RESUMO
The rapid and sensitive diagnosis of the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the crucial issues at the outbreak of the ongoing global pandemic that has no valid cure. Here, we propose a SARS-CoV-2 antibody conjugated magnetic graphene quantum dots (GQDs)-based magnetic relaxation switch (MRSw) that specifically recognizes the SARS-CoV-2. The probe of MRSw can be directly mixed with the test sample in a fully sealed vial without sample pretreatment, which largely reduces the testers' risk of infection during the operation. The closed-tube one-step strategy to detect SARS-CoV-2 is developed with home-made ultra-low field nuclear magnetic resonance (ULF NMR) relaxometry working at 118 µT. The magnetic GQDs-based probe shows ultra-high sensitivity in the detection of SARS-CoV-2 due to its high magnetic relaxivity, and the limit of detection is optimized to 248 Particles mLâ1. Meanwhile, the detection time in ULF NMR system is only 2 min, which can significantly improve the efficiency of detection. In short, the magnetic GQDs-based MRSw coupled with ULF NMR can realize a rapid, safe, and sensitive detection of SARS-CoV-2.
RESUMO
BACKGROUND: As the daily number of coronavirus infection disease 19 (COVID19) patients increases, the necessity of early diagnosis becomes more obvious. In this respect, we aimed to develop a serological test for specifically detecting anti-SARS-CoV2 antibodies. METHODS: We collected serum and saliva samples from 609 individuals who work at TBZMED affiliated hospitals in Tabriz, Iran, from April to June of 2020. Real-time PCR technique was used to detect SARS-CoV-2 genome using specific primers. An enzyme linked immunosorbent assay (ELISA) test was designed based on virus nucleocapsid (N), spike (S) and its receptor binding domain (RBD) protein, and the collected sera were subjected to IgM and/or IgG analysis. RESULT: Real-time PCR results showed that 66 people were infected with the SARS-CoV-2. Our designed ELISA kit showed 93.75% and 98% of sensitivity and specificity, respectively. In this study, 5.74% of participants had specific IgG against RBD, whereas the percentage for IgM positive individuals was 5.58%. Approximately the same results were observed for S protein. The number of positive participants for NP increased further, and the results of this antigen showed 7.38% for IgG and 7.06% for IgM. CONCLUSION: The ELISA test beside real-time PCR could provide a reliable serologic profile for the status of the disease progress and early detection of individuals. More importantly, it possesses the potential to identify the best candidates for plasma donation according to the antibody titers.
RESUMO
HuR (human antigen R), an mRNA-binding protein responsible for poor prognosis in nearly all kinds of malignancies, is a potential anti-tumor target for drug development. While screening HuR inhibitors with a fluorescence polarization (FP) based high-throughput screening (HTS) system, the clinically used drug eltrombopag was identified. Activity of eltrombopag on molecular level was verified with FP, electrophoretic mobility shift assay (EMSA), simulation docking and surface plasmon resonance (SPR). Further, we showed that eltrombopag inhibited in vitro cell proliferation of multiple cancer cell lines and macrophages, and the in vivo anti-tumor activity was also demonstrated in a 4T1 tumor-bearing mouse model. The in vivo data showed that eltrombopag was efficient in reducing microvessels in tumor tissues. We then confirmed the HuR-dependent anti-angiogenesis effect of eltrombopag in 4T1 cells and RAW264.7 macrophages with qRT-PCR, HuR-overexpression and HuR-silencing assays, RNA stability assays, RNA immunoprecipitation and luciferase assays. Finally, we analyzed the in vitro anti-angiogenesis effect of eltrombopag on human umbilical vein endothelial cells (HUVECs) mediated by macrophages with cell scratch assay and in vitro Matrigel angiogenesis assay. With these data, we revealed the HuR-dependent anti-angiogenesis effect of eltrombopag in breast tumor, suggesting that the existing drug eltrombopag may be used as an anti-cancer drug.
RESUMO
BACKGROUND: Few interventions directly compare equivalent calcium and vitamin D from dairy vs. supplements on the same bone outcomes. The radioisotope calcium-41 ((41)Ca) holds promise as a tracer method to directly measure changes in bone resorption with differing dietary interventions. OBJECTIVE: Using (41)Ca tracer methodology, determine if 4 servings/day of dairy foods results in greater (41)Ca retention than an equivalent amount of calcium and vitamin D from supplements. Secondary objective was to evaluate the time course for the change in (41)Ca retention. METHODS: In this crossover trial, postmenopausal women (n = 12) were dosed orally with 100 nCi of (41)Ca and after a 180 day equilibration period received dairy (4 servings/day of milk or yogurt; ~ 1300 mg calcium, 400 IU cholecalciferol (vitamin D3/day)) or supplement treatments (1200 mg calcium carbonate/day and 400 IU vitamin D3/day) in random order. Treatments lasted 6 weeks separated by a 6 week washout (WO). Calcium was extracted from weekly 24 h urine collections; accelerator mass spectrometry (AMS) was used to determine the (41/40)Ca ratio. Primary outcome was change in (41/40)Ca excretion. Secondary outcome was the time course for change in (41)Ca excretion during intervention and WO periods. RESULTS: The (41/40)Ca ratio decreased significantly over time during both treatments; there was no difference between treatments. Both treatments demonstrated a significant retention of (41)Ca within 1-2 weeks (p = 0.0007 and p < 0.001 for dairy and supplements, respectively). WO demonstrated a significant decrease (p = 0.0024) in (41)Ca retention within 1-2 weeks, back to pre-intervention levels. CONCLUSION: These data demonstrate that urinary (41)Ca retention is increased with an increase in calcium and vitamin D intake regardless of the source of calcium, and the increased retention occurs within 1-2 weeks.
RESUMO
HuR (human antigen R), an mRNA-binding protein responsible for poor prognosis in nearly all kinds of malignancies, is a potential anti-tumor target for drug development. While screening HuR inhibitors with a fluorescence polarization (FP) based high-throughput screening (HTS) system, the clinically used drug eltrombopag was identified. Activity of eltrombopag on molecular level was verified with FP, electrophoretic mobility shift assay (EMSA), simulation docking and surface plasmon resonance (SPR). Further, we showed that eltrombopag inhibited cell proliferation of multiple cancer cell lines and macrophages, and the anti-tumor activity was also demonstrated in a 4T1 tumor-bearing mouse model. The data showed that eltrombopag was efficient in reducing microvessels in tumor tissues. We then confirmed the HuR-dependent anti-angiogenesis effect of eltrombopag in 4T1 cells and RAW264.7 macrophages with qRT-PCR, HuR-overexpression and HuR-silencing assays, RNA stability assays, RNA immunoprecipitation and luciferase assays. Finally, we analyzed the anti-angiogenesis effect of eltrombopag on human umbilical vein endothelial cells (HUVECs) mediated by macrophages with cell scratch assay and Matrigel angiogenesis assay. With these data, we revealed the HuR-dependent anti-angiogenesis effect of eltrombopag in breast tumor, suggesting that the existing drug eltrombopag may be used as an anti-cancer drug.
RESUMO
BACKGROUND: Interleukin (IL)-8 -251 T/A and IL-10 (-1082 G/A and -819/592 C/T) polymorphisms and their expression may influence gastritis, atrophy, intestinal metaplasia (IM) and gastric cancer (GC) following H. pylori infection. METHODS: Genotyping of these genes was performed (ASO-PCR) in 200, 182 and 250 with GC, functional dyspepsia (FD) and healthy controls (HC), respectively. Anti-H. pylori IgG-antibody was tested in all and serums IL-8 and IL-10 were measured randomly in 60 subjects of each group by ELISA. RESULTS: Pro-(IL-8)-251 AA and anti-inflammatory (IL-10)-819 TT genotypes were commoner among GC than HC (p = 0.023, OR 1.86 [1.09-3.2] and p = 0.020, OR 2.0 [1.11-3.5]) but comparable with FD. IL-8 AA and IL-10-819 T allele carriage was also commoner in H. pylori-infected GC than HC (p = 0.011, OR 2.47 [1.23-5.0], and p = 0.018, OR 2.3 (1.16-4.59). IL-10-1082 G/A genotype and haplotypes (ACC, GCC, ATA and GTA) were comparable in all groups. Circulating levels of IL-8 and IL-10 were higher among GC than HC but comparable to FD (IL-8; 57.64 [6.44-319.46] vs. 54.35 [4.24-318.96] and 26.33 [4.67-304.54] pg/ml, p < 0.001 and IL-10; 15.47 [1.01-270.87] vs. 12.28 [0.96-64.88] and 3.79 [1.24-56.65], p < 0.001 for GC vs. HC). IL-8/IL-10 ratio was lower among GC than HC but higher than FD (3.7 [0.18-38.41] vs. 6.59 [0.98-130.2], p < 0.001 and 4.22 [0.15-61.4], p < 0.01). Circulating levels of IL-8, IL-10 and IL-8/lL-10 ratios were different among H. pylori-infected and non-infected GC than HC (p < 0.001, p < 0.001 and p < 0.01). CONCLUSIONS: Pro-(IL-8)-251 T/A and anti-inflammatory (IL-10)-819 C/T gene polymorphisms and their circulating levels may play a role in H. pylori-associated gastric carcinogenesis in northern India.
RESUMO
CIGB-247 is a cancer vaccine that is a formulation of a recombinant protein antigen representative of the human vascular endothelial growth factor (VEGF) with a bacterially-derived adjuvant (VSSP). The vaccine has shown an excellent safety profile in mice, rats, rabbits, not-human primates and in recent clinical trials in cancer patients. Response to the vaccine is characterized by specific antibody titers that neutralize VEGF/VEGFR2 binding and a cytotoxic tumor-specific response. To expand our present anti-VEGF active immunotherapy strategies, we have now studied in mice and non-human primates the effects of vaccination with a formulation of our recombinant VEGF antigen and aluminum phosphate adjuvant (hereafter denominated CIGB-247-A). Administered bi-weekly, CIGB-247-A produces high titers of anti-VEGF IgG blocking antibodies in 2 mice strains. Particularly in BALB/c, the treatment impaired subcutaneous F3II mammary tumor growth and reduced the number of spontaneous lung macro metastases, increasing animals' survival. Spleen cells from specifically immunized mice directly killed F3II tumor cells in vitro. CIGB-247-A also showed to be immunogenic in non-human primates, which developed anti-VEGF blocking antibodies and the ability for specific direct cell cytotoxic responses, all without impairing the healing of deep skin wounds or other side effect. Our results support consideration of aluminum phosphate as a suitable adjuvant for the development of new vaccine formulations using VEGF as antigen.