Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cancer Sci ; 115(6): 1948-1963, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613239

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis. Neoadjuvant chemotherapy is an effective PDAC treatment option, but chemotherapy causes unfavorable side effects. Glucocorticoids (e.g., dexamethasone [DEX]) are administered to reduce side effects of chemotherapy for solid tumors, including pancreatic cancer. Glucocorticoids have both beneficial and detrimental effects, however. We investigated the functional changes and gene-expression profile alterations induced by DEX in PDAC cells. PDAC cells were treated with DEX, and the cell proliferation, migration, invasion, and chemosensitivity to gemcitabine (GEM) were evaluated. The results demonstrated decreased cell proliferative capacity, increased cell migration and invasion, and decreased sensitivity to GEM. A comprehensive genetic analysis revealed marked increases in ECM1 and KRT6A in DEX-treated PDAC cells. We evaluated the effects of ECM1 and KRT6A expression by using PDAC cells transfected with those genes. Neither ECM1 nor KRT6A changed the cells' proliferation, but each enhanced cell migration and invasion. ECM1 decreased sensitivity to GEM. We also assessed the clinicopathological significance of the expressions of ECM1 and KRT6A in 130 cases of PDAC. An immunohistochemical analysis showed that KRT6A expression dominated the poorly differentiated areas. High expressions of these two proteins in PDAC were associated with a poorer prognosis. Our results thus demonstrated that DEX treatment changed PDAC cells' functions, resulting in decreased cell proliferation, increased cell migration and invasion, and decreased sensitivity to GEM. The molecular mechanisms of these changes involve ECM1 and KRT6A, whose expressions are induced by DEX.


Assuntos
Carcinoma Ductal Pancreático , Dexametasona , Resistencia a Medicamentos Antineoplásicos , Proteínas da Matriz Extracelular , Gencitabina , Queratina-6 , Neoplasias Pancreáticas , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Dexametasona/farmacologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Queratina-6/genética , Queratina-6/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Proteínas da Matriz Extracelular/metabolismo
2.
Am J Med Genet A ; : e63782, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842389

RESUMO

Lipoid proteinosis (LP) is an inherited disorder characterized by the accumulation of hyaline-like material in the skin, oral cavity, and larynx. The primary symptoms include hoarseness, restricted tongue movements, and various skin lesions. LP is caused by biallelic pathogenic variants in the ECM1 gene. We studied 20 patients from nine different families with LP, 19 of whom are from Sanliurfa in the southeastern region of Turkiye. Overall, the clinical features of the patient cohort were consistent with those mentioned in the literature, except for one exhibited an atrophoderma vermiculatum-like lesion, which is atypical for LP. The clinical exome sequencing analysis revealed three different homozygous variants in the ECM1 gene (NM_004425). While c.1246C>T p.(Arg416*) on Exon 8 and c.806G>A p.(Cys269Tyr) on Exon 7 were detected in 1 patient each, an intragenic deletion of 1163 base-pairs including Exons 9 and 10 (c.1304 + 33_*300del) was identified in 18 patients from 7 unrelated families. The haplotype analysis of the deletion variant indicated a founder effect in the families from the Sanliurfa province of Turkiye. Based on all this information, copy number variation analysis is recommended for patients with LP. In addition to this rare observation, this study represents the largest examination of the molecular spectrum of LP patients in Turkiye, alongside the clinical spectrum.

3.
Pediatr Dermatol ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923547

RESUMO

An 8-year-old girl presented with white papules on the eyelid margins due to lipoid proteinosis. Microwave therapy resulted in significant reduction of the lesions. The case highlights a safe and effective treatment for eyelid lesions associated with lipoid proteinosis. In addition, we report two novel heterozygous variants in the extracellular matrix protein 1 (ECM1) gene.

4.
Methods ; 205: 73-82, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764247

RESUMO

Post-transcriptional modifications play an important role in several processes, including translation, splicing, and RNA degradation in eukaryotic cells. To investigate the function of specific modifications it is of high interest to develop tools for sequence-specific RNA-targeting. This work focuses on two abundant modifications of eukaryotic mRNA, namely methylation of the guanine-N7 position of the 5'-cap and internal N6-methyladenosine (m6A). We describe the sequence-specific targeting of model RNA transcripts via RNA-binding proteins, such as nuclease-deficient RNA-targeting Cas9 (RCas9) and the Pumilio homology domain (PumHD) fused to two different effector enzymes, the dioxygenase FTO and the guanine-N7 methyltransferase Ecm1. With this tool, we were able to install and remove the methylation at the respective positions with high specificity.


Assuntos
Adenosina , RNA , Adenosina/metabolismo , Guanina , Metilação , Metiltransferases/química , RNA/genética , RNA/metabolismo
5.
Pediatr Dermatol ; 40(1): 113-119, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36670503

RESUMO

BACKGROUND/OBJECTIVES: Lipoid proteinosis (LP) is a rare autosomal recessive multisystem disorder that is caused by loss-of-function pathogenic variants in the extracellular matrix protein-1 (ECM1) gene. The typical clinical manifestations of LP include hoarseness of voice, beaded papules on the eyelids, infiltration and scarring of the skin and mucosa, as well as neuropsychological abnormalities. Currently, more than 70 pathogenic variants have been reported, including nonsense, missense, splice site, deletion and insertion pathogenic variants, and more than half of them occurred in exons 6 and 7. METHODS: Clinical evaluation and Sanger sequencing were performed on eight patients from four unrelated Arab families. RESULTS: We identified two novel ECM1 variants, one nonsense pathogenic variant in exon 6 (c.579G>A, p.Trp193*) and a deletion of three nucleotides (c.1390_1392del, p.Glu464del) in exon 9, and two previously reported frameshift variants; c.692_693delAG, in exon 6 and c.11dupC in exon 1. CONCLUSIONS: Although all patients had characteristic manifestations of lipoid proteinosis, we observed intrafamilial phenotypic variability. Our data expand the pathogenic variant spectrum of ECM1 and also supports the fact that exon 6 is one of the most common hot spots of pathological variants in ECM1.


Assuntos
Árabes , Proteinose Lipoide de Urbach e Wiethe , Humanos , Árabes/genética , Proteinose Lipoide de Urbach e Wiethe/genética , Proteinose Lipoide de Urbach e Wiethe/patologia , Pele/patologia , Éxons , Linhagem , Proteínas da Matriz Extracelular/genética
6.
Proc Natl Acad Sci U S A ; 117(6): 3083-3092, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980528

RESUMO

Inflammatory bowel disease (IBD) comprises chronic relapsing disorders of the gastrointestinal tract characterized pathologically by intestinal inflammation and epithelial injury. Here, we uncover a function of extracellular matrix protein 1 (ECM1) in promoting the pathogenesis of human and mouse IBD. ECM1 was highly expressed in macrophages, particularly tissue-infiltrated macrophages under inflammatory conditions, and ECM1 expression was significantly induced during IBD progression. The macrophage-specific knockout of ECM1 resulted in increased arginase 1 (ARG1) expression and impaired polarization into the M1 macrophage phenotype after lipopolysaccharide (LPS) treatment. A mechanistic study showed that ECM1 can regulate M1 macrophage polarization through the granulocyte-macrophage colony-stimulating factor/STAT5 signaling pathway. Pathological changes in mice with dextran sodium sulfate-induced IBD were alleviated by the specific knockout of the ECM1 gene in macrophages. Taken together, our findings show that ECM1 has an important function in promoting M1 macrophage polarization, which is critical for controlling inflammation and tissue repair in the intestine.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Animais , Arginase/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Doenças Inflamatórias Intestinais/patologia , Intestinos/patologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
7.
Pak J Med Sci ; 39(4): 1212-1215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492299

RESUMO

Lipoid proteinosis is a rare multisystem genodermatosis inherited as autosomal recessive trait. We report a case of lipoid proteinosis in a 10-year-old boy born to first-degree consanguineous parents presented with marked hoarseness of voice, accelerated photoaging appearance, enlarged and erythematous tongue with restricted movement and widespread dermatoses. Biopsy of oral mucosa revealed Periodic acid-Schiff (PAS)-positive amorphous eosinophilic hyaline deposits. Mutational analysis revealed a homozygous nonsense mutation with C to T substitution at nucleotide position 1246(c.1246C>T) in exon-8 of the extracellular matrix protein 1 gene leading to a stop codon. Both the parents were unaffected heterozygous carriers. To our knowledge, this is the first case report of lipoid proteinosis with evidence of a novel nonsense genetic mutation from Bangladesh.

8.
Adv Exp Med Biol ; 1187: 53-79, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983573

RESUMO

HER2 gene amplification occurs in many breast cancer patients and is associated with poor clinical prognosis. Trastuzumab is a therapeutic monoclonal antibody binding to HER2 and inhibits growth of HER2-positive breast cancer cells and used as a principal treatment for HER2-positive breast cancer. Unfortunately, some HER2-positive breast cancers eventually relapse after trastuzumab treatment. To investigate the molecular mechanism of trastuzumab resistance, we generated trastuzumab-resistant cells using a mouse model and found ECM1 protein is increased in trastuzumab-resistant cells. ECM1 was shown to increase EGFR signaling via upregulated matrix metalloproteinase 9/galectin-3/mucin pathway. To further find the novel mediators of HER2-driven signaling pathways in breast cancer, we investigated the upregulated proteins in HER2-overexpressing breast cancer cells using a proteomics approach and found that KRT19 is strongly upregulated in HER2-positive breast cancer cells and it activates HER2 signaling by binding to HER2 and stabilizes the receptor on the cell membrane. Moreover, we found that treatment of KRT19 antibody resulted in reduced cell viability of trastuzumab-resistant HER2-positive breast cancer cells as well as trastuzumab-sensitive cancer cells both in vitro and in vivo.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas da Matriz Extracelular/uso terapêutico , Humanos , Recidiva Local de Neoplasia , Receptor ErbB-2/genética , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
9.
Proc Natl Acad Sci U S A ; 115(34): 8621-8626, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30087185

RESUMO

T-follicular helper (TFH) cells are a subset of CD4+ helper T cells that help germinal center (GC) B-cell differentiation and high-affinity antibody production during germinal center reactions. Whether important extracellular molecules control TFH differentiation is not fully understood. Here, we demonstrate that a secreted protein extracellular matrix protein 1 (ECM1) is critical for TFH differentiation and antibody response. A lack of ECM1 inhibited TFH cell development and impaired GC B-cell reactions and antigen-specific antibody production in an antigen-immunized mouse model. ECM1 was induced by IL-6 and IL-21 in TFH cells, promoting TFH differentiation by down-regulating the level of STAT5 phosphorylation and up-regulating Bcl6 expression. Furthermore, injection of recombinant ECM1 protein into mice infected with PR8 influenza virus promoted protective immune responses effectively, by enhancing TFH differentiation and neutralizing antibody production. Collectively, our data identify ECM1 as a soluble protein to promote TFH cell differentiation and antibody production.


Assuntos
Formação de Anticorpos , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Proteínas da Matriz Extracelular/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/citologia , Diferenciação Celular/genética , Proteínas da Matriz Extracelular/genética , Vírus da Influenza A/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/genética , Interleucinas/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Auxiliares-Indutores/citologia
11.
FASEB J ; 30(8): 2741-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27075243

RESUMO

Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor.


Assuntos
Condrogênese/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteogênese/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Granulinas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Transgênicos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Progranulinas
12.
Protein Expr Purif ; 121: 103-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26826312

RESUMO

Human extracellular matrix protein-1 (hECM1), a secreted glycoprotein, is widely expressed in different tissues and organs. ECM1 has been implicated in multiple biological functions, which are potentially mediated by the interaction of different ECM1 domains with its ligands. However, the exact biological functions of ECM1 have not been elucidated yet, and the functional study of ECM1 has been partially hampered by the lack of sensitive and specific antibodies, especially those targeting different ECM1 domains. In this study, six strains of monoclonal antibody (MAb) against hECM1 were generated using purified, prokaryotically-expressed hECM1 as an immunogen. The MAbs were shown to be highly sensitive and specific, and suitable for western blot, immunoprecipitation assays and immunohistochemistry. Furthermore, the particular ECM1 domains recognized by different MAbs were identified. Lastly, the MAbs were found to have neutralizing activities, inhibiting the proliferation, migration and metastasis of MDA-MB-231 cells. In conclusion, the domain-specific anti-ECM1 MAbs produced in this study should provide a useful tool for investigating ECM1's biological functions, and cellular pathways in which it is involved.


Assuntos
Anticorpos Monoclonais/biossíntese , Especificidade de Anticorpos/imunologia , Neoplasias da Mama/terapia , Proteínas da Matriz Extracelular/isolamento & purificação , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Feminino , Humanos , Imuno-Histoquímica , Metástase Neoplásica , Domínios Proteicos/genética , Domínios Proteicos/imunologia
13.
Angew Chem Int Ed Engl ; 55(36): 10899-903, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27511141

RESUMO

The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox.


Assuntos
Capuzes de RNA/química , RNA Mensageiro/química , Química Click , Encephalitozoon cuniculi/enzimologia , Eucariotos/genética , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Metiltransferases/metabolismo , Microscopia Confocal , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , S-Adenosilmetionina/análogos & derivados
15.
Reprod Biol ; 24(1): 100826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37992590

RESUMO

Extracellular matrix protein 1 (ECM1) is a glycoprotein that may be a key player in tumorigenesis and tumor progression. However, knowledge regarding the role of ECM1 in endometriosis (EM) is still lacking. Microarray analyses were performed to compare the mRNA expression patterns between paired EU tissues and ectopic endometrial (EC) tissues (n = 4) from EM patients. ECM1 expression was significantly increased in the eutopic endometrial (EU) tissues than paired EC tissues of endometriotic patients and normal endometrial (NE) tissues of controls without EM. Blocking ECM1 with siRNA attenuated the migration and invasion of hEM15A cells and modified the distribution of the F-actin cytoskeleton. We conducted microarray analyses and bioinformatics analyses to investigate the differentially expressed genes (DEGs) and related pathways regulated by ECM1. A total of 161 DEGs between the siECM1 and the negative control (siNC) treatments were identified, consisting of 79 downregulated genes and 82 upregulated genes. Enriched DEGs were associated with 9 gene ontology (GO) terms. Moreover, a protein-protein interaction (PPI) network was constructed for the hub genes and modules. Radixin (RDX) was the second most downregulated gene in the siECM1 group compared with the siNC group. ECM1 knockdown significantly decreased the expression of RDX, RhoC, ROCK1, N-cadherin and ß-catenin but not ROCK2. ECM1 showed high tissue-specific expression in EU tissues from EM patients, and may contribute to the migration, invasion and reorganization of the F-actin cytoskeleton in eutopic endometrial stromal cells via the RhoC/ROCK1 signaling pathway in EM.


Assuntos
Endometriose , Silanos , Feminino , Humanos , Movimento Celular/genética , Endometriose/metabolismo , Células Cultivadas , Endométrio/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteínas da Matriz Extracelular/metabolismo
16.
Acta Histochem ; 126(1): 152133, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38266317

RESUMO

Osteoporosis (OP) is a common disease among older adults. The promotion of osteoblast differentiation plays a crucial role in alleviating OP symptoms. Extracellular matrix protein 1 (ECM1) has been reported to be closely associated with osteogenic differentiation. In this study, we constructed U2OS cell lines with ECM1 knockdown and ECM1a overexpression based on knockdown, and identified the target miRNA (miR-1260b) by sequencing. Overexpression of miR-1260b promoted the osteogenic differentiation of U2OS and MG63 cells, as demonstrated by increased alkaline phosphatase (ALP) activity, matrix mineralization, and Runt-Related Transcription Factor 2 (RUNX2), Osteopontin (OPN), Collagen I (COL1A1), and Osteocalcin (OCN) protein expressions, whereas low expression of miR-1260b had the opposite effect. In addition, miR-1260b expression was decreased in OP patients than in non-OP patients. Next, we predicted the target gene of miRNA through TargetScan and miRDB and found that miR-1260b negatively regulated GDP dissociation inhibitor 1 (GDI1) by directly binding to its 3'-untranslated region. Subsequent experiments revealed that GDI1 overexpression decreased ALP activity and calcium deposit, reduced RUNX2, OPN, COL1A1, and OCN expression levels, and reversed the effects of miR-1260b on osteogenic differentiation. In conclusion, ECM1-related miR-1260b promotes osteogenic differentiation by targeting GDI1 in U2OS and MG63 cells. Thus, this study has significant implication for osteoporosis treatment.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina , MicroRNAs , Osteoporose , Humanos , Idoso , Osteogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células Cultivadas , MicroRNAs/metabolismo , Diferenciação Celular/genética , Osteoporose/metabolismo , Proteínas da Matriz Extracelular
17.
Clin Cosmet Investig Dermatol ; 17: 885-889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651074

RESUMO

Lipoid proteinosis (LP) is an uncommon, autosomal recessive genetic disorder. Multigene panel testing was conducted to confirm the diagnosis of a sporadic family with suspected LP. In the proband, we identified two mutations of ECMI and provided genetic evidence for informed genetic counselling.

18.
Front Oncol ; 14: 1408492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040439

RESUMO

Objective: Although urinary extracellular vesicles (uEVs) have been extensively studied in various cancers, their involvement in breast cancer (BC) remains largely unexplored. The non-invasive nature of urine as a biofluid and its abundant protein content offer considerable potential for the early detection of breast cancer. Methods: This study analyzed the proteomic profiles of uEVs from BC patients and healthy controls (HC). The dysregulation of ECM1 and ANXA1 in the uEVs was validated in a larger cohort of 128 BC patients, 25 HC and 25 benign breast nodules (BBN) by chemiluminescence assay (CLIA). The expression levels of ECM1 and ANXA1 were also confirmed in the uEVs of MMTV-PyMT transgenic breast cancer mouse models. Results: LC-MS/MS analysis identified 571 dysregulated proteins in the uEVs of BC patients. ECM1 and ANXA1 were selected for validation in 128 BC patients, 25 HC and 25 BBN using CLIA, as their fold change showed a significant difference of more than 10 with p-value<0.05. Protein levels of ECM1 and ANXA1 in uEVs were significantly increased in BC patients. In addition, the protein levels of ECM1 and ANXA1 in the uEVs of MMTV-PyMT transgenic mice were observed to increase progressively with the progression of breast cancer. Conclusion: We developed a simple and purification-free assay platform to isolate uEVs and quantitatively detect ECM1 and ANXA1 in uEVs by WGA-coupled magnetic beads and CLIA. Our results suggest that ECM1 and ANXA1 in uEVs could potentially serve as diagnostic biomarkers for breast cancer.

19.
Redox Biol ; 69: 103029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184998

RESUMO

Hepatocyte ferroptosis promotes the pathogenesis and progression of liver fibrosis. Salvianolic acid B (Sal B) exerts antifibrotic effects. However, the pharmacological mechanism and target has not yet been fully elucidated. In this study, liver fibrosis was induced by CCl4 in wild-type mice and hepatocyte-specific extracellular matrix protein 1 (Ecm1)-deficient mice, which were separately treated with Sal B, ferrostatin-1, sorafenib or cilengitide. Erastin- or CCl4-induced hepatocyte ferroptosis models with or without Ecm1 gene knockdown were evaluated in vitro. Subsequently, the interaction between Ecm1 and xCT and the binding kinetics of Sal B and Ecm1 were determined. We found that Sal B significantly attenuated liver fibrosis in CCl4-induced mice. Ecm1 deletion in hepatocytes abolished the antifibrotic effect of Sal B. Mechanistically, Sal B protected against hepatocyte ferroptosis by upregulating Ecm1. Further research revealed that Ecm1 as a direct target for treating liver fibrosis with Sal B. Interestingly, Ecm1 interacted with xCT to regulate hepatocyte ferroptosis. Hepatocyte ferroptosis in vitro was significantly attenuated by Sal B treatment, which was abrogated after knockdown of Ecm1 in LO2 cells. Therefore, Sal B alleviates liver fibrosis in mice by targeting up-regulation of Ecm1 and inhibiting hepatocyte ferroptosis. The interaction between Ecm1 and xCT regulates hepatocyte ferroptosis.


Assuntos
Benzofuranos , Depsídeos , Ferroptose , Animais , Camundongos , Transdução de Sinais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Hepatócitos/metabolismo
20.
Clin Epigenetics ; 16(1): 6, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172938

RESUMO

BACKGROUND: Studies have shown that tet methylcytosine dioxygenase 2 (TET2) is highly expressed in diabetic retinopathy (DR), which reduces the DNA methylation of downstream gene promoters and activates the transcription. Abnormally expressed TET2 and downstream genes in a high-glucose environment are associated with retinal capillary leakage and neovascularization. Here, we investigated the downstream genes of TET2 and its potential association with neovascularization in proliferative diabetic retinopathy (PDR). METHODS: GSE60436, GSE57362, and GSE158333 datasets were analyzed to identify TET2-related hypomethylated and upregulated genes in PDR. Gene expression and promoter methylation of these genes under high glucose treatment were verified. Moreover, TET2 knockdown was used to assess its impact on tube formation and migration in human retinal microvascular endothelial cells (HRMECs), as well as its influence on downstream genes. RESULTS: Our analysis identified three key genes (PARVB, PTPRE, ECM1) that were closely associated with TET2 regulation. High glucose-treated HRMECs exhibited increased expression of TET2 and ECM1 while decreasing the promoter methylation level of ECM1. Subsequently, TET2 knockdown led to decreased migration ability and tube formation function of HRMECs. We further found a decreased expression of PARVB, PTPRE, and ECM1, accompanied by an increase in the promoter methylation of ECM1. CONCLUSIONS: Our findings indicate the involvement of dysregulated TET2 expression in neovascularization by regulating the promoter methylation and transcription of downstream genes (notably ECM1), eventually leading to PDR. The TET2-induced hypomethylation of downstream gene promoters represents a potential therapeutic target and offers a novel perspective on the mechanism underlying neovascularization in PDR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Dioxigenases , Humanos , Retinopatia Diabética/genética , Metilação de DNA , Células Endoteliais/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Diabetes Mellitus/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa