the transduction efficiencies of p130 or E2F4 mediated by lentiviral vectors were 80.3%-84.4%. p130 and E2F4 mRNA expression was significantly higher in MSC-p130 and MSC-E2F4 cells than in MSC normal control (NC) cells. Similar results were also observed for p130 and E2F4 protein expression. After osteogenic or adipogenic differentiation, the G1 phase was significantly delayed in the MSC-p130 and MSC-E2F4 groups compared with that in the MSC-NC group. However, the G1 phase in the MSC-p130 and MSC-E2F4 groups did the opposite after chondrogenic differentiation. Moreover, overexpressing p130 or E2F4 significantly improved osteogenic differentiation while inhibiting adipogenic and chondrogenic differentiation of mouse MSCs (mMSCs). Moreover, overexpressing p130 or E2F4 significantly improved migration but not proliferation of mMSCs. Our data suggest that cell cycle regulation may be involved in p130/E2F4-mediated changes in the multipotential abilities of bone-marrow-derived mMSCs.


Assuntos
Diferenciação Celular/genética , Proteína Substrato Associada a Crk/genética , Fator de Transcrição E2F4/genética , Células-Tronco Mesenquimais/metabolismo , Adipogenia/genética , Células da Medula Óssea/classificação , Células da Medula Óssea/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Vetores Genéticos , Humanos , Lentivirus/genética , Células-Tronco Mesenquimais/citologia , Osteogênese/genética
17.
BMC Cancer ; 17(1): 306, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464832

RESUMO

BACKGROUND: Neoadjuvant chemotherapy is a key component of breast cancer treatment regimens and pathologic complete response to this therapy varies among patients. This is presumably due to differences in the molecular mechanisms that underlie each tumor's disease pathology. Developing genomic clinical assays that accurately categorize responders from non-responders can provide patients with the most effective therapy for their individual disease. METHODS: We applied our previously developed E2F4 genomic signature to predict neoadjuvant chemotherapy response in breast cancer. E2F4 individual regulatory activity scores were calculated for 1129 patient samples across 5 independent breast cancer neoadjuvant chemotherapy datasets. Accuracy of the E2F4 signature in predicting neoadjuvant chemotherapy response was compared to that of the Oncotype DX and MammaPrint predictive signatures. RESULTS: In all datasets, E2F4 activity level was an accurate predictor of neoadjuvant chemotherapy response, with high E2F4 scores predictive of achieving pathologic complete response and low scores predictive of residual disease. These results remained significant even after stratifying patients by estrogen receptor (ER) status, tumor stage, and breast cancer molecular subtypes. Compared to the Oncotype DX and MammaPrint signatures, our E2F4 signature achieved similar performance in predicting neoadjuvant chemotherapy response, though all signatures performed better in ER+ tumors compared to ER- ones. The accuracy of our signature was reproducible across datasets and was maintained when refined from a 199-gene signature down to a clinic-friendly 33-gene panel. CONCLUSION: Overall, we show that our E2F4 signature is accurate in predicting patient response to neoadjuvant chemotherapy. As this signature is more refined and comparable in performance to other clinically available gene expression assays in the prediction of neoadjuvant chemotherapy response, it should be considered when evaluating potential treatment options.


Assuntos
Neoplasias da Mama , Fator de Transcrição E2F4/análise , Fator de Transcrição E2F4/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Imunoprecipitação da Cromatina , Bases de Dados Factuais , Fator de Transcrição E2F4/química , Fator de Transcrição E2F4/genética , Feminino , Humanos , Terapia Neoadjuvante , Prognóstico , Curva ROC
18.
Fish Shellfish Immunol ; 49: 374-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26702562

RESUMO

This study was conducted to investigate the effects of the dietary vitamin myo-inositol (MI), on the immunity and structural integrity of the head kidney and spleen following infection of fish with the major freshwater pathogen bacterial Aeromonas hydrophila. The results demonstrated for the first time that MI deficiency depressed the lysozyme and acid phosphatase (ACP) activities and the complement 3 (C3) and C4 contents in the head kidney and spleen compared with the optimal MI levels, indicating that MI deficiency decreased the immunity of these important fish immune organs. The depression in immunity due to MI deficiency was partially related to oxidative damage [indicated by increases in the malondialdehyde (MDA) and protein carbonyl (PC) contents] that was in turn partially due to the decreased glutathione (GSH) content and the disturbances in antioxidant enzyme activities [total superoxide dismutase (T-SOD), CuZnSOD, MnSOD, catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)]. MI deficiency inhibited the antioxidant-related gene transcription [CuZnSOD, MnSOD, CAT, GPx1a, GR and NF-E2-related factor 2 (Nrf2)] in the head kidney and spleen following infection of the fish with A. hydrophila. The oxidative damage due to MI deficiency also resulted in the inhibition of proliferation-associated signalling (cyclin D1, cyclin A, cyclin E and E2F4). Thus, MI deficiency partially inhibited damage repair. Excessive MI exhibited negative effects that were similar to MI deficiency, whereas the optimal MI content reversed those indicators. These observations indicated that an MI deficiency or excess could cause depression of the immune system that might be partially related to oxidative damage, antioxidant disturbances, and the inhibition of the proliferation-associated signalling in the head kidney and spleen following infection of fish with A. hydrophila. Finally, the optimal MI levels were 660.7 (based on ACP) and 736.8 mg kg(-1) diet (based on MDA) in the head kidney and 770.5 (based on ACP) and 766.9 mg kg(-1) diet (based on MDA) in the spleen of juvenile Jian carp.


Assuntos
Carpas , Fator de Transcrição E2F4/metabolismo , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/efeitos dos fármacos , Inositol/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Aeromonas hydrophila/fisiologia , Animais , Antioxidantes/metabolismo , Fator de Transcrição E2F4/genética , Ativação Enzimática/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/imunologia , Rim Cefálico/efeitos dos fármacos , Rim Cefálico/imunologia , Inositol/imunologia , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Complexo Vitamínico B/imunologia , Complexo Vitamínico B/farmacologia
19.
Biochim Biophys Acta ; 1840(1): 262-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24055374

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is used for cancer treatment including brain tumors. But the role of epigenetic processes in photodynamic injury of normal brain tissue is unknown. METHODS: 5-Aminolevulinic acid (ALA), a precursor of protoporphyrin IX (PpIX), was used to photosensitize mouse cerebral cortex. PpIX accumulation in cortical tissue was measured spectrofluorometrically. Hematoxylin/eosin, gallocyanin-chromalum and immunohistochemical staining were used to study morphological changes in PDT-treated cerebral cortex. Proteomic antibody microarrays were used to evaluate expression of 112 proteins involved in epigenetic regulation. RESULTS: ALA administration induced 2.5-fold increase in the PpIX accumulation in the mouse brain cortex compared to untreated mice. Histological study demonstrated PDT-induced injury of some neurons and cortical vessels. ALA-PDT induced dimethylation of histone H3, upregulation of histone deacetylases HDAC-1 and HDAC-11, and DNA methylation-dependent protein Kaiso that suppressed transcriptional activity. Upregulation of HDAC-1 and H3K9me2 was confirmed immunohistochemically. Down-regulation of transcription factor FOXC2, PABP, and hBrm/hsnf2a negatively regulated transcription. Overexpression of phosphorylated histone H2AX indicated activation of DNA repair, but down-regulation of MTA1/MTA1L1 and PML - impairment of DNA repair. Overexpression of arginine methyltransferase PRMT5 correlated with up-regulation of transcription factor E2F4 and importin α5/7. CONCLUSION: ALA-PDT injures and kills some but not all neurons and caused limited microvascular alterations in the mouse cerebral cortex. It alters expression of some proteins involved in epigenetic regulation of transcription, histone modification, DNA repair, nuclear protein import, and proliferation. GENERAL SIGNIFICANCE: These data indicate epigenetic markers of photo-oxidative injury of normal brain tissue.


Assuntos
Ácido Aminolevulínico/farmacologia , Córtex Cerebral/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Proteoma/análise , Animais , Córtex Cerebral/patologia , Córtex Cerebral/efeitos da radiação , Epigênese Genética/genética , Epigênese Genética/efeitos da radiação , Epigenômica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Histonas/metabolismo , Técnicas Imunoenzimáticas , Masculino , Camundongos , Análise Serial de Proteínas
20.
J Cancer ; 14(14): 2739-2750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779874

RESUMO

Purpose: Colorectal cancer (CRC) is the 3rd most prevalent malignant tumour globally. Although significant strides have been made in diagnosis and treatment, its prognosis at the moment remains unpromising. Therefore, there is an urgent and desperate need to identify novel biomarkers of CRC and evaluate its mechanism of tumourigenesis and development. Methods: JASPAR and RNAinter databases are used to analyze target genes associated with colorectal cancer. Western blotting, q-PCR and immunohistochemistry et, al. were used to detect the level of MNX1 in patients with colorectal cancer, and Chip-PCR was used to detect the targeted binding ability of E2F4 and MNX1. The cells and animal models overexpressed MNX1 and E2F4 were constructed by shRNA transfection. Results: Herein, MNX1 was highly expressed and linked to favourable overall survival curves in colorectal cancer. The functional assay revealed that MNX1 overexpression could promote proliferation, migration, and invasion of CRC cells. Based on the prediction of the JASPAR and RNAinter databases, the transcription factor, E2F4, was bound to the MNX1 promoter region. The Chromatin Immunoprecipitation (ChIP) assay verified the interactions between MNX1 and E2F4 in CRC. Additionally, we found that sh-E2F4 markedly downregulated the MNX1 levels and reduced CRC progression in vivo and in vitro, which reversed MNX1 overexpression. Conclusion: Therefore, our research discovered that E2F4-mediated abnormal MNX1 expression promotes CRC progression and could become a novel diagnostic or therapeutic target of CRC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa