RESUMO
Lung cancer (LC), related with the enhanced expression of epidermal growth factor receptor (EGFR) and sialic acid binding receptors (glycan) brought about the development of EGFR and glycan receptor specific anticancer therapeutics. The current study assessed the formulation, physiochemical characterization, in vitro and in vivo effects of sialic acid (SA) and cetuximab (Cxmab) decorated chitosan nanoparticles (CSN-NPs) loaded with gemcitabine (GMC) targeted to glycan and EGFR over-expressing non-small-cell lung-cancer (NSCLC) A-549 cells. Chitosan (CSN) was conjugated with sialic acid via EDC/NHS chemistry followed by gemcitabine loaded sialic acid conjugated chitosan nanoparticles (GMC-CSN-SA-NPs) were prepared by ionic gelation method decorated with Cxmab by electrostatic interaction. In vitro cytotoxicity of NPs quantified using cell based MTT, DAPI and Annexing-V/PI apoptosis assays showed superior antiproliferative activity of targeted nanoformulations (GMC-CSN-SA-Cxmab-NPs â« GMC-CSN-SA-NPs, GMC-CSN-Cxmab-NPs) over non-targeted nanoformulation (GMC-CSN-NPs) against A-549 cells. In vivopharmacokinetic study showed superior bioavailability and in vivo therapeutic efficacy investigation exhibited strongest anticancer activity of glycan and EGFR targeted NPs (GMC-CSN-SA-Cxmab-NPs). GMC-CSN-SA-Cxmab-NPs demonstrated enhanced cellular internalization and better therapeutic potential, by specifically targeting glycan and EGFR on NSCLC A-549 cells and B[a]P induced lung cancer mice model, hence it might be a good substitute for non-targeted, conventional chemotherapy.