Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38961814

RESUMO

Acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) represents a primary cause of treatment failure in non-small cell lung cancer (NSCLC) patients. Chemokine (C-C motif) ligand 2 (CCL2) is recently found to play a pivotal role in determining anti-cancer treatment response. However, the role and mechanism of CCL2 in the development of EGFR-TKIs resistance have not been fully elucidated. In the present study, we focus on the function of CCL2 in the development of acquired resistance to EGFR-TKIs in NSCLC cells. Our results show that CCL2 is aberrantly upregulated in EGFR-TKIs-resistant NSCLC cells and that CCL2 overexpression significantly diminishes sensitivity to EGFR-TKIs. Conversely, CCL2 suppression by CCL2 synthesis inhibitor, bindarit, or CCL2 knockdown can reverse this resistance. CCL2 upregulation can also lead to enhanced migration and increased expressions of epithelial-mesenchymal transition (EMT) markers in EGFR-TKI-resistant NSCLC cells, which could also be rescued by CCL2 knockdown or inhibition. Furthermore, our findings suggest that CCL2-dependent EGFR-TKIs resistance involves the AKT-EMT signaling pathway; inhibition of this pathway effectively attenuates CCL2-induced cell migration and EMT marker expression. In summary, CCL2 promotes the development of acquired EGFR-TKIs resistance and EMT while activating AKT signaling in NSCLC. These insights suggest a promising avenue for the development of CCL2-targeted therapies that prevent EGFR-TKIs resistance in NSCLC.

2.
Cancer Immunol Immunother ; 72(12): 4355-4365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907645

RESUMO

BACKGROUND: Whether patients with advanced non-small cell lung cancer (NSCLC) should choose an immune-combination therapy regimen after EGFR-tyrosine kinase inhibitors (EGFR-TKIs) resistance is currently unclear. METHODS: We evaluated 118 NSCLC patients treated by immune checkpoint inhibitors (ICIs) + chemotherapy (I + C), ICIs + chemotherapy + antiangiogenic therapy (I + C + A), chemotherapy + antiangiogenic therapy (C + A) after inefficacy of EGFR-TKIs. We assessed the objective remission rate (ORR), disease control rate (DCR), and progression-free survival (PFS) of these treatments. RESULTS: The ORR was 26.1% vs 38.2% vs 16.3% in the three groups (P = 0.093). The divergence in DCR was also statistically significant (65.2% vs 85.3% vs 74.4%, P = 0.209). The median PFS was no statistically significant difference in PFS (3.09 vs 6.31 vs 5.91 months, P = 0.809), but the Kaplan-Meier survival curve of 12-month-PFS indicated an apparent survival advantage in the I + C + A group (P = 0.001). In addition, the I + C/I + C + A group showed higher median PFS than the C + A group in patients with brain metastases (median PFS, 6.44 vs 4.21 months, P = 0.022). The divergence in ORR of patients in the brain group was also statistically significant (P = 0.045). The I + C + A group showed superior efficacy in patients with liver metastases (median PFS, 0.95 vs 6.44 vs 3.48 months, P < 0.0001). The Cox proportional hazard modeling analysis suggested that the age, brain metastases, and liver metastases were all connected with the prognosis. CONCLUSIONS: This study suggests that advanced NSCLC patients after resistance to EGFR-TKIs may achieve better outcomes from triple therapy. Patients with brain metastases favor ICIs-related combination therapies and patients with liver metastases prefer I + C + A therapy.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Encefálicas/secundário , Receptores ErbB/genética , Neoplasias Hepáticas/tratamento farmacológico , Mutação
3.
Pharmacol Res ; 188: 106668, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681369

RESUMO

Favorable clinical evidence suggests that the next trend in new treatments for advanced non-small cell lung cancer (NSCLC) will be combination therapies. However, inevitable epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance greatly limits the clinical efficacy of patients carrying EGFR-activating mutants. In this study, we found a patient with clinical osimertinib resistance who regained a positive response after osimertinib plus anlotinib treatment. Two osimertinib-resistant cell lines were constructed, and AXL conferred resistance to osimertinib in NSCLC cell lines. The combined effects of anlotinib and osimertinib restored sensitivity to osimertinib in two osimertinib-resistant NSCLC cell lines and in xenografts. Moreover, anlotinib inhibits the phosphorylation of AXL in both resistant cell lines. Mechanistically, we confirmed that MYC binds to the promoter of AXL to promote its transcription in NSCLC cells, and we demonstrated that anlotinib combined with osimertinib treatment enhances the anti-tumor effect by inactivating the c-MET/MYC/AXL axis to reverse osimertinib resistance in NSCLC. In conclusion, our results provide strong support that this combination therapy may be effective in enhancing the efficacy of treatments in patients with advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Receptores ErbB/genética , Resistencia a Medicamentos Antineoplásicos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação
4.
Mol Cancer ; 21(1): 77, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303882

RESUMO

BACKGROUND: The use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) brings remarkable benefits for the survival of patients with advanced NSCLC harboring EGFR mutations. Unfortunately, acquired resistance seems to be inevitable and limits the application of EGFR-TKIs in clinical practice. This study reported a common molecular mechanism sustaining resistance and potential treatment options to overcome EGFR-TKIs resistance. METHODS: EGFR-TKIs resistant NSCLC cells were established and confirmed by MTT assay. Cholesterol content was detected and the promotional function of cholesterol on NSCLC growth was determined in vivo. Then, we identified ERRα expression as the downstream factor of cholesterol-mediated drug resistance. To dissect the regulatory mechanism, we conducted experiments, including immunofluorescence, co-immunoprecipitation, luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS: Long-term exposure to EGFR-TKIs generate drug resistance with the characteristic of cholesterol accumulation in lipid rafts, which promotes EGFR and Src to interact and lead EGFR/Src/Erk signaling reactivation-mediated SP1 nuclear translocation and ERRα re-expression. Further investigation identifies ERRα as a target gene of SP1. Functionally, re-expression of ERRα sustains cell proliferation by regulating ROS detoxification process. Lovastatin, a drug used to decrease cholesterol level, and XCT790, an inverse agonist of ERRα, overcome gefitinib and osimertinib resistance both in vitro and in vivo. CONCLUSIONS: Our study indicates that cholesterol/EGFR/Src/Erk/SP1 axis-induced ERRα re-expression promotes survival of gefitinib and osimertinib-resistant cancer cells. Besides, we demonstrate the potential of lowing cholesterol and downregulation of ERRα as effective adjuvant treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Colesterol/farmacologia , Colesterol/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Gefitinibe/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Estrogênio , Fator de Transcrição Sp1/genética , Receptor ERRalfa Relacionado ao Estrogênio
5.
BMC Cancer ; 22(1): 764, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831824

RESUMO

The tumor microenvironment is a dynamic cellular milieu that interacts with cancer cells and promotes tumor progression and metastasis. However, the specific mechanisms by which the tumor microenvironment impacts cancer cells' behaviors remain poorly understood. In this study, enriched cancer-associated fibroblasts (CAFs) were observed in tumor tissues isolated from epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) resistant non-small cell lung cancer (NSCLC) patients. CAFs isolated from tumor tissues were capable of producing tryptophan metabolite kynurenine (Kyn), which significantly increased the proliferation and EGFR TKIs resistance of NSCLC cells. In this study, it was further observed that the activation of tryptophan 2,3-dioxygenase (TDO) in CAFs, resulted in the enhanced capability of tryptophan metabolism in them compared to normal fibroblasts. As a result, Kyn produced by CAFs facilitated the up-regulation of Aryl Hydrocarbon Receptor (AhR) signals in NSCLC, thereby resulting in the downstream ATK and ERK signaling pathways activation. Finally, inhibition of AhR signals efficiently prevented tumor growth and development of EGFR TKIs resistance, eventually improved the outcome of EGFR TKIs, and described a promising therapeutic strategy for NSCLC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Hidrocarboneto Arílico , Triptofano , Microambiente Tumoral
6.
Acta Pharmacol Sin ; 42(4): 613-623, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32704041

RESUMO

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have achieved satisfactory clinical effects in the therapy of non-small cell lung cancer (NSCLC), but acquired resistance limits their clinical application. NRF2 has been shown to enhance the resistance to apoptosis induced by radiotherapy and some chemotherapy. In this study, we investigated the role of NRF2 in resistance to EGFR-TKIs. We showed that NRF2 protein levels were markedly increased in a panel of EGFR-TKI-resistant NSCLC cell lines due to slow degradation of NRF2 protein. NRF2 knockdown overcame the resistance to EGFR-TKIs in HCC827ER and HCC827GR cells. Furthermore, we demonstrated that NRF2 imparted EGFR-TKIs resistance in HCC827 cells via upregulation of GPX4 and SOD2, and suppression of GPX4 and SOD2 reversed resistance to EGFR-TKIs. Thus, we conclude that targeting NRF2-GPX4/SOD2 pathway is a potential strategy for overcoming resistance to EGFR-TKIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Pulmonares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Carbolinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/farmacologia , Superóxido Dismutase/genética , Regulação para Cima/fisiologia
7.
Cancer Sci ; 111(8): 2965-2973, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32441434

RESUMO

Statins have been shown to be a beneficial treatment as chemotherapy and target therapy for lung cancer. This study aimed to investigate the effectiveness of statins in combination with epidermal growth factor receptor-tyrosine kinase inhibitor therapy for the resistance and mortality of lung cancer patients. A population-based cohort study was conducted using the Taiwan Cancer Registry database. From January 1, 2007, to December 31, 2012, in total 792 non-statins and 41 statins users who had undergone EGFR-TKIs treatment were included in this study. All patients were monitored until the event of death or when changed to another therapy. Kaplan-Meier estimators and Cox proportional hazards regression models were used to calculate overall survival. We found that the mortality was significantly lower in patients in the statins group compared with patients in the non-statins group (4-y cumulative mortality, 77.3%; 95% confidence interval (CI), 36.6%-81.4% vs. 85.5%; 95% CI, 78.5%-98%; P = .004). Statin use was associated with a reduced risk of death in patients the group who had tumor sizes <3 cm (hazard ratio [HR], 0.51, 95% CI, 0.29-0.89) and for patients in the group who had CCI scores <3 (HR, 0.6; 95% CI, 0.41-0.88; P = .009). In our study, statins were found to be associated with prolonged survival time in patients with lung cancer who were treated with EGFR-TKIs and played a synergistic anticancer role.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Feminino , Seguimentos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Sistema de Registros/estatística & dados numéricos , Estudos Retrospectivos , Taiwan/epidemiologia , Resultado do Tratamento
8.
J Cell Biochem ; 120(8): 12566-12573, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825234

RESUMO

INTRODUCTION: Explanation of the mechanism of resistance to third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and the development of a novel strategy for drug resistance are imperative in third-generation EGFR-TKIs-resistant non-small cell lung cancer (NSCLC). SPOCK1 was found to be abnormally expressed in various tumors including lung cancer, however, there was no study focused on the role of SPOCK1 in third-generation EGFR-TKIs resistant lung cancer cells. METHODS AND RESULTS: We investigated the roles of SPOCK1 in NSCLC with third-generation EGFR-TKIs resistance. We showed that SPOCK1 was upregulated in the osimertinib-resistant lung cancer cells and knockdown of SPOCK1 inhibits osimertinib-resistant cells growth and overcomes resistance. Furthermore, we demonstrated that the SPOCK1 was higher in clinical NSCLC specimens compared with the normal lung tissues, and the higher expression of SPOCK1 correlated with poor prognosis. In addition, the overexpression of SPOCK1 in NSCLC tissues was positively correlated with MMP11 and TGFß1. CONCLUSION: Our study suggested that SPOCK1 could be an independent prognostic factor in NSCLC and would be a candidate for target therapy in osimertinib-resistant lung tumors.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteoglicanas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Receptores ErbB/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Proteoglicanas/genética , Proteoglicanas/fisiologia
9.
Mol Cancer ; 18(1): 165, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747941

RESUMO

BACKGROUND: The ATLANTIC trial reported that higher PD-L1 expression in tumors was involved in a higher objective response in patients with EGFR+/ALK+ non-small cell lung cancer (NSCLC), indicating the possibility of anti-PD-1/PD-L1 therapy as a third-line (or later) treatment for advanced NSCLC. Therefore, the determination of status and regulatory mechanisms of PD-L1 in EGFR mutant NSCLC before and after acquired EGFR-TKIs resistance are meaningful. METHODS: The correlation among PD-L1, c-MET, and HGF was analyzed based on TCGA datasheets and paired NSCLC specimens before and after acquired EGFR-TKI resistance. EGFR-TKI resistant NSCLC cells with three well-known mechanisms, c-MET amplification, hepatocyte growth factor (HGF), and EGFR-T790M, were investigated to determinate PD-L1 expression status and immune escape ability. PD-L1-deleted EGFR-TKIs sensitive and resistant cells were used to evaluate the immune escape ability of tumors in mice xenograft models. RESULTS: Positive correlations were found among PD-L1, c-MET, and HGF, based on TCGA datasheets and paired NSCLC specimens. Moreover, the above three resistant mechanisms increased PD-L1 expression and attenuated activation and cytotoxicity of lymphocytes in vitro and in vivo, and downregulation of PD-L1 partially restored the cytotoxicity of lymphocytes. Both MAPK and PI3K pathways were involved in the three types of resistance mechanism-induced PD-L1 overexpression, whereas the NF-kappa B pathway was only involved in T790M-induced PD-L1 expression. CONCLUSIONS: HGF, MET-amplification, and EGFR-T790M upregulate PD-L1 expression in NSCLC and promote the immune escape of tumor cells through different mechanisms.


Assuntos
Antígeno B7-H1/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Evasão Tumoral/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 793-803, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253515

RESUMO

The involvement of the tumor stromal cells in acquired resistance of non-small cell lung cancers (NSCLCs) to tyrosine kinase inhibitors (TKIs) has previously been reported, but the precise mechanism remains unclear. In the present study, we investigated the role and mechanism underlying Cancer-associated fibroblasts (CAFs) in TKI resistance of NSCLCs. In vitro and in vivo experiments showed that HCC827 and PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR-TKI gefitinib when cultured with CAFs isolated from NSCLC tissues. Moreover, we showed that CAFs could induce epithelial-mesenchymal transition (EMT) phenotype of HCC827 and PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition markers. Using proteomics-based method, we identified that CAFs significantly increased the expression of the Annexin A2 (ANXA2). More importantly, knockdown of ANXA2 completely reversed EMT phenotype and gefitinib resistance induced by CAFs. Furthermore, we found that CAFs increased the expression and phosphorylation of ANXA2 by secretion of growth factors HGF and IGF-1 and by activation of the corresponding receptors c-met and IGF-1R. Dual inhibition of HGF/c-met and IGF-1/IGF-1R pathways could significantly suppress ANXA2, and markedly reduced CAFs-induced EMT and gefitinib resistance. Taken together, these findings indicate that CAFs promote EGFR-TKIs resistance through HGF/IGF-1/ANXA2/EMT signaling and may be an ideal therapeutic target in NSCLCs with EGFR-activating mutations.


Assuntos
Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Anexina A2/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Cultivadas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
BMC Cancer ; 16: 491, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27431492

RESUMO

BACKGROUND: Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard care of patients with advanced EGFR-mutant non-small cell lung cancer (NSCLC), development of acquired resistance is inevitable. A secondary mutation of threonine 790 (T790M) is associated with approximately half of the cases of acquired resistance. Strategies or agents to overcome this type of resistance are still limited. In this study, enhanced antitumor effect of AT-101, a-pan-Bcl-2 inhibitor, on gefitinib was explored in NSCLC with T790M mutation. METHODS: The effect of cotreatment with AT-101 and gefitinib on the viability of NSCLC cell lines harboring acquired T790M mutation was investigated using the MTT assay. The cellular apoptosis of NSCLC cells after cotreatment with AT-101 and gefitinib was assessed by FITC-annexin V/PI assay and Western blots analysis. The potential underlying mechanisms of the enhanced therapeutic effect for AT-101 was also studied using Western blots analysis. The in vivo anti-cancer efficacy of the combination with AT-101 and gefitinib was examined in a mouse xenograft model. RESULTS: In this study, we found that treatment with AT-101 in combination with gefitinib significantly inhibited cell proliferation, as well as promoted apoptosis of EGFR TKIs resistant lung cancer cells. The apoptotic effects of the use of AT-101 was related to the blocking of antiapoptotic protein: Bcl-2, Bcl-xl, and Mcl-1 and downregrulation of the molecules in EGFR pathway. The observed enhancements of tumor growth suppression in xenografts supported the reverse effect of AT-101 in NSCLC with T790M mutation, which has been found in in vitro studies before. CONCLUSIONS: AT-101 enhances gefitinib sensitivity in NSCLC with EGFR T790M mutations. The addition of AT-101 to gefitinib is a promising strategy to overcome EGFR TKIs resistance in NSCLC with EGFR T790M mutations.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Gossipol/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Quinazolinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/biossíntese , Receptores ErbB/genética , Feminino , Gefitinibe , Gossipol/uso terapêutico , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteína bcl-X/antagonistas & inibidores
12.
Clin Lung Cancer ; 24(1): 29-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36117108

RESUMO

BACKGROUND: We investigated the impact of factors that influence TP53 mutations on the efficacy of EGFR-tyrosine kinase inhibitors and potential treatment strategies. MATERIALS AND METHODS: Tumor samples were collected to screen gene mutations by next-generation sequencing, as well as the patients' baseline characteristics. The overall response to treatment with TKIs was evaluated based on interval computed tomography scans at each follow-up time point. A Fisher's exact test and log-rank test were used to determine the statistical differences in this study. RESULTS: A total of 1134 clinical samples were collected from NSCLC patients, and TP53mut was identified in 644 cases and EGFRmut in 622 cases. A low frequency of TP53mut or more than 50% EGFR co-mutation rate were related to the prognosis of TKI-treated patients. In addition, TP53mut in the region outside of the DB domain had the strongest correlation with TKI resistance, whereas various types of mutations in the DB domain only had an impact on PFS. A grouping study of EGFR-TKI-based treatment revealed that EGFR-TKIs with chemotherapy were associated with more significant survival benefits for patients with prognostic TP53mut, whereas EGFR-TKI therapy was favorable for TP53wt patients. Furthermore, TP53mut could shorten the time to the relapse of postoperative patients, who will also likely respond well to EGFR-TKIs with chemotherapy. CONCLUSION: Various characteristics of TP53mut affect the prognosis of TKI-treated patients to varying degrees. EGFR-TKIs with chemotherapy were benefit for patients' survival with prognostic TP53mut, which provides an important reference for treatment management of EGFRmut patients.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptores ErbB , Recidiva Local de Neoplasia/tratamento farmacológico , Mutação/genética , Proteína Supressora de Tumor p53/genética
13.
Int J Biol Sci ; 19(3): 832-851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778111

RESUMO

Treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has brought significant benefits to non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, most patients eventually develop acquired resistance after treatment. This study investigated the epigenetic effects of mucin 17 (MUC17) in acquired drug-resistant cells of EGFR-TKIs. We found that GR/OR (gefitinib/osimertinib-resistance) cells enhance genome-wide DNA hypermethylation, mainly in 5-UTR associated with multiple oncogenic pathways, in which GR/OR cells exerted a pro-oncogenic effect by downregulating mucin 17 (MUC17) expression in a dose- and time-dependent manner. Gefitinib/osimertinib acquired resistance mediated down-regulation of MUC17 by promoting DNMT1/UHRF1 complex-dependent promoter methylation, thereby activating NF-κB activity. MUC17 increased the generation of IκB-α and inhibit NF-κB activity by promoting the expression of MZF1. In vivo results also showed that DNMT1 inhibitor (5-Aza) in combination with gefitinib/osimertinib restored sensitivity to OR/GR cells. Acquired drug resistance of gefitinib/osimertinib promoted UHRF1/DNMT1 complex to inhibit the expression of MUC17. MUC17 in GR/OR cells may act as an epigenetic sensor for biomonitoring the resistance to EGFR-TKIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Regulação para Baixo/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/genética , Mucinas/genética , Mucinas/metabolismo , Mucinas/farmacologia , Mutação , Linhagem Celular Tumoral , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
14.
Eur J Med Chem ; 249: 115166, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36731272

RESUMO

Pyruvate kinase 2 (PKM2) and pyruvate dehydrogenase kinase 1 (PDK1) are two key enzymes in tumor glucose metabolism pathway that not only promote tumor growth and proliferation through accelerating aerobic glycolysis, but also contribute to drug resistance of non-small cell lung cancer (NSCLC). Considering that targeting PKM2 or PDK1 alone seems insufficient to remodel abnormal glucose metabolism to achieve significant antitumor activity, we proposed a "two-step approach" that regulates PKM2 and PDK1 synchronously. Firstly, we found that the combination of ML265 (PKM2 activator) and AZD7545 (PDK1 inhibitor) could synergistically inhibit proliferation and induce apoptosis in H1299 cells. Base on this, we designed a series of novel shikonin (SK) thioether derivatives as PKM2/PDK1 dual-target agents, among which the most potent compound E5 featuring a 2-methyl substitution on the benzene ring exerted significantly increased inhibitory activity toward EGFR mutant NSCLC cell H1975 (IC50 = 1.51 µmol/L), which was 3 and 17-fold more active than the lead compound SK (IC50 = 4.56 µmol/L) and the positive control gefitinib (IC50 = 25.56 µmol/L), respectively. Additionally, E5 also showed good anti-tumor activity in xenografted mouse models, with significantly lower toxicity side effects than SK. Moreover, E5 also inhibited the entry of PKM2 into nucleus to regulate the transcriptional activation of oncogenes, thus restoring the sensitivity of H1975 cell to gefitinib. Collectively, these data demonstrate that E5, a dual inhibitor of PKM2/PDK1, may be a promising adjunct to gefitinib in the treatment of EGFR-TKIs resistant NSCLC, deserving further investigation.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Gefitinibe/farmacologia , Piruvato Quinase , Neoplasias Pulmonares/patologia , Oxirredutases , Linhagem Celular Tumoral , Receptores ErbB , Glucose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose
15.
Zhongguo Fei Ai Za Zhi ; 25(8): 601-608, 2022 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-36002197

RESUMO

The follow-up treatment of patients with advanced non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutation after drug resistance to EGFR-tyrosine kinase inhibitors (TKIs) have become a hotspot and difficulty at present. Immune checkpoint inhibitors (ICIs) therapy is a new and important choice for these patients, but many studies have shown unsatisfactory efficacy. However, some domestic and foreign studies have shown that ICIs combination therapy is still effective in some patients with positive driver genes and drug resistance after targeted therapy. So, in the era of immunotherapy, what are the differences in the efficacy of different combination immunotherapy strategies for different patients? What are the factors that affect efficacy? What are the interrelationships between these factors and other immunotherapy efficacy prediction biomarkers? All these problems have broad and important research value.
.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Aging (Albany NY) ; 13(9): 13264-13286, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952725

RESUMO

Exosomes are messengers for intercellular communication and signal transduction. Circular RNA (circRNA) abnormal expression and regulation are involved in the occurrence and development of a variety of tumors. In the present study, exosomes in the serum of five patients with non-small cell lung cancer (NSCLC) were isolated before and after EGFR-TKIs resistance, and the circRNA expression profile was screened using a circRNA microarray. The effects of the exosome circRNA_102481 on cell proliferation and apoptosis were analyzed. The interaction between miR-30a-5p and circRNA_102481 or ROR1 was predicted by starBase software, and was confirmed by RNA pull-down and dual-luciferase reporter assays. The results showed that exosomes containing circRNA_102481 were significantly up-regulated in NSCLC with EGFR-TKIs resistance (p<0.05), and that circRNA_102481 was mainly secreted by EGFR-TKIs resistance cell via exosomes (p<0.05). Both circRNA_102481 silencing and si-circRNA_102481 transported by exosomes could inhibit EGFR-TKIs resistance cell proliferation and promote cell apoptosis and circRNA_102481 overexpression could promote EGFR-TKIs sensitive cell proliferation and inhibit cell apoptosis in vitro (p<0.05). CircRNA_102481 served as a miR-30a-5p sponge to regulate ROR1 expression (p<0.05). Furthermore, the expression of circRNA_102481 in exosomes was associated with TNM stage, tumor differentiation status, brain metastasis, and PFS and OS duration. Therefore, it was concluded that tumor-derived exosomal circRNA_ 102481 could contribute to EGFR-TKIs resistance via the microRNA-30a-5p/ROR1 axis in NSCLC. Exosomal circRNA_102481 may serve as a novel diagnostic biomarker and a therapeutic target for EGFR-TKIs resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/sangue , RNA Circular/sangue , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
17.
J Control Release ; 324: 482-492, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32497570

RESUMO

Lung cancer is the primary cause of cancer-related death worldwide. 85%-90% of cases are non-small cell lung cancer (NSCLC) which characteristically exhibits altered epidermal growth factor receptor (EGFR) signaling is a major driver pathway. Unfortunately, therapeutic outcomes in treating NSCLC are compromised by the emergence of drug resistance in response to EGFR-tyrosine kinase inhibitor (TKI) targeted therapy due to the acquired resistance mutation EGFR T790M or activation of alternative pathways. There is current need for a new generation of TKIs to be developed to treat EGFR-TKI-resistant NSCLC. To overcome the above problems and improve clinical efficacy, nanotechnology with targeting abilities and sustained release has been proposed for EGFR-TKI-resistant NSCLC treatment and has already achieved success in in vitro or in vivo models. In this review, we summarize and illustrate representative nano-formulations targeting EGFR-TKI-resistant NSCLC. The described advances may pave the way to better understanding and design of nanocarriers and multifunctional nanosystems for efficient treatment for drug resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
19.
Cancer Lett ; 433: 186-198, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981430

RESUMO

As a newly discovered deubiquitinating enzyme, ubiquitin-specific protease 22 (USP22) is predictive of therapeutic outcomes in individual cancer patients. However, its clinical effects on malignancy and its roles in conferring resistance to EGFR-TKIs (epidermal growth factor receptor-tyrosine kinase inhibitors) in lung adenocarcinoma (ADC) remain largely unknown. Here, we showed that USP22 promotes cell proliferation, migration and invasion, and contributes to resistance to EGFR-TKIs in EGFR mutant lung ADC cells. Mechanistically, USP22 deubiquitinates EGFR localized on late endosomes, prevents ubiquitination mediated EGFR degradation and enhances recycling of EGFR after EGF stimulation. Additionally, USP22 sustained the activation of multiple EGFR downstream signaling pathways, including STAT3, AKT/mTOR and MEK/ERK pathways, in lung ADC cell lines H1975 and PC9. Furthermore, USP22 stabilizes EGFR protein expression, which correlates with USP22 expression in EGFR-mutant lung ADC patient samples. We are the first to demonstrate that silencing USP22 counteracts EGFR-TKIs resistance both in vitro and in vivo. We propose USP22 as a potential therapeutic target for EGFR-TKIs-resistant lung ADC.


Assuntos
Adenocarcinoma de Pulmão/patologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Tioléster Hidrolases/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mutação , Transplante de Neoplasias , Proteólise , Tioléster Hidrolases/genética , Ubiquitina Tiolesterase
20.
Zhongguo Fei Ai Za Zhi ; 21(12): 907-911, 2018 Dec 20.
Artigo em Chinês | MEDLINE | ID: mdl-30591098

RESUMO

Lung cancer is the one of the malignant tumor of the highest morbidity and mortality over the world, and non-small cell lung cancer (NSCLC) makes up about 80%. Nowadays, molecular targeted therapy has been the first-line treatment for NSCLC. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are increasingly used in the clinical treatment, but the EGFR-TKIs acquired resistance becomes the bottleneck of continuation of EGFR-TKIs therapy. Epithelial-mesenchymal transition (EMT) is a biological phenomenon in which epithelial cells are transformed into mesenchymal cells. EMT promoted metastasis, invasion of lung cancer and conferred characteristic of stem cell on cancer cells. Meanwhile, EMT is one of an important cause of EGFR-TKIs resistance in NSCLC. The recent studies have found that resistant cells restored the sensitivity to EGFR-TKIs by reversing EMT which suggested that the target of EMT may contribute to inhibit or even reverse the resistance of EGFR-TKIs. Here we make a review about research progress of EMT in EGFR-TKIs resistance in NSCLC.
.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/fisiopatologia , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa