Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Chembiochem ; 25(10): e202400184, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573110

RESUMO

Genetic aberrations of the maternal UBE3A allele, which encodes the E3 ubiquitin ligase E6AP, are the cause of Angelman syndrome (AS), an imprinting disorder. In most cases, the maternal UBE3A allele is not expressed. Yet, approximately 10 percent of AS individuals harbor distinct point mutations in the maternal allele resulting in the expression of full-length E6AP variants that frequently display compromised ligase activity. In a high-throughput screen, we identified cyanocobalamin, a vitamin B12-derivative, and several alloxazine derivatives as activators of the AS-linked E6AP-F583S variant. Furthermore, we show by cross-linking coupled to mass spectrometry that cobalamins affect the structural dynamics of E6AP-F583S and apply limited proteolysis coupled to mass spectrometry to obtain information about the regions of E6AP that are involved in, or are affected by binding cobalamins and alloxazine derivatives. Our data suggest that dietary supplementation with vitamin B12 can be beneficial for AS individuals.


Assuntos
Síndrome de Angelman , Ubiquitina-Proteína Ligases , Vitamina B 12 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/genética , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/metabolismo , Humanos , Regulação Alostérica/efeitos dos fármacos , Vitamina B 12/metabolismo , Vitamina B 12/química , Vitamina B 12/farmacologia
2.
Nano Lett ; 23(24): 11940-11948, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38055898

RESUMO

Ubiquitin (Ub) ligases E3 are important factors in selecting target proteins for ubiquitination and determining the type of polyubiquitin chains on the target proteins. In the HECT (homologous to E6AP C-terminus)-type E3 ligases, the HECT domain is composed of an N-lobe and a C-lobe that are connected by a flexible hinge loop. The large conformational rearrangement of the HECT domain via the flexible hinge loop is essential for the HECT-type E3-mediated Ub transfer from E2 to a target protein. However, detailed insights into the structural dynamics of the HECT domain remain unclear. Here, we provide the first direct demonstration of the structural dynamics of the HECT domain using high-speed atomic force microscopy at the nanoscale. We also found that the flexibility of the hinge loop has a great impact not only on its structural dynamics but also on the formation mechanism of free Ub chains.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação , Poliubiquitina/química , Poliubiquitina/metabolismo
3.
J Virol ; 96(16): e0066322, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35916535

RESUMO

High-risk human papillomaviruses (HPVs) are responsible for most human cervical cancers, and uncontrolled expression of the two key viral oncoproteins, E6 and E7, stimulates the induction of carcinogenesis. Previous studies have shown that both E6 and E7 are closely associated with different components of the ubiquitin proteasome pathway, including several ubiquitin ligases. Most often these are utilized to target cellular substrates for proteasome-mediated degradation, but in the case of E6, the E6AP ubiquitin ligase plays a critical role in controlling E6 stability. We now show that knockdown of E6AP in HPV-positive cervical cancer-derived cells causes a marked decrease in E7 protein levels. This is due to a decrease in the E7 half-life and occurs in a proteasome-dependent manner. In an attempt to define the underlying mechanism, we show that E7 can also associate with E6AP, albeit in a manner different from that of E6. In addition, we show that E6AP-dependent stabilization of E7 also leads to an increase in the degradation of E7's cellular target substrates. Interestingly, ectopic overexpression of E6 oncoprotein results in lower levels of E7 protein through sequestration of E6AP. We also show that increased E7 stability in the presence of E6AP increases the proliferation of the cervical cancer-derived cell lines. These results demonstrate a surprising interplay between E6 and E7, in a manner which is mediated by the E6AP ubiquitin ligase. IMPORTANCE This is the first demonstration that E6AP can directly help stabilize the HPV E7 oncoprotein, in a manner similar to that observed with HPV E6. This redefines how E6 and E7 can cooperate and potentially modulate each other's activity and further highlights the essential role played by E6AP in the viral life cycle and malignancy.


Assuntos
Proteínas Oncogênicas Virais , Papillomaviridae/metabolismo , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/virologia
4.
J Virol ; 96(4): e0186521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878887

RESUMO

Etiologically, 5% of all cancers worldwide are caused by the high-risk human papillomaviruses (hrHPVs). These viruses encode two oncoproteins (E6 and E7) whose expression is required for cancer initiation and maintenance. Among their cellular targets are the p53 and the retinoblastoma tumor suppressor proteins. Inhibition of the hrHPV E6-mediated ubiquitylation of p53 through the E6AP ubiquitin ligase results in the stabilization of p53, leading to cellular apoptosis. We utilized a live cell high-throughput screen to determine whether exogenous microRNA (miRNA) transfection had the ability to stabilize p53 in hrHPV-positive cervical cancer cells expressing a p53-fluorescent protein as an in vivo reporter of p53 stability. Among the miRNAs whose transfection resulted in the greatest p53 stabilization was 375-3p, which has previously been reported to stabilize p53 in HeLa cells, providing validation of the screen. The top 32 miRNAs, in addition to 375-3p, were further assessed using a second cell-based p53 stability reporter system, as well as in nonreporter HeLa cells to examine their effects on endogenous p53 protein levels, resulting in the identification of 23 miRNAs whose transfection increased p53 levels in HeLa cells. While a few miRNAs that stabilized p53 led to decreases in E6AP protein levels, all targeted HPV oncoprotein expression. We further examined subsets of these miRNAs for their abilities to induce apoptosis and determined whether it was p53-mediated. The introduction of specific miRNAs revealed surprisingly heterogeneous responses in different cell lines. Nonetheless, some of the miRNAs described here have potential as therapeutics for treating HPV-positive cancers. IMPORTANCE Human papillomaviruses cause approximately 5% of all cancers worldwide and encode genes that contribute to both the initiation and maintenance of these cancers. The viral oncoprotein E6 is expressed in all HPV-positive cancers and functions by targeting the degradation of p53 through the engagement of the cellular ubiquitin ligase E6AP. Inhibiting the degradation of p53 leads to apoptosis in HPV-positive cancer cells. Using a high-throughput live cell assay, we identified several miRNAs whose transfection stabilize p53 in HPV-positive cells. These miRNAs have the potential to be used in the treatment of HPV-positive cancers.


Assuntos
Alphapapillomavirus/metabolismo , MicroRNAs/genética , Proteína Supressora de Tumor p53/metabolismo , Alphapapillomavirus/genética , Apoptose , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Estabilidade Proteica , Ubiquitina-Proteína Ligases/metabolismo
5.
J Virol ; 96(6): e0150321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044207

RESUMO

Cancer-causing human papillomavirus (HPV) E6 oncoproteins contain a well-characterized phosphoacceptor site within the PDZ (PSD-95/Dlg/ZO-1) binding motif (PBM) at the C terminus of the protein. Previous studies have shown that the threonine or serine residue in the E6 PBM is subject to phosphorylation by several stress-responsive cellular kinases upon the induction of DNA damage in cervical cancer-derived cells. However, there is little information about the regulation of E6 phosphorylation in the absence of DNA damage and whether there may be other pathways by which E6 is phosphorylated. In this study, we demonstrate that loss of E6AP results in a dramatic increase in the levels of phosphorylated E6 (pE6) despite the expected overall reduction in total E6 protein levels. Furthermore, phosphorylation of E6 requires transcriptionally active p53 and occurs in a manner that is dependent upon DNA-dependent protein kinase (DNA PK). These results identify a novel feedback loop, where loss of E6AP results in upregulation of p53, leading to increased levels of E6 phosphorylation, which in turn correlates with increased association with 14-3-3 and inhibition of p53 transcriptional activity. IMPORTANCE This study demonstrates that the knockdown of E6AP from cervical cancer-derived cells leads to an increase in phosphorylation of the E6 oncoprotein. We show that this phosphorylation of E6 requires p53 transcriptional activity and the enzyme DNA PK. This study therefore defines a feedback loop whereby activation of p53 can induce phosphorylation of E6 and which in turn can inhibit p53 transcriptional activity independently of E6's ability to target p53 for degradation.


Assuntos
Papillomavirus Humano 18 , Ubiquitina-Proteína Ligases , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Feminino , Papillomavirus Humano 18/metabolismo , Humanos , Fosforilação , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/fisiopatologia , Neoplasias do Colo do Útero/virologia
6.
J Med Virol ; 95(3): e28624, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852660

RESUMO

While a small proportion of high-risk (HR) alpha (α) human papillomaviruses (HPVs) is associated with numerous human malignancies, of which cervical cancer is the most prevalent, beta (ß) HPVs predominantly act as co-factors in skin carcinogenesis. A characteristic feature of both α- and ß-E6 oncoproteins is the presence of the LXXLL binding motif, which α-E6s utilize to form a complex with E6AP and which enables ß-E6s to interact with MAML1. Here we show that multiple α-E6 oncoproteins bind to MAML1 via the LXXLL binding motif and that this results in increased protein stability. Moreover, ß-E6 oncoprotein stability is also dependent on the interaction with MAML1. Additionally, in the absence of MAML1, endogenous HPV-8 E6 and HPV-18 E6 are rapidly degraded at the proteasome. Ablation of both E6AP and MAML1 leads to an even more profound downregulation of α-E6 protein expression, whereas this is not observed with ß-E6. This highly suggests that there is one cellular pool for most of ß-E6 that interacts solely with MAML1, whereas there are two cellular pools of HR α-E6, one forming a complex with MAML1 and the other interacting with E6AP. Furthermore, MAML1 induces HPV-8 E6 shuttling from the nucleus to the cytosolic fraction, while MAML1 interaction with HR E6 induces a drastic nuclear and membrane upregulation of E6. Interestingly, the HR α-E6/MAML1 complex does not affect targeting of some of the known HR E6 cellular substrates such as p53 and DLG1. However, MAML1 and E6AP joint co-expression with HR α-E6 leads to a significant increase in cellular proliferation, whereas silencing MAML1 decreases wound closure in HeLa cells. These results demonstrate that HR α-E6 interaction with MAML1 results in a stable form of E6, which likely modulates MAML1's normal cellular activities, one consequence of which being an increased proliferative capacity of HPV-transformed cancer cells. Thus, this study shows a novel function of the α-E6 oncoprotein and how it's activity might affect HPV-induced pathogenesis.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Infecções por Papillomavirus/complicações , Proteínas Oncogênicas Virais/genética , Proliferação de Células , Ligação Proteica , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Mol Cell Neurosci ; 120: 103724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367589

RESUMO

We recently generated a novel Angelman syndrome (AS) rat model with a complete Ube3a gene deletion, that recapitulates the loss of UBE3A protein and shows cognitive and EEG deficits. We also recently published the identification of extracellular UBE3A protein within the brain using microdialysis. Here we explored the effects of supplementation of exogenous UBE3A protein to hippocampal slices and intrahippocampal injection of AS rats. We report that the AS rat model demonstrates deficits in hippocampal long-term potentiation (LTP) which can be recovered with the application of exogenous UBE3A protein. Furthermore, injection of recombinant UBE3A protein into the hippocampus of the AS rat can rescue the associative learning and memory deficits seen in the fear conditioning task. These data suggest that extracellular UBE3A protein may play a role in synaptic function, LTP induction and hippocampal-dependent memory formation.


Assuntos
Síndrome de Angelman , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Hipocampo/metabolismo , Potenciação de Longa Duração , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
FASEB J ; 35(11): e21986, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34662469

RESUMO

The E6 protein of the human papillomavirus (HPV) underpins important protein interaction networks between the virus and host to promote viral infection. Through its interaction with E6AP, a host E3 ubiquitin (UB) ligase, E6 stirs the protein ubiquitination pathways toward the oncogenic transformation of the infected cells. For a systematic measurement of E6 reprogramming of the substrate pool of E6AP, we performed a proteomic screen based on "orthogonal UB transfer (OUT)" that allowed us to identify the ubiquitination targets of E6AP dependent on the E6 protein of HPV-16, a high-risk viral subtype for the development of cervical cancer. The OUT screen identified more than 200 potential substrates of the E6-E6AP pair based on the transfer of UB from E6AP to the substrate proteins. Among them, we verified that E6 would induce E6AP-catalyzed ubiquitination of importin proteins KPNA1-3, protein phosphatase PGAM5, and arginine methyltransferases CARM1 to trigger their degradation by the proteasome. We further found that E6 could significantly reduce the cellular level of KPNA1 that resulted in the suppression of nuclear transport of phosphorylated STAT1 and the inhibition of interferon-γ-induced apoptosis in cervical cancer cells. Overall, our work demonstrates OUT as a powerful proteomic platform to probe the interaction of E6 and host cells through protein ubiquitination and reveals a new role of E6 in down-regulating nuclear transport proteins to attenuate tumor-suppressive signaling.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa Carioferinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferon gama/metabolismo , Ligação Proteica
9.
Pharmacol Res ; 177: 106128, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150860

RESUMO

Dysfunction of p53 is observed in many malignant tumors, which is related to cancer susceptibility. In cervical cancer, p53 is primarily degradated through the complex of high-risk human papillomaviruses (HPV) oncoprotein E6 and E6-associated protein (E6AP) ubiquitin ligase. What is less clear is the mechanism and role of murine double minute X (MDMX) in cervical carcinogenesis due to the inactive status of murine double minute 2 (MDM2). In the current study, XI-011 (NSC146109), a small-molecule inhibitor of MDMX, showed robust anti-proliferation activity against several cervical cancer cell lines. XI-011 promoted apoptosis of cervical cancer cells via stabilizing p53 and activating its transcription activity. Moreover, XI-011 inhibited the growth of xenograft tumor in HeLa tumor-bearing mice, as well as enhanced the cytotoxic activity of cisplatin both in vitro and in vivo. Interestingly, MDMX co-localized with E6AP and seems to be a novel binding partner of E6AP to promote p53 ubiquitination. In conclusion, this work revealed a novel mechanism of ubiquitin-dependent p53 degredation via MDMX-E6AP axis in cervical carcinogenesis, and offered the first evidence that MDMX could be a viable drug target for the treatment of cervical cancer.


Assuntos
Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Animais , Carcinogênese , Feminino , Humanos , Camundongos , Proteínas Oncogênicas Virais/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
10.
J Biol Chem ; 295(44): 15070-15082, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32855237

RESUMO

The E6 protein of both mucosal high-risk human papillomaviruses (HPVs) such as HPV-16, which have been causally associated with malignant tumors, and low-risk HPVs such as HPV-11, which cause the development of benign tumors, interacts with the cellular E3 ubiquitin ligase E6-associated protein (E6AP). This indicates that both HPV types employ E6AP to organize the cellular proteome to viral needs. However, whereas several substrate proteins of the high-risk E6-E6AP complex are known, e.g. the tumor suppressor p53, potential substrates of the low-risk E6-E6AP complex remain largely elusive. Here, we report on an affinity-based enrichment approach that enables the targeted identification of potential substrate proteins of the different E6-E6AP complexes by a combination of E3-selective ubiquitination in whole-cell extracts and high-resolution MS. The basis for the selectivity of this approach is the use of a ubiquitin variant that is efficiently used by the E6-E6AP complexes for ubiquitination but not by E6AP alone. By this approach, we identified ∼190 potential substrate proteins for low-risk HPV-11 E6 and high-risk HPV-16 E6. Moreover, subsequent validation experiments in vitro and within cells with selected substrate proteins demonstrate the potential of our approach. In conclusion, our data represent a reliable repository for potential substrates of the HPV-16 and HPV-11 E6 proteins in complex with E6AP.


Assuntos
Papillomavirus Humano 11/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Biotina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteólise , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitinação
11.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115863

RESUMO

The degradation of p53 is a hallmark of high-risk human papillomaviruses (HPVs) of the alpha genus and HPV-related carcinogenicity. The oncoprotein E6 forms a ternary complex with the E3 ubiquitin ligase E6-associated protein (E6AP) and tumor suppressor protein p53 targeting p53 for ubiquitination. The extent of p53 degradation by different E6 proteins varies greatly, even for the closely related HPV16 and HPV31. HPV16 E6 and HPV31 E6 display high sequence identity (∼67%). We report here, for the first time, the structure of HPV31 E6 bound to the LxxLL motif of E6AP. HPV16 E6 and HPV31 E6 are structurally very similar, in agreement with the high sequence conservation. Both E6 proteins bind E6AP and degrade p53. However, the binding affinities of 31 E6 to the LxxLL motif of E6AP and p53, respectively, are reduced 2-fold and 5.4-fold compared to 16 E6. The affinity of E6-E6AP-p53 ternary complex formation parallels the efficacy of the subsequent reaction, namely, degradation of p53. Therefore, closely related E6 proteins addressing the same cellular targets may still diverge in their binding efficiencies, possibly explaining their different phenotypic or pathological impacts.IMPORTANCE Variations of carcinogenicity of human papillomaviruses are related to variations of the E6 and E7 interactome. While different HPV species and genera are known to target distinct host proteins, the fine differences between E6 and E7 of closely related HPVs, supposed to target the same cellular protein pools, remain to be addressed. We compare the oncogenic E6 proteins of the closely related high-risk HPV31 and HPV16 with regard to their structure and their efficiency of ternary complex formation with their cellular targets p53 and E6AP, which results in p53 degradation. We solved the crystal structure of 31 E6 bound to the E6AP LxxLL motif. HPV16 E6 and 31 E6 structures are highly similar, but a few sequence variations lead to different protein contacts within the ternary complex and, as quantified here, an overall lower binding affinity of 31 E6 than 16 E6. These results align with the observed lower p53 degradation potential of 31 E6.


Assuntos
Papillomavirus Humano 31/metabolismo , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Papillomavirus Humano 16/química , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 31/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Especificidade da Espécie , Proteína Supressora de Tumor p53/química , Ubiquitina-Proteína Ligases/química
12.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638625

RESUMO

Glycosyltransferase OGT catalyzes the conjugation of O-linked ß-D-N-acetylglucosamine (O-GlcNAc) to Ser and Thr residues of the cellular proteins and regulates many key processes in the cell. Here, we report the identification of OGT as a ubiquitination target of HECT-type E3 ubiquitin (UB) ligase E6AP, whose overexpression in HEK293 cells would induce the degradation of OGT. We also found that the expression of E6AP in HeLa cells with the endogenous expression of the E6 protein of the human papillomavirus (HPV) would accelerate OGT degradation by the proteasome and suppress O-GlcNAc modification of OGT substrates in the cell. Overall, our study establishes a new mechanism of OGT regulation by the ubiquitin-proteasome system (UPS) that mediates the crosstalk between protein ubiquitination and O-GlcNAcylation pathways underlying diverse cellular processes.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Papillomaviridae/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação/fisiologia
13.
Mol Cell Proteomics ; 17(6): 1170-1183, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463595

RESUMO

Prostate cancer is a common cause of cancer-related death in men. E6AP (E6-Associated Protein), an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumor suppressor targets of E6AP, promyelocytic leukemia protein and p27. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approach. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were significantly altered on knockdown of E6AP. Pathway analyses supported the known phenotypic effects of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein, commonly deregulated in prostate cancer, was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight into the potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP.


Assuntos
Clusterina/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular , Clusterina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Proteômica , Transcriptoma
14.
J Neurosci ; 38(2): 363-378, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29175955

RESUMO

UBE3A gene copy number variation and the resulting overexpression of the protein E6AP is directly linked to autism spectrum disorders (ASDs). However, the underlying cellular and molecular neurobiology remains less clear. Here we report the role of ASD-related increased dosage of Ube3A/E6AP in dendritic arborization during brain development. We show that increased E6AP expression in primary cultured neurons leads to a reduction in dendritic branch number and length. The E6AP-dependent remodeling of dendritic arborization results from retraction of dendrites by thinning and fragmentation at the tips of dendrite branches, leading to shortening or removal of dendrites. This remodeling effect is mediated by the ubiquitination and degradation of XIAP (X-linked inhibitors of aptosis protein) by E6AP, which leads to activation of caspase-3 and cleavage of microtubules. In vivo, male and female Ube3A 2X ASD mice show decreased XIAP levels, increased caspase-3 activation, and elevated levels of tubulin cleavage. Consistently, dendritic branching and spine density are reduced in cortical neurons of Ube3A 2X ASD mice. In revealing an important role for Ube3A/E6AP in ASD-related developmental alteration in dendritic arborization and synapse formation, our findings provide new insights into the pathogenesis of Ube3A/E6AP-dependent ASD.SIGNIFICANCE STATEMENT Copy number variation of the UBE3A gene and aberrant overexpression of the gene product E6AP protein is a common cause of autism spectrum disorders (ASDs). During brain development, dendritic growth and remodeling play crucial roles in neuronal connectivity and information integration. We found that in primary neurons and in Ube3A transgenic autism mouse brain, overexpression of E6AP leads to significant loss of dendritic arborization. This effect is mediated by the ubiquitination of XIAP (X-linked inhibitor of aptosis protein) by E6AP, subsequent activation of caspases, and the eventual cleavage of microtubules, leading to local degeneration and retraction at the tips of dendritic branches. These findings demonstrate dysregulation in neuronal structural stability as a major cellular neuropathology in ASD.


Assuntos
Transtorno do Espectro Autista , Caspase 3/metabolismo , Plasticidade Neuronal/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Variações do Número de Cópias de DNA , Feminino , Dosagem de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Microtúbulos/patologia , Ubiquitina-Proteína Ligases/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
15.
J Biol Chem ; 293(47): 18387-18399, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30257870

RESUMO

Deregulation of the HECT ubiquitin ligase UBE3A/E6AP has been implicated in Angelman syndrome as well as autism spectrum disorders. We and others have previously identified the 26S proteasome as one of the major UBE3A-interacting protein complexes. Here, we characterize the interaction of UBE3A and the proteasomal subunit PSMD4 (Rpn10/S5a). We map the interaction to the highly conserved Zn2+-binding N-terminal (AZUL) domain of UBE3A, the integrity of which is crucial for binding to PSMD4. Interestingly, two Angelman syndrome point mutations that affect the AZUL domain show an impaired ability to bind PSMD4. Although not affecting the ubiquitin ligase or the estrogen receptor α-mediated transcriptional regulation activities, these AZUL domain mutations prevent UBE3A from stimulating the Wnt/ß-catenin signaling pathway. Taken together, our data indicate that impaired binding to the 26S proteasome and consequential deregulation of Wnt/ß-catenin signaling might contribute to the functional defect of these mutants in Angelman syndrome.


Assuntos
Síndrome de Angelman/enzimologia , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Zinco/metabolismo , Síndrome de Angelman/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Proteínas de Ligação a RNA , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt
16.
J Cell Physiol ; 234(11): 20900-20914, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31004355

RESUMO

Major neurodegenerative disorders are characterized by the formation of misfolded proteins aggregates inside or outside the neuronal cells. Previous studies suggest that aberrant proteins aggregates play a critical role in protein homeostasis imbalance and failure of protein quality control (PQC) mechanism, leading to disease conditions. However, we still do not understand the precise mechanisms of PQC failure and cellular dysfunctions associated with neurodegenerative diseases caused by the accumulation of protein aggregates. Here, we show that Myricetin, a flavonoid, can eliminate various abnormal proteins from the cellular environment via modulating endogenous levels of Hsp70 chaperone and quality control (QC)-E3 ubiquitin ligase E6-AP. We have observed that Myricetin treatment suppresses the aggregation of different aberrant proteins. Myricetin also enhances the elimination of various toxic neurodegenerative diseases associated proteins from the cells, which could be reversed by the addition of putative proteasome inhibitor (MG132). Remarkably, Myricetin can also stabilize E6-AP and reduce the misfolded proteins inclusions, which further alleviates cytotoxicity. Taken together these findings suggested that new mechanistic and therapeutic insights based on small molecules mediated regulation of disturbed protein quality control mechanism, which may result in the maintenance of the state of proteostasis.


Assuntos
Flavonoides/farmacologia , Degeneração Neural/metabolismo , Polifenóis/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteólise , Regulação para Cima/efeitos dos fármacos , Células A549 , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Luciferases/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Degeneração Neural/patologia , Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Solubilidade , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo
17.
J Gen Virol ; 100(12): 1674-1679, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31609195

RESUMO

The high-risk Human Papillomavirus (HPV) E6 oncoprotein is known to contribute to human malignancy by targeting several of its cellular substrates through the ubiquitin-mediated degradation pathway. Previous studies have revealed that E6 interacts with the E6AP ubiquitin-protein ligase and directs its ubiquitylation activity toward several specific cellular proteins, one of the most important of which is p53. However, the role of E6AP in the degradation of many other E6 substrates is still ambiguous because loss of E6AP also induces a loss of E6 expression. To examine this further, we used CRISPR-edited E6AP knockout cells to perform E6 degradation assays in the presence of a catalytically inactive mutant form of E6AP, thus ensuring the stabilization of E6 but with the ligase itself being functionally inactive. Using this system, we found that E6 can mediate the degradation of several PDZ domain-containing proteins independently of E6AP ubiquitin ligase activity. This study thus opens up ways to investigate other possible components of the cellular ubiquitin proteasome pathway that E6 might utilize to target these substrates.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/fisiologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Ubiquitina/metabolismo
18.
IUBMB Life ; 71(12): 1896-1905, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31329371

RESUMO

E6AP (E6 associated protein) is a HECT domain containing protein having dual E3 ligase and ERα coactivation activity in breast cancer cells. Although E6AP is known to possess antitumorigenic activity, the underlying molecular mechanism is poorly understood. In the present study, we applied nano-LC based proteomics approach to identify E6AP-interacting proteins where we performed GST-pull down using GST-E6AP from whole cell extracts of MCF7 cells, resolved the differentially interacting proteins on 1D-SDS-PAGE, excised the gel bands that were trypsin digested followed by fractionation and spotting on MALDI-TOF/TOF plate through Nano-LC MALDI spotter. Subsequently, fractionated and spotted peptides were identified using MALDI-TOF/TOF. We identified several E6AP interacting proteins including previously reported such as HSP70 and new ones such as Enolase-1. We further confirmed that E6AP and Enolase1 interacted and colocalized more in the cytoplasmic periphery in breast cancer cells and further demonstrated that E6AP also targeted ENO1 for ubiquitin-mediated degradation in these cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteômica/métodos , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Feminino , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
19.
J Neurosci ; 37(31): 7347-7361, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28663201

RESUMO

Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. It is currently unclear how the consequences of this genetic insult unfold to impair neurodevelopment. We reasoned that by elucidating the basis of microcephaly in AS, a highly penetrant syndromic feature with early postnatal onset, we would gain new insights into the mechanisms by which maternal UBE3A loss derails neurotypical brain growth and function. Detailed anatomical analysis of both male and female maternal Ube3a-null mice reveals that microcephaly in the AS mouse model is primarily driven by deficits in the growth of white matter tracts, which by adulthood are characterized by densely packed axons of disproportionately small caliber. Our results implicate impaired axon growth in the pathogenesis of AS and identify noninvasive structural neuroimaging as a potentially valuable tool for gauging therapeutic efficacy in the disorder.SIGNIFICANCE STATEMENT People who maternally inherit a deletion or nonfunctional copy of the UBE3A gene develop Angelman syndrome (AS), a severe neurodevelopmental disorder. To better understand how loss of maternal UBE3A function derails brain development, we analyzed brain structure in a maternal Ube3a knock-out mouse model of AS. We report that the volume of white matter (WM) is disproportionately reduced in AS mice, indicating that deficits in WM development are a major factor underlying impaired brain growth and microcephaly in the disorder. Notably, we find that axons within the WM pathways of AS model mice are abnormally small in caliber. This defect is associated with slowed nerve conduction, which could contribute to behavioral deficits in AS, including motor dysfunction.


Assuntos
Síndrome de Angelman/patologia , Axônios/patologia , Microcefalia/patologia , Fibras Nervosas/patologia , Ubiquitina-Proteína Ligases/genética , Substância Branca/patologia , Síndrome de Angelman/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcefalia/fisiopatologia , Substância Branca/fisiopatologia
20.
J Biol Chem ; 292(44): 18006-18023, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28924046

RESUMO

To understand the mechanism for assembly of Lys48-linked polyubiquitin degradation signals, we previously demonstrated that the E6AP/UBE3A ligase harbors two functionally distinct E2∼ubiquitin-binding sites: a high-affinity Site 1 required for E6AP Cys820∼ubiquitin thioester formation and a canonical Site 2 responsible for subsequent chain elongation. Ordered binding to Sites 1 and 2 is here revealed by observation of UbcH7∼ubiquitin-dependent substrate inhibition of chain formation at micromolar concentrations. To understand substrate inhibition, we exploited the PatchDock algorithm to model in silico UbcH7∼ubiquitin bound to Site 1, validated by chain assembly kinetics of selected point mutants. The predicted structure buries an extensive solvent-excluded surface bringing the UbcH7∼ubiquitin thioester bond within 6 Šof the Cys820 nucleophile. Modeling onto the active E6AP trimer suggests that substrate inhibition arises from steric hindrance between Sites 1 and 2 of adjacent subunits. Confirmation that Sites 1 and 2 function in trans was demonstrated by examining the effect of E6APC820A on wild-type activity and single-turnover pulse-chase kinetics. A cyclic proximal indexation model proposes that Sites 1 and 2 function in tandem to assemble thioester-linked polyubiquitin chains from the proximal end attached to Cys820 before stochastic en bloc transfer to the target protein. Non-reducing SDS-PAGE confirms assembly of the predicted Cys820-linked 125I-polyubiquitin thioester intermediate. Other studies suggest that Glu550 serves as a general base to generate the Cys820 thiolate within the low dielectric binding interface and Arg506 functions to orient Glu550 and to stabilize the incipient anionic transition state during thioester exchange.


Assuntos
Sistemas Inteligentes , Modelos Moleculares , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Bovinos , Biologia Computacional , Cisteína/química , Cisteína/metabolismo , Humanos , Radioisótopos do Iodo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa